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domains are also studied.
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1. Introduction

The aim of this paper is to study topological sequence spaces in which the arith-
metic means of coordinate vectors converge to zero. Naturally, our work has been

largely influenced by that of Bennett [2].
In Section 2 we give the notation and terminology. Section 3 is devoted to Cesàro

wedge FK-spaces, and some characterizations are given. Section 4 deals with weak
Cesàro wedge FK-spaces. In Section 5 we give some applications of (weak) Cesàro

wedge FK-spaces to general summability domains. We also obtain some results
regarding the (weak) Cesàro wedgeness of particular summability domains.

2. Notation and preliminaries

Let w denote the space of all real or complex-valued sequences. It can be topol-
ogized with the seminorms pi(x) = |xi| (i = 1, 2, . . .), and any vector subspace of w
is called a sequence space. A sequence space X , with a vector space topology τ , is
a K-space provided that the inclusion mapping I : (X, τ) → w is continuous. If, in
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addition, τ is complete, metrizable and locally convex then (X, τ) is called an FK-

space. So an FK-space is a complete, metrizable locally convex topological vector
space of sequences for which the coordinate functionals are continuous. The basic
properties of such spaces may be found in [12], [13] and [15].

By m, c, c0 we denote respectively the spaces of all bounded sequences, con-
vergent sequences and the null sequences with ‖x‖∞ = sup

n
|xn|; bs, cs and �p

(1 � p < ∞) will denote the space of all bounded series, convergent series and all
absolutely p-summable sequences, respectively. As usual, �1 is denoted simply by �.
We shall also need the sequence spaces

bv :=

{
x ∈ w :

∞∑

j=1

|xj − xj+1| < ∞
}

and bv0 = bv ∩ c0; the space

h :=

{
x ∈ w : lim

j
xj = 0 and

∞∑

j=1

j|∆xj | < ∞
}

is normed with the norm

‖x‖h =
∞∑

j=1

j|∆xj |+ sup
j
|xj |,

where ∆xj = xj − xj+1. The spaces

σ0 :=

{
x ∈ w : lim

n

1
n

n∑

j=1

xj = 0

}

and

σ∞ :=

{
x ∈ w : sup

n

1
n

∣∣∣∣
n∑

j=1

xj

∣∣∣∣ < ∞
}

are normed with the norm

‖x‖ = sup
n

1
n

∣∣∣∣
n∑

j=1

xj

∣∣∣∣

(see [1], [4]).

Throughout the paper e denotes the sequence of ones, (1, 1, . . . , 1 . . .); δj (j =
1, 2, . . .), the sequence (0, 0, . . . , 0, 1, 0, . . .) with the one in the j-th position; ϕ :=

�·hull{δk : k ∈ �}. Let X be an FK-space containing ϕ. Then Xf := {{f(δk)} : f ∈
X ′}, where X ′ is the topological dual of X .
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x ∈ X is said to have AK if x(n) converges to x in τ , where

x(n) =
n∑

j=1

xjδ
j = (x1, x2, . . . , xn, 0, 0, . . .).

If each x ∈ X has AK, then (X, τ) is called an AK-space. The space X is said to

have AD if ϕ is dense in X ([13], p. 59).

Let z = (zk) ∈ w be such that zk �= 0 for every k = 1, 2, . . . Then

V0(z) :=

{
x ∈ c0 :

∞∑

k=1

|zk| |∆xk| < ∞
}

is an FK −AK space [5], with the norm

‖x‖V0(z) =
∞∑

k=1

|zk| |∆xk|.

Finally, s = {sn}∞n=1 always denotes a strictly increasing sequence of non-negative
integers with s1 = 0. We shall also be interested in spaces of the form

c|s| =
{

x ∈ c0 : sup
n

sn+1∑

j=sn+1

j|∆xj | < ∞
}

which become an FK-space with the norm

‖x‖c|s| = sup
n

sn+1∑

j=sn+1

j|∆xj |,

and h ⊂ c|s| ⊂ c0 ⊂ m.

Following Bennett [2] we say that a K-space (X, τ) is a wedge space if δj → 0
in τ , and a weak wedge space if δj → 0 weakly in X .

