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THE TYPE SET FOR SOME MEASURES ON �
2n

WITH n-DIMENSIONAL SUPPORT

E. Ferreyra, T. Godoy and M. Urciuolo, Córdoba

(Received August 12, 1999)

Abstract. Let ϕ1, . . . , ϕn be real homogeneous functions in C∞(�n − {0}) of degree
k � 2, let ϕ(x) = (ϕ1(x), . . . , ϕn(x)) and let µ be the Borel measure on �2n given by

µ(E) =
∫

�n
χE(x,ϕ(x)) |x|γ−n dx

where dx denotes the Lebesgue measure on �n and γ > 0. Let Tµ be the convolution
operator Tµf(x) = (µ ∗ f)(x) and let

Eµ = {(1/p, 1/q) : ‖Tµ‖p,q < ∞, 1 � p, q �∞}.

Assume that, for x �= 0, the following two conditions hold: det(d2ϕ(x)h) vanishes only
at h = 0 and det(dϕ(x)) �= 0. In this paper we show that if γ > n(k + 1)/3 then Eµ

is the empty set and if γ � n(k + 1)/3 then Eµ is the closed segment with endpoints
D =

(
1− γ

n(k+1) , 1−
2γ

n(k+1)

)
and D′ =

( 2γ
n(1+k) ,

γ
n(1+k)

)
. Also, we give some examples.

Keywords: singular measures, convolution operators

MSC 2000 : 42B20

1. Introduction

Let ϕ1, . . . , ϕn be real homogeneous functions in C∞(�n − {0}) of degree k � 2,
let ϕ(x) = (ϕ1(x), . . . , ϕn(x)), let γ > 0 and let µ be the Borel measure on �2n given
by

µ(E) =
∫

�n

χE(x, ϕ(x)) |x|γ−n dx,
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where dx denotes the Lebesgue measure on �n . Let Tµ be the convolution operator

defined by Tµf(x) = (µ ∗ f)(x) and let ‖Tµ‖p,q be the operator norm of Tµ from
Lp(�2n ) into Lq(�2n ). The type set Eµ is the set defined by

Eµ =

{(
1
p
,
1
q

)
: ‖Tµ‖p,q < ∞, 1 � p, q � ∞

}
,

where the Lp spaces are taken with respect to the Lebesgue measure on �2n .

Since the adjoint T ∗
µ is a convolution operator with a measure of the same kind,

Eµ is symmetric with respect to the non principal diagonal. The Riesz Thorin
theorem implies that Eµ is a convex set. On the other hand, it is a well known fact

that Eµ lies below the principal diagonal 1/q = 1/p. Also, a result of Oberlin (see
e.g. [4], Theorem 1) says that

(1.1) Eµ ⊂
{(
1
p
,
1
q

)
:
1
q

� 2
p
− 1

}
.

Thus, by the symmetry of Eµ, also

(1.2) Eµ ⊂
{(
1
p
,
1
q

)
:
1
q

� 1
2p

}
.

The type set Eµ has been studied, for γ = 2 and under a suitable hypothesis
on ϕ, in [2] covering a wide amount of cases. As there, if ϕ : �n → �

n is a twice

continuously differentiable function, we say that x ∈ �
n is an elliptic point for ϕ if

there exists λ = λx > 0 such that |det(ϕ′′(x)h)| � λ|h|n for all h ∈ �n ([2], p. 152).

Convolution operators associated with fractional measures on �2 supported on the

graph of the parabola (t, t2) have been studied in [1] by M. Christ, using a Littlewood
Paley decomposition of the operator.

Our aim is to obtain an explicit description of Eµ, for a homogeneous and smooth ϕ

as above, under the following assumptions.

1) The first differential dϕ(x) is invertible for all x ∈ �n − {0}.
2) Every x �= 0 is an elliptic point for ϕ.

To this end we will adapt Christ’s arguments to our actual setting, using some
results obtained in [2].

Finally, we will prove some facts concerning the two dimensional quadratic poly-

nomial case.

Throughout the paper c will denote a positive constant not necessarily the same
at each occurrence.
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2. Preliminaries

Let η be a function in C∞
c (�

n ) such that supp(η) ⊂
{
x ∈ �

n : 14 � |x| � 2
}
,

0 � η � 1 and
∑
j∈�

η(2jx) = 1 if x �= 0. For j ∈ �, let µj be the Borel measure on

�
2n defined by

µj(E) =
∫

�n

χE(x, ϕ(x))η(2jx) |x|γ−n dx

and let Tµj be the associated convolution operator.

