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Abstract. Any inductive limit of bornivorously webbed spaces is sequentially complete
iff it is regular.
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A web in a vector space F is a countable family of balanced subsets of F , arranged

in “layers”. The first layer of the web consists of a sequence (Ap : p = 1, 2, . . .) whose
union absorbs each point of F . For each set Ap of the first layer there is a sequence

(Apq : q = 1, 2, . . .) of sets, called the sequence determined by Ap such that

Apq +Apq ⊂ Ap for each q, and⋃
{Apq : q = 1, 2, . . .} absorbs each point of Ap.

Further layers are made up in a corresponding way so that each set of the k-th layer
is indexed by a row of k integers and at each step the two conditions above are

satisfied. Suppose that one chooses a set Ap then Apq from the sequence determined
by Ap, and so on. The resulting sequence S = (Ap, Apq, Apqr , . . .) is called a strand.

Whenever we are dealing with only one strand we can simplify the notation by writing
W1 = Ap, W2 = Apq, etc.; thus S = (Wk) is a strand where for each k, Wk is a set

in the k-th layer.
A web in a locally convex space is called strict if each of its sets is absolutely

convex and for any strand (Wk) there exists a sequence a1 > a2 > . . . > 0, called
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completing, such that for any choice of bk ∈ [0, ak], xk ∈ Wk, k ∈ �, and any n ∈ �,

the sequence
∞∑

k=n+1
bkxk converges to some element in Wn. A locally convex space F

is strictly webbed if it admits a strict web. It is bornivorously webbed if it is strictly

webbed and for every set B bounded in F there exist a strand (Wk) of a strict web
and a sequence (λk) such that B ⊂ λkWk for every k ∈ � ([1], [2], [3]).

Lemma. Let (F, α) be a strictly webbed space with a locally convex topology α.

Take a strand (Wk) of a strict webb in F and denote by γ the topology generated

by the subbasis {Wk : k ∈ �}. Then:
(a) The topology γ is stronger than α.

(b) The space (F, γ) is Fréchet.

�����. (a) Let (ak) be a completing sequence for the strand (Wk). Assume that

the topology γ is not stronger than α. Then there exists a balanced 0-neighbourhood
U ∈ α such that akWk \ U �= ∅ for any k ∈ �. Take a 0-neighbourhood V in α such

that V − V ⊂ U , choose yk ∈ akWk \ U , and put xk = a−1k yk, k ∈ �. Since the

space (F, α) is strictly webbed, the series
∞∑

k=1
akxk converges in (F, α) and there

exists k ∈ � such that for any m � k, we have
∞∑

n=m
akxk ∈ V . This implies

yk = akxk =
∞∑

n=k

anxn −
∞∑

n=k+1
anxn ∈ V − V ⊂ U , a contradiction.

(b) Since the topology γ has a countable subbasis, it is metrizable. It remains

to show that (F, γ) is complete. Take a Cauchy sequence {yk ; k ∈ �} in (F, γ)
and a completing sequence (ak) for the strand (Wk). Without a loss of generality,

we may assume that yk+1 − yk ∈ akWk, k ∈ �. Then xk = a−1k (yk+1 − yk) ∈ Wk

for any k ∈ � and
∞∑

k=1
akxk =

∞∑
k=1
(yk+1 − yk) converges to an element y ∈ F .

Moreover
∞∑

k=n+1
(yk+1 − yk) =

∞∑
k=n+1

akxk ∈ Wn, n ∈ �. This implies that, in the

topology γ, the series
∞∑

k=1
(yk+1 − yk) converges to an element y ∈ F and yk+1 =

y1 +
n∑

k=1
(yk+1 − yk) −→ y1 + y ∈ F . �

Let E1 ⊂ E2 ⊂ . . . be a sequence of locally convex spaces with respective topologies
τn, n ∈ �, such that the identity map id: (En, τn)→ (En+1, τn+1) is continuous for

every n ∈ �. Its locally convex inductive limit is denoted by indEn.

We call indEn regular if for each set B, bounded in indEn, there exists n ∈ �

such that B is bounded in (En, τn).
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Theorem. If each space En, n ∈ �, is bornivorously webbed then indEn is

sequentially complete if and only if it is regular.

�����. For brevity, we will write just E instead of indEn.