In a seminar held at Ankara University during the summer of 1996, Prof. Bennett

of Indiana University (USA) introduced the concept of the Cesàro wedge space.
Motivated by his talks we introduce the weak Cesàro wedge space; and for (weak)

Cesàro wedge spaces we study results analogous to those given by Bennett [2].
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3. Cesàro wedge FK-spaces

This section is devoted to Cesàro wedge spaces.

Definiton 3.1. If (X, τ) is a K-space containing ϕ and

e(n)

n
=
1
n

n∑

k=1

δk =
( 1

n
,
1
n

, . . . ,
1
n

, 0, 0 . . .
)
→ 0 in τ

then (X, τ) is called a Cesàro wedge space or simply C1-wedge space. Every wedge

space is a C1-wedge space but the converse is not true. For example, c0, c, m, bv,
bv0 and �p (p > 1) are C1-wedge spaces but not wedge spaces.

We will now give a result related to C1-wedge FK-spaces. However, we first
require

Lemma 3.2. Suppose lim
j

zn
j /j = 0 (n = 1, 2, . . .). Then there exists z ∈ w with

lim
j

zj/j = 0 such that lim
j

zn
j /zj = 0 (n = 1, 2, . . .).

Moreover, for any such z we have V0(z) ⊆
∞⋂

n=1
V0(zn).

�����. To prove the lemma we use the technique given by Bennett [2].

We may choose a sequence {jk}∞k=0 of positive integers such that

1 = j0 < j1 < . . . < jk < jk+1 < . . .

and

max
1�n�k

∣∣∣∣
zn

j

j

∣∣∣∣ <
1
4k

(j � jk; k = 1, 2, . . .).

Define z ∈ w as follows:

zj =
1
2k

(jk � j < jk+1; k = 0, 1, 2, . . .).

It is clear that lim
j

zj/j = 0 and, fixing n, we get

∣∣∣∣
zn

j

zj

∣∣∣∣ =
∣∣∣∣
zn

j /j

zj/j

∣∣∣∣ <
1
2k
whenever jk � j < jk and k � n.

Hence lim
j

zn
j /zj = 0 for each n. The second part of the claim follows from the

preceding inequality. �
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Theorem 3.3. The following conditions are equivalent for an FK-space (X, τ):

(i) X is a Cesàro wedge space.

(ii) X contains V0(z) for some z ∈ w such that zj = o(j).
(iii) X contains c|s| for some s and the inclusion mapping I : (c|s|, ‖·‖c|s|)→ (X, τ)

is compact.

(iv) X contains h and the inclusion mapping I : (h, ‖·‖h)→ (X, τ) is compact.

�����. (i) ⇒ (ii). Let {rn}∞n=1 be a defining family of seminorms for the
topology τ and let

zn
j := rn(e(j)) = rn

( j∑

i=1

δi

)
; j, n = 1, 2, . . .

Then lim
j

zn
j /j = 0 (n = 1, 2, . . .) since X is a C1-wedge space. Suppose x ∈

∞⋂
n=1

V0(zn). Then x ∈ c0 and

∞∑

j=1

∣∣∣∣rn

( j∑

i=1

δi

)∣∣∣∣|∆xj | =
∞∑

j=1

rn

(
∆xj

j∑

i=1

δi

)
< ∞; n = 1, 2, . . .

Since X is complete,
∞∑

j=1
∆xj

j∑
i=1

δi converges in (X, τ) to, say, z. But, sinceX ⊂ w

and X is an FK-space,
∞∑

j=1
∆xj

j∑
i=1

δi converges to x in w, i.e.

pi

(
x−

p∑

j=1

∆xj

j∑

i=1

δi

)
→ 0; p →∞, i = 1, 2, . . .

Consequently z = x and so
∞⋂

n=1
V0(zn) ⊂ X . Choosing z ∈ w such that zj = o(j) as

in Lemma 3.2 we get V0(z) ⊂ X .
(ii) ⇒ (iii). Assume V0(z) ⊂ X for some z with zj = o(j). Let s0 = 0 and let

{sn}∞n=1 denote a strictly increasing sequence satisfying

(1)
|zj |
j

� 1
2n

, j � sn; n = 2, 3, . . .

