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Abstract. We study the semigroups isomorphic to principal ideals of finitely generated
commutative monoids. We define the concept of finite presentation for this kind of semi-
groups. Furthermore, we show how to obtain information on these semigroups from their
presentations.
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Introduction

In this paper we study the semigroups isomorphic to principal ideals of finitely
generated commutative monoids. This study is made from the following perspective.

In [11] it was shown that the semigroups which can be embedded in finitely generated
commutative monoids are isomorphic to quotient semigroups of the form A/σA, with

A a subsemigroup of �p for some positive integer p and σA the restriction to A of the
congruence σ on �p . In that paper the problem of finding algorithms for determining

properties of the semigroup A/σA from (A, σ) was proposed. The work presented
here has been developed following this line, since it covers the case when A is a

principal ideal. The contents of this paper are organized as follows. In Section 1
we show that the pairs (m, �) with m an element of �p and � a finite subset of

�
p × �

p determine, up to isomorphisms, all semigroups isomorphic to a principal
ideal of a finitely generated commutative monoid. So these semigroups are finitely

presented whenever we admit a pair (m, �) as a presentation of them. The rest of

This paper was supported by the project DGES PB96-1424.
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the paper is devoted to showing how we can obtain from (m, �) information on the

semigroup that this pair represents. In this sense, in Section 2 we see when they
have an identity element. In Section 3 we show how it can be determined whether
one of these semigroups is a group. Finally, Section 4 is devoted to the study of the

properties of being cancellative and/or torsion free.

We wish to thank P.A. García Sánchez for his comments and suggestions during

the development of this work.

1. Presentations of principal ideals

Let (S,+) be a commutative monoid generated by {s1, s2, . . . , sp}. An ideal of S is
a subset H of S fulfilling the following condition: if h ∈ H and s ∈ S then h+s ∈ H .
It is known (see [4]) that if H is an ideal of S, then there exists a finite subset B

of H such that H = B + S = {b + s | b ∈ B, s ∈ S}. We say that H is a principal
ideal of S if there exists h ∈ H such that

H = h+ S = {h+ s | s ∈ S}.

Our goal in this section is to prove that a semigroup isomorphic to a principal
ideal of a finitely generated commutative monoid is, up to isomorphism, perfectly

determined by a pair (m, �) with m an element of �p for some positive integer p and
� = {(α1, β1), . . . , (αt, βt)} a finite subset of �p × �

p .

We start constructing a principal ideal of a finitely generated commutative monoid
from a pair (m, �). Let I = m+�p , which is an ideal of �p ; � = {(α1+m,β1+m), . . . ,
(αt+m,βt+m)}, which is a subset of I×I; let σ be the congruence on �p generated
by � and σI = σ ∩ (I × I), which clearly is a congruence on I.

We shall see that the semigroup I/σI is an ideal of �p/σ. First we show a lemma
and one of its consequences.

Lemma 1. Let x, y ∈ �p , then x σ y if and only if one of the following conditions

holds:

• {x, y} �⊆ I and x = y,

• {x, y} ⊆ I and x σI y.

�����. The proof is easily deduced if we take into account the following re-

marks:

• Since α1 +m,β1 +m, . . . , αt +m,βt +m ∈ I, we have � ⊆ I × I.

• The congruence σ = 〈�〉 can be constructed in three steps as follows (see for
instance [2]):
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i) �0 = �∪�−1∪τ with �−1 = {(β, α) | (α, β) ∈ �} and τ = {(α, α) | α ∈ �p}.
ii) �1 = {(α+ γ, β + γ) | (α, β) ∈ �0 and γ ∈ �p}.
iii) (α, β) ∈ σ if and only if there exist v0, . . . , vl ∈ �

p such that α = v0, β = vl

and (vi, vi+1) ∈ �1 for all i ∈ {0, . . . , l − 1}. �

As an immediate consequence of Lemma 1 we obtain the following result.

Corollary 2. For every x ∈ �
p ,

1. if x �∈ I, then [x]σ = {x},
2. if x ∈ I, then [x]σ = [x]σI .

Now, we are ready to prove the following result.

Theorem 3. The semigroup I/σI is a principal ideal of �p/σ.

�����. We show that I/σI = [m]σ + �p/σ.