For t > 0, (x, y) ∈ �
2n and for f : �2n → C, we set t • (x, y) = (tx, tky) and

(t • f)(x, y) = f(t • (x, y)). So ‖t • f‖q = t−
n(k+1)

q ‖f‖q, 1 � q < ∞, and ‖t • f‖∞ =
‖f‖∞. A standard homogeneity argument gives

Lemma 2.1. Let 1 � p, q � ∞. Then

‖Tµj‖p,q = 2
(
−γ−n(k+1)

q +n(k+1)
p

)
j‖Tµ0‖p,q

for all j ∈ �. Moreover, if Tµ is bounded from Lp(�2n ) into Lq(�2n ) then 1
q =

1
p −

γ
n(k+1) .

�����. For (x, y) ∈ �2n a change of variable gives

Tµ0(2
−j • f)(x, y) =

∫

�n

(2−j • f)
(
x− w, y − ϕ(w)

)
η(w) |w|γ−n dw

= 2jn

∫

�n

f
(
2−jx− z, 2−jky − ϕ(z)

)
η(2jz)|2jz|γ−n dz

= 2jγ(2−j • Tµj f)(x, y).

So

‖Tµj‖p,q = 2
(
−γ−n(k+1)

q +n(k+1)
p

)
j‖Tµ0‖p,q

and the first assertion of the lemma follows. On the other hand, if Tµ is bounded

then sup
j∈�

‖Tµj‖p,q < ∞ and so −γ − n(k+1)
q + n(k+1)

p = 0. �

Remark 2.2. LetD be the intersection, in the
(
1
p , 1q

)
plane, of the lines 1q =

2
p−1,

1
q =

1
p − γ

n(k+1) and let D′ be its symmetric with respect to the non principal

diagonal. So D =
(
1 − γ

n(k+1) , 1 −
2γ

n(k+1)

)
and D′ =

( 2γ
n(k+1) ,

γ
n(k+1)

)
. Then (1.1),

(1.2) and Lemma 2.1 imply that Eµ is the empty set for γ > n(k + 1)/3 and that,
for γ � n(k+1)/3, Eµ is contained in the closed segment with endpoints D and D′.
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Let ν0 be the Borel measure given by ν0(E) =
∫

χE(w, ϕ(w))η(w) dw. Then

Theorem 3 in [2] and a compactness argument imply that
(
2
3 ,
1
3

)
∈ Eν0 . Now Tµ0f �

cTν0f for f � 0, thus
(
2
3 ,
1
3

)
∈ Eµ0 . Since (1, 1) ∈ Eµ0 , the Riesz Thorin theorem

implies that if γ � n(k + 1)/3 then D belongs to Eµ0 . Moreover, for these γ, if pD,

qD are given by D =
(
1

pD
, 1qD

)
, Lemma 2.1 says that there exists c independent of j

such that

(2.3) ‖Tµj‖pD,qD � c

for all j ∈ �.

3. Lp-Lq estimates

In order to study Eµ, we will assume in this section that ϕ satisfies the hypothe-

ses 1) and 2) stated in the introduction.

We modify, to our actual setting, Christ’s arguments developed in [1], involving a
Littlewood Paley decomposition of the operator. Decompositions of this kind have

been used also in [6] to study fractional measures supported on curves and in [3] to
study fractional measures supported on the graphs of holomorphic functions of one

complex variable.

Let us consider the Fourier transform µ̂0. For ξ = (ξ1, . . . , ξ2n) ∈ �
2n we put

ξ′ = (ξ1, . . . , ξn), ξ′′ = (ξn+1, . . . , ξ2n), then

µ̂0(ξ) =
∫

�n

e−i〈ξ
′,w〉−i〈ξ′′,ϕ(w)〉η(w) |w|γ−n dw.

For a fixed ξ, let Φ(w) = 〈ξ′, w〉+ 〈ξ′′, ϕ(w)〉, w ∈ �n . Suppose that Φ has a critical

point w belonging to the support of η, then ξj+
n∑

k=1
ξn+k

∂ϕk

∂wj
(w) = 0 for j = 1, . . . , n.

Now, the jacobian matrix of ϕ is continuous with a continuous inverse, hence there
exist two positive constants c1, c2 independent of ξ such that ξ belongs to the interior

of the cone Γ0 = {ξ ∈ �2n : c1|ξ′′| � |ξ′| � c2|ξ′′|}.
Let m0 be a function belonging to C∞(�2n − {0}) homogeneous of degree zero

with respect to the Euclidean dilations on �2n such that supp(m0) ⊂ Γ0 and let
mj(y) = m0(2−j • y). Moreover, modifying if necessary c1 and c2, m0 can be chosen
such that {mj}j∈� is a C∞ partition of the unity in �2n minus the subspaces ξ′ = 0,

ξ′′ = 0. Let Qj be the operator with the multiplier mj and let C0 be a large constant
such that m̃j =

∑
|i−j|�C0

mi is identically one on 2j •Γ0. We define Q̃j =
∑

|i−j|�C0

Qi.