Let x ∈ c|s|. Suppose m, p ∈ �, m � p. Then using (1) we get

sp+1∑

j=sm+1

|zj | |∆xj | =
p∑

n=m

sn+1∑

j=sn+1

|zj|
j

j|∆xj |

� ‖x‖c|s|

p∑

n=m

1
2n

→ 0 as m, p →∞.
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Hence
∞∑

j=1
|zj| |∆xj | < ∞. It follows that c|s| ⊂ V0(z) and so c|s| ⊂ X . Now let

U ⊂ c|s| be such that ‖x‖c|s| � M for all x ∈ U . Observe that U ⊂ V0(z). For

sn < m � sn+1 and x ∈ U , by (1) we get

‖x− x(m)‖V0(z) =
∞∑

j=m+1

|zj | |∆xj | �
∞∑

i=n

si+1∑

j=si+1

zj

j
j|∆xj | � ‖x‖c|s|

∞∑

i=n

1
2i

.

Hence x(m) → x in (V0(z), ‖·‖V0(z)) uniformly on U . Since V0(z) is an AK-space then
by Lemma 2 of [2] U is relatively compact in V0(z). Since the inclusion mapping

I : V0(z)→ X is continuous, I(U) = U is relatively compact in X. Thus the inclusion
mapping I : c|s| → X is compact.

(iii) ⇒ (iv). This follows immediately since the inclusion mapping I : h → c|s| is
continuous.

(iv) ⇒ (i). The set Z = {e(n)/n : n = 1, 2, . . .} is a bounded subset of h. Since
the inclusion mapping I : h → X is compact, I(Z) = Z is τ -relatively compact in X .

Thus, by Theorem 2.3.11 of [6], e(n)/n → 0 in (X, τ) since it converges to zero in w.
�

Theorem 3.4. Let z ∈ σ0. Then zβ :=
{
x ∈ w :

∑
k

zkxk converges
}
is a C1-

wedge FK-space.

�����. zβ is an FK-space with pn(x) = |xn| (n = 1, 2, . . .), P0(x) =

sup
m

∣∣∣
m∑

k=1
zkxk

∣∣∣ ([13], Theorem 4.3.7). It is clear that pn(e(r)/r) → 0 for each n.

To complete the proof we must show that P0(x) = max
1�m�r

1
r

∣∣∣
m∑

k=1
zk

∣∣∣ → 0 as r → ∞.
Let z ∈ σo. Choose a sequence {νN} of natural numbers for which

νN

νN−1
� 2N and

1
ν

∣∣∣∣
ν∑

k=1

zk

∣∣∣∣ � 2−N (∀ν � νN ).

Then for any N > 2 take r � νN ; hence we have

(i) 1r

∣∣∣
r∑

k=1
zk

∣∣∣ � 2−N for m = r,

(ii) m
r
1
m

∣∣∣
m∑

k=1
zk

∣∣∣ � 2−N sup
m

1
m

∣∣∣
m∑

k=1
zk

∣∣∣ for m < νN−1,

(iii) m
r
1
m

∣∣∣
m∑

k=1
zk

∣∣∣ � 2−(N−1) for νN−1 � m < r.

Thus P0(e(r)/r) = max
{
sup

m<νN−1

1
r

∣∣∣
m∑

k=1
zk

∣∣∣, sup
νN−1�m<r

1
r

∣∣∣
m∑

k=1
zk

∣∣∣, 1r
∣∣∣

r∑
k=1

zk

∣∣∣
}
which

tends to zero as r →∞, hence the result. �
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Corollary 3.5. The intersection of all C1-wedge FK-spaces is h.

�����. Let Y be the intersection of all C1-wedge FK-spaces. Then by Theo-
rems 3.3 and 3.4 we get

h ⊂ Y ⊂
⋂
{zβ : z ∈ σ0} = σβ

0 .

Since σβ
0 = h (see [4]) the result follows immediately. �

Theorem 3.6. Let zn = o(n). Then V0(z) is a C1-wedge FK-space.

