
Czechoslovak Mathematical Journal

C. S. Lin
Asymptotic behavior of solutions of a 2nth order nonlinear differential equation

Czechoslovak Mathematical Journal, Vol. 52 (2002), No. 3, 665–672

Persistent URL: http://dml.cz/dmlcz/127752

Terms of use:
© Institute of Mathematics AS CR, 2002

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents
strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

http://dml.cz/dmlcz/127752
http://dml.cz


Czechoslovak Mathematical Journal, 52 (127) (2002), 665–672

ASYMPTOTIC BEHAVIOR OF SOLUTIONS OF A 2nth ORDER

NONLINEAR DIFFERENTIAL EQUATION

C. S. Lin, Taipei

(Received October 25, 1999)

Abstract. In this paper we prove two results. The first is an extension of the result of
G. D. Jones [4]:
(A) Every nontrivial solution for

{
(−1)nu(2n) + f(t, u) = 0, in (α,∞),

u(i)(ξ) = 0, i = 0, 1, . . . , n− 1, and ξ ∈ (α,∞),

must be unbounded, provided f(t, z)z � 0, in E × � and for every bounded subset I ,
f(t, z) is bounded in E × I .

(B) Every bounded solution for (−1)nu(2n)+f(t, u) = 0, in �, must be constant, provided
f(t, z)z � 0 in � × � and for every bounded subset I , f(t, z) is bounded in � × I .
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1. Introduction

Asymptotic behavior of solution to differential equations has been widely studied.

For example Hastings and Lazer [2] proved that assuming

(1.1) p(t) ∈ C1[α,∞), p′(t) � 0 and lim
t→∞

p(t) =∞,

all oscillatory solutions of

(1.2) y(4) − p(t)y = 0
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tend to zero. G.D. Jones [3] showed that, assuming

(1.3) p(t) ∈ C1[α,∞), p′(t) � 0 and lim
t→∞

p(t) = 0,

all oscillatory solutions of (1.2) are unbounded. Biernacki [1] proved that, assum-

ing (1.1),

(1.4) y(4) + p(t)y = 0

has at least one oscillatory solution tending to zero. This result was generalized by
Švec [6]. Švec proved that (1.4) has two linearly independent oscillatory solutions

that tend to zero assuming only 0 < m � p(t). Švec [6] also proved that if 0 < m �
p(t) � M and (1.4) is oscillatory, then (1.4) has a pair of unbounded solutions.

Recently G.D. Jones [4] extended this result to the following: if 0 � p(t) � M and
(1.4) is oscillatory, then it has a pair of solutions such that every linear combination

of them is unbounded. In this paper we extend the result of G.D. Jones [4] and show
that Liouville’s theorem holds for (1.5.2). We now list our conclusions:

(A) Every nontrivial solution of (1.5.1) with assumptions (1.6.1) and (1.7) is un-
bounded, which is stated in Theorem 3.1.

Lu = (−1)nu(2n) + f(t, u) = 0 in E = (α,∞).(1.5.1)

(−1)nu(2n) + f(t, u) = 0 in �.(1.5.2)

f(t, z)z � 0 in E × � and f(t, z) is bounded in E × I(1.6.1)

for every bounded subset I of �.

f(t, z)z � 0 in � × � and f(t, z) is bounded in � × I(1.6.2)

for every bounded subset I of �.

There exists a ξ in the domain of u that u(i)(ξ) = 0(1.7)

for i = 0, 1, . . . , n− 1.

In particular, let f(t, u) = p(t)u. Then we have the following generalization of the

result of G.D. Jones [4]: Assume p(t) is nonnegative and bounded in E. Then there
are n linearly independent solutions of (1.8) such that every linear combination of

them is unbounded, except the trivial solution, which is stated in Theorem 3.2,

(1.8) (−1)nu(2n) + p(t)u = 0 in E = (α,∞).

(B) Every bounded solution u of (1.5.2) with assumption (1.6.2) is constant.
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2. Preliminary

We begin by defining some functionals and showing their relations.