• Let [x]σI
∈ I/σI . Then x ∈ I and therefore [x]σI

= [x]σ. Furthermore, x ∈ I

implies that there exists y ∈ �p such that x = y+m. Hence [x]σ = [m]σ + [y]σ,

which leads to [x]σI
= [x]σ ∈ [m]σ + �p/σ.

• Let [x]σ ∈ [m]σ + �p/σ. Then there exists y ∈ �
p such that [x]σ = [m]σ + [y]σ.

Hence [x]σ = [m + y]σ. Since m + y ∈ I, we obtain that [m+ y]σ = [m+ y]σI

and conclude that [x]σ = [m+ y]σI
∈ I/σI . �

From the above study we obtain the following statement.

Corollary 4. Every pair (m, �) with m an element of �p and � a finite subset of

�
p × �

p determines a principal ideal of a finitely generated commutative monoid.

Now, we see that this construction characterizes, up to isomorphisms, all principal
ideals of finitely generated commutative monoids.

Let (S,+) be a commutative monoid generated by {s1, . . . , sp}, H = h + S a
principal ideal of S, ϕ : �p −→ S the monoid homomorphism defined by

ϕ(x1, . . . , xp) = x1s1 + . . .+ xpsp

and R the kernel congruence of ϕ. Then S is isomorphic to the quotient monoid
�

p/R. Since h ∈ S, we have that there exists m = (m1, . . . ,mp) ∈ �
p such that

h = m1s1 + . . . +mpsp. Let I = m+ �p , RI = R ∩ (I × I), which is a congruence
on I, and let σ be the congruence on �p generated by RI . Since σ is a congruence

on �p , we obtain that it is finitely generated (see for instance [7]). Moreover, since
σ is generated by RI which is a subset of I × I, we can assume that it is generated

by a finite subset � of I × I. Note that then � is of the form {(α1 +m,β1 +m), . . . ,
(αt +m,βt +m)} for a finite subset � = {(α1, β1), . . . , (αt, βt)} of �p × �

p .
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In this way we have associated to H a pair (m, �). For showing that the construc-

tion given at the beginning of this section characterizes all principal ideals of finitely
generated commutative monoids, we shall prove Theorem 6, but before that we need
a lemma.

Lemma 5. The congruence σI is the same as RI .

�����.

• If (x, y) ∈ RI , then (x, y) ∈ σ and (x, y) ∈ I × I. Therefore (x, y) ∈ σI .

• If (x, y) ∈ σI , then (x, y) ∈ σ and (x, y) ∈ I × I. We see that (x, y) ∈ R and

therefore (x, y) ∈ RI . Since σ is a congruence on �p generated by RI , then
(x, y) ∈ σ implies (see the proof of Lemma 1) that there exist v0, . . . , vl ∈ �

p

such that x = v0, y = vl and (vi, vi+1) = (ai + ci, bi + ci) with (ai, bi) ∈ RI

and ci ∈ �
p for all i ∈ {0, . . . , l − 1}. But if (ai, bi) ∈ RI , then (ai, bi) ∈ R and

(ai + ci, bi + ci) ∈ R. By the transitivity of R we obtain that (x, y) ∈ R. �

Theorem 6. The semigroups H and I/σI are isomorphic.

�����. Define f : I/σI −→ H by

f([(x1, . . . , xp)]σI ) = x1s1 + . . .+ xpsp.

The map f is well defined as the following two remarks show.

• If (x1, . . . , xp) ∈ I, then (x1, . . . , xp) = (m1, . . . ,mp) + (a1, . . . , ap) for some
(a1, . . . , ap) ∈ �

p . Hence

x1s1 + . . .+ xpsp = m1s1 + . . .+mpsp + a1s1 + . . .+ apsp ∈ h+ S = H.

• If (x1, . . . , xp) σI (y1, . . . , yp) then, by Lemma 5, (x1, . . . , xp)RI(y1, . . . , yp).
Hence (x1, . . . , xp)R(y1, . . . , yp), which means that

x1s1 + . . .+ xpsp = y1s1 + . . .+ ypsp.

We show that f is surjective. If x ∈ H , then there exists s ∈ S such that

x = h+s. Let (a1, . . . , ap) ∈ �
p with a1s1+ . . .+apsp = s. Clearly, f([(m1+a1, . . . ,

mp + ap)]σI
) = x.