Let h ∈ C∞
c (�

2n ) be identically one in a neighbourhood of the origin. Taking account
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of Proposition 4 in [8] p. 341 and of the above observation about the critical points

of Φ, we note that

(3.1) µ̂0(1− h)(1− m̃0) ∈ S(�2n ).

Let hj(y) = h(2−j • y) and let Pj be the Fourier multiplier operator with the sym-
bol hj . We will need the following three lemmas. They are proved for the case

n = 2 in [3] (Remarks 2.11, 2.12 and 2.13). The same proofs hold, with the obvious
changes, for an arbitrary n.

Lemma 3.2. Let {σj}j∈� be a sequence of positive measures on �2n , and let

Tjf = σj ∗ f for f ∈ S(�2n ). Suppose 1 < p � 2 and p � q < ∞. If there exists
A > 0 such that sup

j∈�
‖Tj‖p,q � A,

∥∥∥
∑

−J�j�J

TjPj

∥∥∥
p,q

� A and
∥∥∥

∑
−J�j�J

Tj(I−Pj)(I−

Q̃j)
∥∥∥

p,q
� A for all J ∈ �, then there exists c > 0 independent of A, J and {σj}j∈�,

such that ∥∥∥∥
∑

−J�j�J

Tj

∥∥∥∥
p,q

� cA.

Lemma 3.3. The kernel of the convolution operator

∑

−J�j�J

Tµj (I − Pj)(I − Q̃j)

belongs to weak-L
n(k+1)

n(k+1)−γ (�2n ) with the weak constant independent of J .

Lemma 3.4. The kernel of the convolution operator
∑

−J�j�J

Tµj Pj belongs to

weak-L
n(k+1)

n(k+1)−γ (�2n ) with the weak constant independent of J .

Theorem 3.5. If γ � n(k+1)/3 then Eµ is the closed segment with endpoints D

and D′.

�����. Taking into account the considerations stated in the introduction, it is

enough to check that D ∈ Eµ. Lemmas 3.3, 3.4 and weak Young’s inequality imply
that there exists A independent of J such that

∥∥∥∥
∑

−J�j�J

Tµj Pj

∥∥∥∥
pD ,qD

� A and

∥∥∥∥
∑

−J�j�J

Tµj (I − Pj)(I − Q̃j)

∥∥∥∥
pD ,qD

� A.

By virtue of (2.3), Lemma 3.2, and of the fact that Tµf �
∑
j∈�

Tµj f for f � 0, the

theorem follows. �
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Now we consider a local version of the problem, that is to say the study of the

type set corresponding to the convolution operator Tσ with the Borel measure given
by

σ(E) =
∫

|x|�1
χE(x, ϕ(x)) |x|γ−n dx

with γ > 0.

Theorem 3.6. If γ > n(k + 1)/3, then Eσ is the triangular region with vertices

(23 ,
1
3 ), (0, 0) and (1, 1).

If γ � n(k+1)/3 then Eσ is the closed polygonal region with vertices D, D′, (0, 0)

and (1, 1).

�����. Eµ ⊂ Eσ. Since Eσ is a convex set symmetric with respect to the non

principal diagonal and since σ is a finite measure, (1, 1) and (0, 0) belong to Eσ. On
the other hand, the constrains (1.1) and (1.2) hold for Eσ. Moreover, Lemma 2.1

implies that if
(
1
p , 1q

)
∈ Eσ, hence 1q � 1

p −
γ

n(k+1) . Thus the case γ � n(k + 1)/3
follows from Theorem 3.5.

If γ > n(k + 1)/3, (23 ,
1
3 ) lies above the line

1
q =

1
p −

γ
n(k+1) and we have noted in

Section 2 that (23 ,
1
3 ) belongs to Eµ0 , so Lemma 2.1 implies that (

2
3 ,
1
3 ) ∈ Eσ. �

Example 3.7. Let us consider �2 
 C and �4 
 C2 via (x1, x2)→ x1 + ix2 and
(x1, x2, x3, x4)→ (x1+ix2, x3+ix4), respectively. Let a ∈ C−{0} and let ϕ : C → C

be given by ϕ(z) = azk, k � 2. So dϕ(z)w = kazk−1w and d2ϕ(z)(w, w̃) = k(k −
1)azk−2ww̃ for w, w̃ ∈ C. So ϕ satisfies the assumptions 1) and 2) in the introduction.