Definition 2.1. Let u ∈ C2m(Ω), Ω = [β, γ]. We define

P2m(u,Ω) =
∫ γ

β

(−1)muu(2m) dt for m = 0, 1, . . . ,

G2m(u) =





0, if m = 0

d
dt

(u2

2

)
, if m = 1,

(−1)m−1 d
dt

(
uu(2m−2)

)
+ 2G2m−2(u′)−G2m−4(u′′), if m � 2,

and

H2m(u) =





0, if m = 0

u2

2
, if m = 1,

(−1)m−1
(
uu(2m−2)) + 2H2m−2(u′)−H2m−4(u′′), if m � 2.

In the following lemmas we now show their relations and properties.

Lemma 2.2. If u ∈ C2m(Ω) and Ω = [β, γ], then

P2m(u,Ω) = −G2m(u)
∣∣γ
β
+

∫ γ

β

(
u(m)

)2
dt, where m = 0, 1, . . . .

�����. The proof is done by induction on m. For m = 0 it is evident. For
m = 1, by integration by parts, we have

P2(u,Ω) =
∫ γ

β

−uu′′ dt

= − uu′
∣∣γ
β
+

∫ γ

β

(u′)2 dt

= −G2(u)
∣∣γ
β
+

∫ γ

β

(u′)2 dt.
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Suppose that the assertion holds for m = 0, 1, . . . , k. We shall show that it is true

for m = k + 1. By repeating integration by parts we obtain

P2k+2(u,Ω) =
∫ γ

β

(−1)k+1uu(2k+2) dt

= (−1)k+1uu(2k+1)
∣∣γ
β
−

∫ γ

β

(−1)k+1u′u(2k+1) dt

= (−1)k+1uu(2k+1)
∣∣γ
β
− (−1)k+1u′u(2k)

∣∣γ
β
+

∫ γ

β

(−1)k+1u′′u(2k) dt

= P2k−2(u′′,Ω) + (−1)k+1
d
dt

(
uu(2k)

)∣∣∣
γ

β
− 2(−1)k+1u′u(2k)

∣∣γ
β

= P2k−2(u
′′,Ω) + (−1)k+1 d

dt

(
uu(2k)

)∣∣∣
γ

β

− 2
[∫ γ

β

(−1)k+1u′′u(2k) dt+
∫ γ

β

(−1)k+1u′u(2k+1) dt
]

= P2k−2(u
′′,Ω) + (−1)k+1 d

dt

(
uu(2k)

)∣∣γ
β
− 2[P2k−2(u′′,Ω)− P2k(u

′,Ω)]

= (−1)k+1 d
dt
(uu(2k))

∣∣∣
γ

β
− P2k−2(u

′′,Ω) + 2P2k(u
′,Ω)

= (−1)k+1 d
dt
(uu(2k))

∣∣∣
γ

β
− 2G2k(u′)

∣∣γ
β
+G2k−2(u

′′)
∣∣γ
β
+

∫ γ

β

(u(k+1))2 dt

= −G2k+2(u)
∣∣γ
β
+

∫ γ

β

(u(k+1))2 dt,

where the last identity holds by virtue of the definition of G2n(u). Hence the proof

of the lemma is complete. �

The following lemma is often used in the proofs of the main theorems.

Lemma 2.3. Let i = 1, 2. If u is a solution of (1.5. i) satisfying assumption
(1.6. i), then

(1) d/dtH2n(u) = G2n(u).

(2) G2n(u) is increasing.

(3) H2n(u)(ξ) = 0 and G2n(u)(ξ) = 0 provided u satisfies condition (1.7).

(4) There exists c ∈ [ξ,∞) such that G2n(u)(t) > 0 if t > c provided u satisfies

condition (1.7) and does not vanish in [ξ,∞).

�����. (1) By the definitions of H2n(u) and G2n(u), and using the induction
on n, it is easy to check that part (1) is true.
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(2) Multiplying both sides of Lu = 0 by u, integrating the resulting expression

over any closed subset Ω = [β, γ] of the domain of u and using Lemma 2.2, we have

0 =
∫ γ

β

uLu dt =
∫ γ

β

(−1)nuu(2n) dt+
∫ γ

β

f(t, u)u dt(2.1)

= P2n(u,Ω) +
∫ γ

β

f(t, u)u dt

= −G2n(u)
∣∣γ
β
+

∫ γ

β

(u(n))2 dt+
∫ γ

β

f(t, u)u dt,

and this implies that G2n(u)
∣∣γ
β

� 0 for every γ > β.