Now, we show that f is injective. If f([x1, . . . , xp)]σI
) = f([(y1, . . . , yp)]σI

), then
x1s1 + . . . + xpsp = y1s1 + . . . + ypsp. Hence (x1, . . . , xp)RI(y1, . . . , yp) and by

Lemma 5 we have [(x1, . . . , xp)]σI
= [(y1, . . . , yp)]σI

.

Now we only have to prove that f is a homomorphism, which is trivial. �
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As a consequence of Corollary 4 and Theorem 6 we obtain the following result.

Corollary 7. Every semigroup isomorphic to a principal ideal of a finitely gener-
ated commutative monoid is determined, up to isomorphisms, by a pair (m, �) where

m ∈ �p and � is a finite subset of �p × �
p .

2. Principal ideals which are monoids

Let (m, �) be a pair with m = (m1, . . . ,mp) ∈ �
p and � = {(α1, β1), . . . , (αt, βt)}

a subset of �p × �
p . Let I = m+ �p , let σ be the congruence on �p generated by

� = {(α1+m,β1+m), . . . , (αt +m,βt+m)} and σI = σ ∩ (I × I). The objective of

this section is to characterize the pairs (m, �) such that the semigroup I/σI has an
identity element.

Let σ be the congruence on �p generated by �. The following result shows the
relationship between the congruences σ and σ.

Lemma 8. Let x, y ∈ �p . Then x σ y if and only if (x+m) σ (y +m).

�����. Necessity. We know that x σ y implies that there exist v0, . . . , vl ∈ �
p

such that x = v0, y = vl and (vi, vi+1) = (ai+ci, bi+ci) for some (ai, bi) ∈ �∪�−1∪τ
and ci ∈ �

p for all i ∈ {0, . . . , l − 1}. Set vi = vi + m for all i ∈ {0, . . . , l}.
Clearly, x + m = v0, y + m = vl and (vi, vi+1) = (ai + m + ci, bi + m + ci) with

(ai +m, bi +m) ∈ � ∪ �−1 ∪ τ and ci ∈ �
p . Hence, (x+m) σ (y +m).

Sufficiency. We know that (x+m) σ (y+m) implies that there exist v0, . . . , vl ∈ �
p

such that x + m = v0, y + m = vl and (vi, vi+1) = (ai, bi) + (ci, ci) for some
(ai, bi) ∈ � ∪ �−1 ∪ τ and ci ∈ �

p for all i ∈ {0, . . . , l − 1}. Since we can assume
that vi �= vi+1, we have that (ai, bi) �∈ τ . Hence (ai, bi) ∈ � ∪ �−1 and therefore
(ai − m, bi − m) ∈ � ∪ �−1. Let vi = vi − m for all i ∈ {0, . . . , l}. Then v0 = x,
vl = y and (vi, vi+1) = (ai −m, bi −m) + (ci, ci) with (ai −m, bi −m) ∈ �∪ �−1 and
ci ∈ �p . Clearly we obtain that x σ y. �

If (A,+) is a commutative monoid, then we denote

U(A) = {a ∈ A | a+ b = 0 for some b ∈ A}.

Usually, U(A) is called the group of units of A. The proof of the two following
lemmas are left to the reader.

Lemma 9. Let (A,+) be a monoid and U(A) its group of units. Then the
following conditions are fulfilled:
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• U(A) is a submonoid of A and a group,
• a+ b ∈ U(A) implies that {a, b} ⊆ U(A),
• A \ U(A) is an ideal of A.

Lemma 10. Let (A,+) be a monoid and U(A) its group of units. If A is generated
by {a1, . . . , ap} and

U(A) ∩ {a1, . . . , ap} = {ai1, . . . , air},

then U(A) is the submonoid of A generated by {ai1, . . . , air}.

Theorem 11. The semigroup I/σI has an identity element if and only if [m]σ ∈
U(�p/σ).

�����. Necessity. Let u ∈ �
p be such that [m+ u]σI

is the identity element of
I/σI . Then (m +m + u) σI m and therefore (m +m + u) σ m. By Lemma 8, we

deduce that (m+ u) σ 0. Then [m]σ + [u]σ = [0]σ, which means [m]σ ∈ U(�p/σ).

Sufficiency. If [m]σ ∈ U(�p/σ), then there exists x ∈ �
p such that [m]σ + [x]σ =

[0]σ, which leads to (m + x) σ 0. By Lemma 8 we obtain that (m +m + x) σ m.
We show that [m + x]σI

is the identity element of I/σI . Let [m + y]σI
∈ I/σI .