So, Theorem 3.5 says that for 0 < γ � 2(k + 1)/3, Eµ is the closed segment with
endpoints

(
1− γ

2(k+1) , 1−
γ
1+k ) and

(
γ
1+k , γ

2(k+1)

)
.

4. Quadratic functions in �2

As in [2], we consider quadratic functions ϕ : �2 → �
2 given by ϕ(x) = Φ(x, x)

where Φ: �2 × �
2 → �

2 is a symmetric bilinear function. Two such functions ϕ

and ϕ̃ are equivalent if there exist linear authomorphisms α, β such that ϕ(x) =
α(ϕ̃(β(x))). Thus equivalent functions yield to the same Eµ. It is pointed in [2] that

each equivalence class contains exactly one of the following canonical forms:

I) ϕ(x) = (0, 0),

II) ϕ(x) =
(
1
2x
2
1, 0

)
,

III) ϕ(x) =
(
1
2x
2
1 +

1
2x
2
2, 0

)
,

IV) ϕ(x) =
(
x1x2,

1
2x
2
2

)
,
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V) ϕ(x) =
(
1
2x
2
1,
1
2x
2
2

)
,

VI) ϕ(x) =
(
1
2 (x

2
1 − x22), x1(ax1 + x2)

)
, 0 � a < 1.

In each case we have, as in Remark 2.2, that Eµ = ∅ for γ > 2. In the first three
cases, the support of the measure is contained in a hyperplane, so Eµ reduces to the

empty set. In the fifth case, from [2] we obtain that
(
2
3 ,
1
3

)
∈ Eν0 = Eµ0 . Lemma 2.1

implies that {Tµj}j∈� is a sequence of operators uniformly bounded on D. Thus we

can proceed as in the proof of Theorem 3.5 to obtain that, for 0 < γ � 2, Eµ is the
closed segment with endpoints D and D′. In the sixth case, a computation shows

that ϕ satisfies the assumptions 1) and 2) stated in the introduction and so Eµ is the
same closed segment. In the fourth case, since

(
x1x2,

1
2x
2
2

)
is equivalent to (x21, x1x2)

we will assume that ϕ = (x21, x1x2). In the local case we can obtain for this ϕ the
following result:

Theorem 4.1. Assume ϕ(x) = (x21, x1x2).

a) If γ � 3/2, then Eσ contains the closed triangular region with vertices (0, 0),
(1, 1) and (58 ,

3
8 ). Moreover, the point (

5
8 ,
3
8 ) is the lowest point of Eσ lying on the

non principal diagonal.

b) If 0 < γ < 3/2, then Eσ contains the closed polygonal region with vertices

(0, 0), (1, 1),
(
1− 1

4γ, 1− 5
12γ

)
and

(
5
12γ, 14γ

)
. Moreover, the point

(
1
2 +

γ
12 ,

1
2 −

γ
12

)

is the lowest point of Eσ lying on the non principal diagonal.

�����. We take a rectangle R ⊂ {x ∈ �2 : |x| < 1} of the form [− 12 , 12 ]× [a, b],

a > 0. We define the measure µR(E) =
∫

R χE(x1, x2, ϕ(x1, x2)) dx1 dx2 and denote
by TR the corresponding convolution operator. We now define t ◦ (x1, . . . , x4) =
(tx1, x2, t2x3, tx4) and t ◦ f(x) = f(t ◦ x). It is easy to see that for f � 0 and j ∈ �,
TRf(2j ◦x) � 2jTR(2j ◦f)(x), and so if TR is bounded from Lp(�4 ) into Lq(�4 ), then
1
q � 1

p − 1
4 . Now, for f � 0, TRf(x) � cγTσf(x), hence Eσ ⊂

{(
1
p , 1q

)
: 1q � 1

p − 1
4

}
.

Lemma 2.1 implies that Eσ ⊂
{(
1
p , 1q

)
: 1q � 1

p −
γ
6

}
.

We consider the Borel measure ν on �4 given by

ν(E) =
∫

χE(x1, x2, x21, x1x2)Ψ(x1, x2) dx1 dx2

where Ψ(x1, x2) is a function in C∞
c (�

2 ) satisfying 0 � Ψ � 1 and Ψ(x) = 1 for
|x| � 2. We will check now that (58 , 38 ) belongs to Eν .