�����. Observe that ‖e(n)/n‖V0(z) = |zn|/n, from which the conclusion follows

at once. �

Corollary 3.7.
⋂

zn=o(n)
V0(z) = h.

�����. If zn = o(n), then by Theorem 3.6, V0(z) is a C1-wedge FK-space.
Now Theorem 3.3 (iv) yields that h ⊂ ⋂

zn=o(n)
V0(z). The reverse inclusion follows

from Theorem 3.3 (ii) and Corollary 3.5. �

Theorem 3.8.
(i) An FK-space which contains a C1-wedge FK-space must be a C1-wedge space.

(ii) A closed subspace, containing ϕ, of a C1-wedge FK-space is a C1-wedge FK-

space.

(iii) A countable intersection of C1-wedge FK-spaces is a C1-wedge FK-space.

�����. The proof is easily obtained from the elementary properties of FK-

spaces (see, e.g., [13], Chapter 4). �

Remark. h is not a C1-wedge space. Hence, it follows from Corollary 3.5 that

there is no smallest C1-wedge space.

Now consider the surjection T : w → w given by

(2) T (x) = {x1, x1 + x2, . . . , x1 + x2 + . . .+ xn, . . .} .

Then T−1(x) = {x1, x2−x1, . . . , xn−xn−1, . . .}. LetX ⊂ w and let (X, τ) be an FK-

space. The space T−1(X) equipped with the FK-topology τ ′ given by the seminorms
qk, qk(x) = dk(T (x)), where {dk} is the sequence of seminorm which generates the
topology τ onX . In addition, T : (T−1(X), τ ′)→ (X, τ) is a topological isomorphism
(see [2], and [6], pp. 253–254).
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Theorem 3.9. If X is a C1-wedge FK-space then X ∩ (bs \ cs0) �= ∅, where
cs0 =

{
x : lim

n

n∑
k=1

xk = 0
}
.

�����. It is clear that cs is not a C1-wedge space and so by Theorem 3.8 (i),

nor is X ∩ cs. Theorem 3.8 (ii) shows that X ∩ cs is not closed in X . Consider the
one-to-one mapping T of w onto itself given by (2). T maps X onto an FK-space,

say F . Since X ∩ cs is not closed in X ,

T (X ∩ cs) = T (X) ∩ T (cs) = F ∩ c

is not closed in F . Since c0 is of codimension 1 in c, it follows from [8, Chap-
ter 15.8 (3)] that c0 ∩X is not closed in X . Hence F ∩ (m \ c0) �= ∅ by Corollary 1 (i)
of [10], and so

T−1(F ∩ (m \ c0)) = X ∩ T−1(m \ c0) = X ∩ (bs \ cs0) �= ∅.

�

Theorem 3.10. If X is a C1-wedge FK-space then bs ∩ X is a non separable

subspace of bs.

�����. As in the proof of Theorem 3.9 we see that X∩cs is not closed in X . So
T (X ∩ cs) = T (X)∩ T (cs) = F ∩ c is not closed in F . Now Theorem 8 of [1] implies
thatm∩F is a non-separable subspace ofm. Since T−1(m∩F ) = T−1(m)∩T−1(F ) =

bs ∩ E, one can easily conclude that bs ∩ E is a non-separable subspace of bs. �

4. Weak Cesàro wedge FK-spaces

In this section we will study weak Cesàro wedge FK-spaces.

Definition 4.1. A K-space X containing ϕ is called a weak Cesàro wedge space
or simply a weak C1-wedge space, if e(n)/n → 0 weakly in X .

It is easily seen that every weak wedge space is a weak C1-wedge space but the

converse does not hold. For example bv0 is a weak C1-wedge space but not a weak
wedge space.