Since (m+m + x) σ m, we deduce that (m +m+ x + y) σ (m + y). Furthermore,

{m + m + x + y,m + y} ⊆ I × I and then (m + m + x + y) σI (m + y). Hence
[m+ y]σI

+ [m+ x]σI
= [m+ y]σI

. �

We close this section by explaining that from the computational point of view it
is possible to determine algorithmically from a pair (m, �) whether the semigroup

I/σI has an identity element. We know that �p/σ is the monoid generated by
{[e1], . . . , [ep]} with ei the element of �p whose i-th coordinate equals 1 and the

other coordinates equal 0. In [8] an algorithm is given for determining from � the
set {i | [ei] ∈ U(�p/σ)}. The following result which is an immediate consequence of
Lemma 10 and Theorem 11 gives us a method to check whether I/σI is a monoid.

Corollary 12. The semigroup I/σI is a monoid if and only if Supp(m) ⊆
{i | [ei] ∈ U(�p/σ)} with Supp(m) = {i | mi �= 0}.
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3. Principal ideals which are groups

Assume that I/σI is a monoid. Here we determine the group of units of this

monoid. In particular, we are able to determine when I/σI is a group.

As in the preceding section, (m, �) is a pair with m = (m1, . . . ,mp) ∈ �
p and

� = {(α1, β1), . . . , (αt, βt)} ⊆ �
p × �

p . Denote by � the set {(α1 +m,β1 +m), . . . ,
(αt +m,βt +m)}, by σ and σ the congruences on �p generated by � and �, respec-

tively, and by σI the congruence σ ∩ (I × I) on I. Furthermore, we assume that
{i1, . . . , ir} = {i | [ei] ∈ U(�p/σ)} and that m+ u is the identity element of I/σI .

Proposition 13. The set U(I/σI) is the same as the set

{[x]σI
∈ I/σI | Supp(x) ⊆ {i1, . . . , ir}}.

�����. Assume that x ∈ I and Supp(x) ⊆ {i1, . . . , ir}. Then x = m + y for

some y ∈ �p and x is a unit of �p/σ (see Lemma 10). Hence there exists z ∈ �p such
that [m+y]σ+[z]σ = [0]. Then (m+y+z) σ 0 and applying Lemma 8, we obtain that

(m+ y+ z+m) σ m. So we deduce that (m+ y+ z+m+u) σ (m+u) and therefore
[m+y]σI

+[z+m+u]σI
= [m+u]σI

. We conclude that [x]σI
= [m+y]σI

∈ U(I/σI).

Now, assume that [m+ y]σI
is a unit of I/σI , then there exists [m+ z]σI

∈ I/σI

such that (m+ y +m+ z) σI (m+ u). Hence [m+ y +m+ z]σI
= [m+ u]σI

is the

identity element of I/σI . Clearly, we obtain that [m]σI
+ [m+ y+m+ z]σI

= [m]σI

and therefore (m+m+y+m+z) σ m. By Lemma 8, we have that (m+y+m+z) σ 0

and then [m+y]σ is a unit of �p/σ. By Lemma 10, we conclude that Supp(m+y) ⊆
{i1, . . . , ir}. �

As a consequence of Proposition 13 we obtain the following corollary.

Corollary 14. The semigroup I/σI is a group if and only if {i1, . . . , ir} =
{1, . . . , p}.

An alternative restatement of Corollary 14 is: The semigroup I/σI is a group
if and only if �p/σ is a group. Hence the ideals associated with the presentations

(m, �) which are groups are those for which �p/〈�〉 is a group.
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4. Torsion free cancellative principal ideals

The aim of this section is to characterize the pairs (m, �) such that the semigroup

I/σI is cancellative and/or torsion free.
Take m = (m1, . . . ,mp) ∈ �p and let � = {(α1, β1), . . . , (αl, βl)} be a finite subset

of �p × �
p . Denote by � the set {(α1 +m,β1+m), . . . , (αt +m,βt +m)}, by σ and

σ the congruences on �p generated by � and �, respectively, and let σI = σ∩ (I × I).

Proposition 15. The semigroup I/σI is cancellative if and only if �p/σ is can-

cellative.

�����. Necessity. Assume that [x]σ+[z]σ = [y]σ+[z]σ. Then (x+z) σ (y+z).
By Lemma 8 we obtain that (m+x+z) σ (m+y+z) and therefore (m+x+m+z) σ

(m+ y +m+ z). Hence,

[m+ x]σI
+ [m+ z]σI

= [m+ y]σI
+ [m+ z]σI

.