Suppose that the space E is sequentially complete, then it is fast complete. By
Theorem 1 in [4], fast complete inductive limit of webbed spaces is regular.

Let E be regular, {xn ; n ∈ �} a Cauchy sequence in E, and Bn = clE co
⋃{xm ;

m � n}, n ∈ �. The set B1 is bounded in E and, by the regularity of E, it is also

bounded in some space Em. Without a loss of generality, we may assume m = 1.
The space (E1, τ1) is bornivorously webbed, hence there exists a strand (Wk) in E1

and a sequence {αk ; k ∈ �} such that B1 ⊂ αkWk for each k ∈ �. Denote by γ the
topology on E1 generated by the subbasis {Wk ; k ∈ �} and, for brevity, by F the

space (E1, γ).
The set B1 ⊂ E1 is closed in E. Hence it is closed in (E1, τ1), and by Lemma, it is

closed in the locally convex space F = (E1, γ). Since B1 is convex, it is also weakly
closed in F .

By Lemma, F is a Fréchet space. Hence the canonical inbedding F → F ′′, where
F ′′ is the second dual of F equipped with the strong topology, is a topological

isomorphism into F ′′. Since F is complete, it is closed in F ′′ and each functional
from the strong dual F ′ of F can be continuously extended to F ′′. Thus the σ(F, F ′)-

closed set B1 is also σ(F ′′, F ′)-closed in F ′′.
Further, since B1 is bounded in F ′′, it is equicontinuous in F ′. Hence, by Alaoglu

Theorem, the set B1 is relatively σ(F ′′, F ′)-compact. This, together with the

σ(F ′′, F ′)-closedness, implies that B1 is σ(F ′′, F ′)-compact in F ′′.
Similarly, all sets Bn, n ∈ �, are σ(F ′′, F ′)-compact. Every finite intersection⋂{Bn ; 1 � n � m} = Bm, m ∈ �, is non-empty. Hence there exists x0 ∈

⋂{Bn ;
n ∈ �} ⊂ B1 ⊂ E1. This implies the existence of an upper-triangular matrix

Λ = (λnm) with all entries λnm � 0, only finite number of non-zeros in each row,
and the sum of all entries in each row equal to 1, such that the sequence {yn =
∞∑

m=n
λnmxm ; n ∈ �} converges to x0 in the topology γ. Then the continuity of the

identity maps: (E1, γ) → (E1, τ1) → indEn implies the convergence yk → x0 in

ind En.
Take a balanced, convex, 0-neighbourhood V in E. Then there exist p, q ∈ � such

that yn−x0 ∈ V for n � p and xm−xn ∈ V for m � n � q. Then for n � max(p, q),

we have x0 − xn = (x0 − yn) + (yn − xn) = (x0 − yn) +
∞∑

m=n
λnm(xm − xn) ∈ V + V .

This implies xn → x0 in the space E. �
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Corollaries.
(a) Since any LF -space is bornivorously webbed, it is sequentially complete iff it is

regular.

(b) Theorem 1 in [4] reads: If all locally convex spaces (En, τn), n ∈ �, are webbed

and their indEn is fast complete, then indEn is regular. This result, combined

with our Theorem, implies: In a regular LF -space, the sequential and fast

completenesses are equivalent.

References

[1] M. De Wilde: Closed Graph Theorem and Webbed Spaces. Pitman, 1978.
[2] G. Köthe: Topological Vector Spaces II. Springer-Verlag, 1979.
[3] W. Robertson: On the closed graph theorem with webs. Proc. London Math. Soc. 24
(1972), 692–738.

[4] J. Kučera, C. Bosch: Bounded sets in fast complete inductive limits. Internat J. Math.
7 (1984), 615–617.

[5] J. Kučera: Sequential completeness of LF -spaces. Czechoslovak Math. J 51 (2001),
181–183.

Authors’ addresses: �� �����, Departamento de Matemáticas ITAM, Rio Hondo
No. 1, Col. Tizapan San Angel, 01000 Mexico, e-mail: bosch@itam.mx, visiting at Dept.
Math. WSU; �� �	
��
, Department of Mathematics WSU, Pullman, WA 99164-3113,
U.S.A., e-mail: kucera@math.wsu.edu.

332


		webmaster@dml.cz
	2020-07-03T13:33:29+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