Theorem 4.2. An FK-space X is a weak C1-wedge space if and only if X

contains h and the inclusion mapping I : h → X is weakly compact.
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�����. If (X, τ) is a weak C1-wedge space then, for all f ∈ X ′,

f

(
e(n)

n

)
=
1
n

n∑

k=1

f(δk)→ 0,

and so {f(δk)} ∈ σ∞. Hence Xf ⊂ σ∞. Since σ∞ = hf , [4], and h is an AD-space

it follows from Theorem 8.6.1 in [13] (see also [11], Theorem 4) that h ⊂ X , which
implies that the inclusion mapping I : h → X is continuous. Using the fact that h

is an AK-space ([4]), we have for all x ∈ h and f ∈ X ′ that

f

( ∞∑

k=1

xkδk

)
=

∞∑

k=1

xkf(δk) = 〈I(x), f〉 = 〈x, {f(δk)}〉.

Since {f(δk)} ∈ σ0 and σ′0 = h (see [4]), I is (σ(h, σ0)−σ(X, X ′))-continuous. By the
Banach-Alaoglu theorem ([9], p. 61), the set B = {x : x ∈ h, ‖x‖h � 1} is σ(h, σ0)-

compact and hence I(B) = B is σ(X, X ′)-compact. Thus the inclusion mapping
I : h → X is weakly compact.

Conversely, let h ⊂ X and let I : h → X be weakly compact. Then B = {x :
x ∈ h, ‖x‖h � 1} is σ(X, X ′)-relatively compact. Thus, by Theorem 2.3.11 of [6],
e(n)/n → 0 in σ(X, X ′) since it converges to zero in w. �

Corollary 4.3. The intersection of all weak C1-wedge FK-spaces is h.

�����. Considering Theorems 3.4 and 4.2 and using the idea which we have

used in Corollary 3.5, one can get the proof. �

We note in passing that Theorem 3.8 also holds for weak C1-wedge FK-spaces.

Remark. It follows from Corollary 4.3 that there is no smallest weak C1-wedge
space since h is not a weak C1-wedge space.

Recall that the intersection of all weak wedge (also wedge) FK-spaces is �, ([2]),

and that h ⊂ �.

Theorem 4.4. If X is a (weak) C1-wedge FK-space then X ∩ (cs/�) �= ∅.

�����. It is clear that � is not a weak C1-wedge space and so by an analogue
of Theorem 3.8 (i) for weak C1-wedge spaces, nor is � ∩ X . Again an analogue of

Theorem 3.8 (ii) for weak C1-wedge spaces shows that �∩X is not closed in X . Then
Theorem 2 (i) of [1] implies X ∩ (cs/�) �= ∅.
The proof is the same also for C1-wedge FK-spaces. �
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5. Applications of Cesàro wedge and weak Cesàro wedge spaces

to general summability domains

In this section we shall be concerned with matrix transformations y = Ax, where
x, y ∈ w, A = {aij}∞i,j=1 is an infinite matrix with complex coefficients and yi =
∞∑

j=1
aijxj (i = 1, 2 . . .).

The sequence {aij}∞j=1 is called the i-th row of A and is denoted by ri (i = 1, 2, . . .);

similarly, the j-th column of A, {aij}∞i=1 is denoted by kj (j = 1, 2, . . .).
For an FK-space (E, q) we consider the summability domain EA defined by EA =

{x ∈ w : Ax ∈ E}. An important result of Zeller ([14], Theorem 4.10) (see also [13])
asserts that EA is an FK-space when topologized by means of the seminorms
(a) pi(x) = |xi| (i = 1, 2, . . .),
(b) hi(x) = sup

m

∣∣∣
m∑

j=1
aijxj

∣∣∣ (i = 1, 2, . . .),

(c) (q ◦A)(x) = q(Ax).
The following theorem is an application of Theorem 3.3 to summability domains.

Theorem 5.1. Let E be an FK-space and A a matrix. Then the following

conditions are equivalent:

(i) EA is a C1-wedge space.

(ii) h ⊂ EA, ri ∈ σ0 for all i, and the mapping A : h → E is compact.

(iii) kj ∈ E for all j, and βn → 0 as n →∞ in E, where

βn =

{
1
n

n∑

j=1

aij : i � 1
}

.