A direct application of Corollary to Proposition 5, p. 342 in [7] gives, for ξ =
(ξ1, ξ2, ξ3, ξ4),

(4.2) |ν̂(ξ)| � c

|ξ3|1/2
.
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On the other hand, let Uξ3,ξ4 ∈ S′(�2 ) be given by

〈Uξ3,ξ4 , f〉 =
∫
e−i(ξ3x

2
1+ξ4x1x2)f(x1, x2) dx1 dx2.

Now, ξ3x21 + ξ4x1x2 is a quadratic form in (x1, x2), so Ûξ3,ξ4 is a locally integrable

and explicitly computable function (see e.g. [5], p. 349). Moreover,

|Ûξ3,ξ4(ξ1, ξ2)| �
c

|det(A)|1/2 =
c

|ξ4|

with c independent of ξ, where A is the symmetric matrix defining the quadratic
form ξ3x

2
1 + ξ4x1x2. Now

|ν̂(ξ)| = |(ΨUξ3,ξ4)
∧(ξ1, ξ2)| = |(Ψ̂ ∗ Ûξ3,ξ4)(ξ1, ξ2)|

� ‖Ψ̂ ∗ Ûξ3,ξ4‖∞ � ‖Ψ̂‖1‖Ûξ3,ξ4‖∞ � c

|ξ4|
.

From this inequality and (4.2) we obtain

(4.3) |ν̂(ξ)| � c

|ξ3|1/3|ξ4|1/3
.

Now, for z ∈ C, we consider the analytic family of distributions Iz which for

Re(z) > 0 are given by Iz(t) = 2−z/2

Γ(z/2) |t|z−1, t ∈ �. Let Jz = δ ⊗ δ ⊗ Iz ⊗ Iz ,

hence Ĵz = 1⊗ 1⊗ I1−z ⊗ I1−z . We define the analytic family of operators given by

Tzf = ν ∗ Jz ∗ f , f ∈ S(�4 ). It is easy to show that if Re(z) = 1 then ‖Tz‖1,∞ =
‖ν ∗ Jz‖∞ � cz. Also, for Re(z) = − 13 , (4.3) implies that ‖Tz‖2,2 � ‖ν̂Ĵz‖∞ � c′z.

Now we apply the complex interpolation theorem (see [S-W], p. 205) in the strip
− 13 � Re(z) � 1. Since T0 = cTν it follows that (58 ,

3
8 ) belongs to Eν .

To prove a) it remains to check that (58 ,
3
8 ) belongs to Eσ. Now, if γ � 2 and

f � 0, then Tσf(x) � Tνf(x) and so in this case a) follows. For 3/2 � γ < 2, we use

Christ’s argument as in Section 2. In fact, we observe that Tµ0f(x) � cTνf(x) and
then (58 ,

3
8 ) belongs to Eµ0 . Lemma 2.1 implies that {Tµj}j∈�are uniformly bounded

operators from L8/5 into L8/3.

To prove b) we proceed as in the case 32 � γ < 2. Since γ < 3
2 we interpolate

between (58 ,
3
8 ) and (1, 1). The Riesz Thorin theorem implies that

(
1− 14γ, 1− 5

12γ
)
∈

Eµ0 . We invoke again Lemma 2.1 to obtain that {Tµj}j∈� are uniformly bounded

operators from Lp into Lq if 1p = 1 − 1
4γ and

1
q = 1 − 5

12γ. So we obtain that(
1− 1

4γ, 1− 5
12γ

)
∈ Eσ. �
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Now, we return to the global case IV). We have

Theorem 4.4. Assume ϕ(x) = (x21, x1x2) and γ > 0. Then Eµ = ∅ for γ > 3
2

and, for γ � 3
2 , Eµ is a segment that contains the closed segment with endpoints(

1− 1
4γ, 1− 5

12γ
)
and

(
5
12γ, 14γ

)
.

�����. Eµ ⊂ Eσ, and
(
1
p , 1q

)
∈ Eσ implies 1q � 1

p − 1
4 (see the proof of

Theorem 4.1), and by Lemma 2.1,
(
1
p , 1q

)
∈ Eµ implies 1q =

1
p − γ

6 , so the case

γ > 3/2 follows. If γ � 3/2, then, as before, {Tµj}j∈� are uniformly bounded
operators from Lp into Lq if 1p = 1− 1

4γ and
1
q = 1− 5

12γ. Now we can proceed as in

the proof of Theorem 3.5 in order to see that
(
1− 14γ, 1− 5

12γ
)
∈ Eµ. Finally, the proof

of the theorem follows by the convexity and symmetry of Eµ and by Lemma 2.1. �
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