By the cancellativity of I/σI , we obtain that [m+x]σI
= [m+y]σI

and thus (m+x) σ

(m+ y). By Lemma 8 we deduce that x σ y and therefore [x]σ = [y]σ.
Sufficiency. Assume that [m + x]σI

+ [m + z]σI
= [m + y]σI

+ [m + z]σI
, then

(m+x+m+ z) σ (m+ y+m+ z). Applying Lemma 8 we obtain that (x+m+ z) σ
(y +m + z). Since �p/σ is cancellative, we deduce that x σ y and by Lemma 8 we

have (m+ x) σ (m+ y). Hence [m+ x]σI = [m+ y]σI . �

An algorithm in [9] allows us to determine from � whether �p/σ is cancellative
or not. Hence we have a algorithm for deciding from (m, �) whether its associated

semigroup I/σI is cancellative.
Recall that a semigroup (S,+) is torsion free if and only if kx = ky with k ∈ �\{0}

implies x = y.

Proposition 16. The semigroup I/σI is cancellative and torsion free if and only

if �p/σ is cancellative and torsion free.

�����. Necessity. It is enough to show that �p/σ is torsion free. Suppose that

k[x]σ = k[y]σ with k ∈ � \{0}. Then kx σ ky and by Lemma 8, (kx+m) σ (ky+m).
Hence (kx+m+(k−1)m) σ (ky+m+(k−1)m) and therefore k(x+m) σ k(y+m).
Applying the fact that I/σI is torsion free, we deduce that (x +m) σ (y +m) and,
by Lemma 8, x σ y. Hence, [x]σ = [y]σ.

Sufficiency. Assume that k[m + x]σI
= k[m + y]σI

with k ∈ � \ {0}. Then
k(m + x) σ k(m + y) and by Lemma , k(m + x)σk(m + y). Since �p/σ is torsion

free, we deduce that (m + x)σ(m + y) and since �p/σ is cancellative, we have that
xσy. Using Lemma 8, we obtain that [m+ x]σI

= [m+ y]σI
. �
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In [8] and [10] an algorithm which allows us to determine from � whether a cancella-

tive monoid �p/σ is torsion free is given. Hence we have a method for determining
from (m, �) whether its associated semigroup I/σI is cancellative and torsion free.

The fact that I/σI satisfies these two properties is interesting because it was
proved in [11] that if a semigroup is torsion free, cancellative and can be embedded in

a finitely generated monoid (as in this case), then it is isomorphic to a subsemigroup
of (�n,+) for some n ∈ �.
We conclude this section by characterizing the pairs (m, �) for which the semigroup

I/σI is torsion free.

As a consequence of the proof of Proposition 16 we obtain the following result.

Lemma 17. If I/σI is torsion free, then �p/σ is torsion free.

Unfortunately, the converse of Lemma 17 is not true. Take (m, �) = ((1, 1), {(1, 1),
(1, 0)}). We show that �p/σ is torsion free and I/σI is not torsion free.

• Assume that k(x, y) σ k(x, y). Then (kx, ky) σ (kx, ky) and since σ = 〈�〉, we
deduce that kx = kx. Hence x = x and by the form of �, it is deduced that
(x, y) σ (x, y). This proves that �p/σ is torsion free.

• Now, we prove that I/σI is not torsion free. Recall that I = (1, 1) + �2 and
that σ is the congruence on �2 generated by � = {((2, 2), (2, 1))}. Clearly
((1, 2), (1, 1)) �∈ σ and (2(1, 2), 2(1, 1)) ∈ σ, which shows that I/σI is not torsion
free.

For proving a converse to Lemma 17 we need to add an extra condition on m. Let

(S,+) be a semigroup. An element x ∈ S is cancellable if a+ x = b+ x implies that
a = b.

Theorem 18. The semigroup I/σI is torsion free if and only if �p/σ is torsion

free and [m]σ is a cancellable element of �p/σ.