�����. (i) ⇒ (ii). From Theorem 3.3, (i) ⇒ (iv), h ⊂ EA and the inclusion

mapping I : h → EA is compact. Also by Theorem 4.2.8 in [13], A : EA → E is
continuous. Then A : h → E which may be regarded as a composition of I : h → EA

with A : EA → E, must be compact. Since e(j)/j → 0 in EA by hypothesis we get
A(e(j)/j)→ 0 in E. Therefore

Pi :

(
A

(
e(j)

j

))
=

(
A

(
1
j

j∑

k=1

δk

))

i

=

(
1
j

j∑

k=1

aij

)

i

→ 0

as j → ∞ (i = 1, 2, . . .), where Pi : E → K (= � or � ) is defined by Pi(u) = ui.
Hence ri ∈ σ0, ∀i � 1.
(ii) ⇒ (iii). Obviously kj = A(δj) ∈ E (j = 1, 2, . . .) since δj ∈ h (j = 1, 2, . . .).

Observe that B = {e(n)/n : n = 1, 2, . . .} is bounded in h, and by hypothesis A : h →
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E is compact, hence A(B) = {A(e(n)/n) : n = 1, 2, . . .} is relatively compact in E.
Since ri ∈ σ0 for all i, by Theorem 2.3.11 of [6] we have

A

(
e(n)

n

)
=

((
1
n

n∑

j=1

aij

)

i

)
→ 0 in E.

(iii) ⇒ (i). By hypothesis kj = A(δj) ∈ E (j = 1, 2, . . .). Clearly we have, for

fixed i, that pi(e(n)/n) → 0 (n → ∞). Since A
(
1
n

n∑
j=1

δj
)
→ 0 (n → ∞) in E, we

also have (q ◦A)(e(n)/n) = q
(
A

(
1
n

n∑
j=1

δj
))

→ 0 (n →∞).

We now show that hi(e(n)/n) = max
1�m�n

1
n

∣∣∣
m∑

j=1
aij

∣∣∣ → 0 (i = 1, 2, . . .). Since

A
(
1
n

n∑
j=1

δj
)
→ 0 (n → ∞) in E and E is an FK-space, the same holds also in

w. Hence

pi

(
A

(
1
n

n∑

j=1

δj

))
=

∣∣∣∣
1
n

n∑

j=1

aij

∣∣∣∣ → 0 (n →∞, i = 1, 2, . . .).

Using the idea that we have used in Theorem 3.4, one can show that hi(e(n)/n)→ 0
(n →∞, i = 1, 2, . . .). Thus EA is a C1-wedge space. �

Corollary 5.2. mA(cA, (c0)A) is a C1-wedge space if and only if the following

conditions are satisfied:

(i) sup
i
|aij | < ∞ (j = 1, 2, . . .)

(lim
i

aij exists, lim
i

aij = 0 respectively);

(ii) lim
n→∞

sup
i

∣∣∣ 1n
n∑

j=1
aij

∣∣∣ = 0.

�����. This is just Theorem 5.1, (i)⇔ (iii), with E = m(c, c0). �

The following theorem is an application of Theorem 4.2 to summability domains.

Theorem 5.3. Let E be an FK-space and A a matrix. Then the following

conditions are equivalent:

(i) EA is a weak C1-wedge space.

(ii) h ⊂ EA, ri ∈ σ0 for all i, and the mapping A : h → E is weakly compact.

(iii) kj ∈ E for all j, and the sequence {βn : n � 1} converges weakly to zero in E,

where

βn =

{
1
n

n∑

j=1

aij : i � 1
}

.
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�����. (i) ⇒ (ii). Theorem 4.2 implies h ⊂ EA and the inclusion mapping

I : h → EA is weakly compact. Also A : EA → E is weakly continuous. Thus
A : h → E, where A = A◦ I is weakly compact. Since e(n)/n → 0 (weakly) in EA by
hypothesis, we have A(e(n)/n) → 0 (weakly) in E. Since the coordinate functionals
Pi : E → K, defined by Pi(x) = xi, are continuous,

Pi

(
A

(
e(n)

n

))
=

(
A

(
1
n

n∑

j=1

δj

))

i

=
1
n

n∑

j=1

aij → 0 (n →∞), (i = 1, 2, . . .).

Thus ri ∈ σ0, (i = 1, 2, . . .).

(ii)⇒ (iii). As in the proof of Theorem 5.1, (ii)⇒ (iii), A(B) = {A(e(n)/n) : n =
1, 2, . . .} is weakly relatively compact in E. Thus, since ri ∈ σ0 (i = 1, 2, . . .), by

Theorem 2.3.11 of [6] we have

A

(
1
n

n∑

j=1

δj

)
=

((
1
n

n∑

j=1

aij

)

i

)
→ 0 (weakly) in E.

(iii)⇒ (i). The condition kj = A(δj) ∈ E implies that ϕ ⊂ EA. By Theorem 4.4.2
in [13], f ∈ E′

A if and only if f(x) = αx + g(Ax) for all x ∈ EA, where α ∈
wβ

A, g ∈ E′, αx =
∞∑

k=1
αkxk and |αx| � Mhi(x) (i = 1, 2, . . .) for some M > 0.

Since A(e(n)/n) → 0 (weakly) in E by hypothesis, we have for all g ∈ E′ that

g
(
A(e(n)/n)

)
→ 0 (n → ∞). As in the proof of Theorem 5.1, (iii) ⇒ (i), we get

hi(e(n)/n)→ 0. Hence it follows from the inequality
∣∣α(e(n)/n)

∣∣ � Mhi(e(n)/n) (i =

1, 2, . . .) that α(e(n)/n) → 0 (n → ∞). We have already shown that f(e(n)/n) → 0
(n →∞), from which the result follows. �

Corollary 5.4. mA is a weak C1-wedge space if and only if the following condi-

tions are satisfied:

(i) sup
i,n

∣∣∣ 1n
n∑

j=1
aij

∣∣∣ < ∞;

(ii) given ε > 0 and an increasing sequence {nk}∞k=1 of positive integers, there
exists L (depending only on ε and {nk}∞k=1) such that

sup
i
min
1�r�L

∣∣∣∣
1

nkr

nkr∑

j=1

aij

∣∣∣∣ < ε.

�����. This follows by putting E = m in Theorem 5.3, (i) ⇔ (iii), and using
the characterization of weak sequential convergence in m given in [3], IV, 6.3, p. 281.

�
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Our next result follows immediately from Theorems 5.1 and 5.3.

Theorem 5.5. Let E be an FK-space such that weakly convergent sequences are

convergent in the FK-topology and let A be a matrix. Then EA is a C1-wedge space

if and only if it is a weak C1-wedge space.

In particular, Theorem 5.5 holds when E = �, bv.

Corollary 5.6. The following conditions are equivalent for any matrix A:

(i) �A is a (weak) C1-wedge space.

(ii) lim
n

∞∑
i=1

∣∣∣ 1n
n∑

j=1
aij

∣∣∣ = 0.

�����. This is just Theorem 5.1, (i)⇔ (iii), and Theorem 5.5 with E = �. �

Proposition 5.7. If A is a sum preserving �-� method then �A is not a C1-wedge

space.

�����. Recall that A is a sum preserving �-� method if and only if

(a) sup
k

∞∑

n=1

|ank| < ∞, (b)
∞∑

n=1

ank = 1 (k = 1, 2, . . .),

see [7]. Using (b) we get

∞∑

i=1

∣∣∣∣
1
n

n∑

j=1

aij

∣∣∣∣ � 1
n

n∑

j=1

∞∑

i=1

aij = 1.

Thus
∞∑

i=1

∣∣ 1
n

n∑
j=1

aij

∣∣ � 0 (n →∞). By Corollary 5.6, �A is not a C1-wedge space. �

Corollary 5.8. The following conditions are equivalent for any matrix A:

(i) bvA is a (weak) C1-wedge space.

(ii) lim
n→∞

{ ∞∑
i=1

∣∣∣ 1n
n∑

j=1
(aij − ai+1,j

∣∣∣+ lim
i

∣∣∣ 1n
n∑

j=1
aij

∣∣∣
}
= 0.

�����. This follows from Theorem 5.1, (i) ⇔ (iii), and Theorem 5.5 with
E = bv. �
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