�����. Necessity. By Lemma 17, it suffices to prove that [m]σ is a cancellable

element of �p/σ. Assume that [x]σ + [m]σ = [y]σ + [m]σ. Then (x +m) σ (y +m)
and by Lemma 8 we have (x + m + m) σ (y + m + m). Using this we obtain
2(m + x) = (2m + 2x) σ (2m + y + x) σ (2m + 2y) = 2(m + y) and since I/σI is

torsion free, we deduce that (m+x) σ (m+y). From Lemma 8 we obtain that x σ y,
which means that [x]σ = [y]σ.

Sufficiency. Assume that k[m + x]σI
= k[m + y]σI

with k ∈ � \ {0}. Then
k(m + x) σ k(m + y) and by Lemma 8 also k(m + x) σ k(m + y). Since �p/σ is
torsion free, we have (m + x) σ (m + y) and since [m]σ is a cancellable element of

�
p/σ, we obtain that x σ y. Using Lemma 8, we have that (m + x) σ (m+ y) and
therefore [m+ x]σI

= [m+ y]σI
. �
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Now, we explain how it can be determined from a system of generators � of a

congruence σ whether an element [m]σ is a cancellable element of �p/σ.

Proposition 19. Let γ be a congruence defined by x γ y if and only if (x+m) σ
(y+m). Then the element [m]σ is a cancellable element of �p/σ if and only if σ = γ.

�����. Necessity. Clearly σ ⊆ γ. We show that γ ⊆ σ. Since x γ y,

(x + m) σ (y + m). Hence [x]σ + [m]σ = [y]σ + [m]σ. Since [m]σ is a cancellable
element of �p/σ, we deduce that [x]σ = [y]σ and therefore x σ y.

Sufficiency. Assume that [x]σ + [m]σ = [y]σ + [m]σ. Then (x + m) σ (y + m),
which means that x γ y. Since σ = γ, we obtain that x σ y and then [x]σ = [y]σ. �

The problem of deciding if [m]σ is a cancellable element of �p/σ is equivalent to

determining whether σ = γ. This problem can be solved using the Gröner basis, so
we need to introduce some concepts.

If S is a monoid and � is a field, then we can construct the semigroup ring
� [S] =

⊕
s∈S

�ys , where the addition is defined componentwise and the multiplication

using the rule ys · ys′
= ys+s′

(for a detailed description of � [S] see for instance [4]).
If S is generated by {s1, . . . , sp}, then we know that S is isomorphic to �p/σ, where

σ is the kernel congruence of the monoid homomorphism

ϕ : �p −→ S, ϕ(a1, . . . , ap) = a1s1 + . . .+ apsp.

Associated to ϕ we define the ring homomorphism

ψ : � [x1 , . . . xp] −→ � [S], ψ(xi) = ysi .

Denote the kernel of ψ by Iσ (note that � [x1 , . . . , xp]/Iσ is isomorphic to � [S]). From

the papers by Herzog ([5]) and Preston ([6]) we deduce that the set {(α1, β1), . . . ,
(αt, βt)} is a system of generators of the congruence σ if and only if the set {Xα1 −
Xβ1, . . . , Xαt − Xβt} is a system of generators of the ideal Iσ, where Xa denotes
xa1
1 . . . x

ap
p for a = (a1, . . . , ap).

Now, we consider the ideal quotient Iσ : Xm. In [3] it is proved that this ideal
is binomial and from this fact it is easily deduced that Iγ = Iσ : Xm. In [1] an

algorithm for computing the Gröbner basis of the ideal Iσ : Xm from a system of
generators of the ideal Iσ is presented. Finally, in [1] an algorithm is also given for

determining whether Iσ is equal to Iγ from a system of generators of Iσ and a system
of generators of Iγ , which is equivalent to deciding whether γ = σ.

Hence, we conclude that we have an algorithmic method for determining whether
[m]σ is a cancellable element of �p/σ or not, since σ = γ if and only if Iσ = Iγ .
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We close this section with a result which asserts that the converse of Lemma 17

is true when I/σI is a monoid.

Proposition 20. If I/σI is a monoid, then the following statements are equiva-

lent:

1. The monoid I/σI is torsion free.

2. The monoid �p/σ is torsion free.

�����. Assume that I/σI is torsion free. By Lemma 17 we obtain that �p/σ

is torsion free.

Now, suppose that �p/σ is torsion free. For proving that I/σI is torsion free it
suffices to show that [m]σ is a cancellable element of �p/σ. Since I/σI is a monoid

we have that [m]σ is a unit of �p/σ (see Theorem 11). This concludes the proof
since the units of a monoid clearly are its cancellable elements. �
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