Hence G2n(u) is increasing and we have completed the proof of part (2).
(3) We assume that the identities hold for n = 0, 1, . . . , k− 1. We shall show that

G2k(u)(ξ) = 0 provided u(i)(ξ) = 0, i = 0, 1, . . . , k − 1. By Definition 2.1, it is easy
to verify that

G2k(u)(ξ) =

[
(−1)(k−1) d

dt
(uu(2k−2)) + 2G2k−2(u′)−G2k−4(u′′)

]
(ξ) = 0,

sinceG2k−2(u′)(ξ) = 0 andG2k−4(u′′)(ξ) = 0 provided u(j)(ξ) = 0, j = 1, 2, . . . , k−1.
Similarly we have H2n(u)(ξ) = 0. Hence the proof of part (3) is complete.

(4) We denote the domain of u by D. By parts (2) and (3) we have

(2.2) G2n(u)(t) � 0 in [ξ,∞).

Suppose the result is not true. Then we have G2n(u)(t) = 0 in [ξ,∞) by virtue
of (2.2) and Lemma 2.3, part (2). Multiplying both sides of Lu = 0 by u and
integrating over any subset [β, γ) of D, we get

0 =
∫ γ

β

uLu dt =
∫ γ

β

(−1)nuu(2n) dt+
∫ γ

β

f(t, u)u dt

= P2n(u,Ω) +
∫ γ

β

f(t, u)u dt

= −G2n(u)
∣∣γ
β
+

∫ γ

β

[(u(n))2 + f(t, u)u] dt

=
∫ γ

β

[(u(n))2 + f(t, u)u] dt.

This show that u(n) vanishes in [ξ,∞). So u must be a polynomial function of degree

less than n with n roots at ξ, since u(i)(ξ) = 0, i = 0, 1, . . . , n−1, and this impies that
u vanishes in [ξ,∞), which contradicts our hypothesis. Hence part (4) is done. �
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In order to show that H2n(u) and G2n(u), which are used in the main theorems,

are both bounded provided u is bounded, we quote the result of [5].

Lemma 2.4 ([5]). Let 1 � k � ∞, let i, j be integers with 1 � j � i, and let J

be any interval of the real line bounded or unbounded. Given any ε > 0 there exists
a positive k(ε) such that if y ∈ Lk(J), y(i−1) is locally absolutely continuous and

y(i) ∈ Lk(J), then y(j) ∈ Lk(J) and

‖y(j)‖k � ε‖y(i)‖k + k(ε) ‖y‖k,

where k(ε) depends only on ε and the length of J and ‖y‖k denotes the Lk norm

of y.

Remark 2.5. If u is a bounded solution of (1.5. i) satisfying the assumption
(1.6. i), then u(2n) is bounded. According to Lemma 2.4, we have that u(i) is bounded,

i = 0, 1, . . . , 2n. Hence H2n(u) and G2n(u) also are bounded by virtue of the defini-
tions of H2n(u) and G2n(u).

3. Main result

We are now ready to show our main theorems.

Theorem 3.1. Every nontrivial solution of (1.5.1) satisfying assumptions (1.6.1)
and (1.7) is unbounded.

�����. Suppose that a solution u is bounded in E. Then we have

(3.1) H2n(u) is bounded in E,

according to Remark 2.5. By Lemma 2.3, parts (2) and (4), there exists a number c

in E such that

(3.2) G2n(u)(t) � G2n(u)(c) > 0 for t > c,

and using (3.1), Lemma 2.3. part (1) and the mean value theorem, we have

|H2n(u)(t)−H2n(u)(c)| = |G2n(u)(d)(t − c)| � G2n(c)(t− c),

where d ∈ (c, t), since the last inequality follows by (3.2). So H2n(u)(t) → ∞ as
t →∞. Thus H2n(u)(t) is unbounded, which contradicts (3.1).
Hence we have completed the proof of the theorem. �
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The following result which is an extension of the result of G.D. Jones [4], is a

special case of Theorem 3.1.

Theorem 3.2. Suppose p(t) is nonnegative and bounded in E. There are n

linearly independent solutions of (1.8) such that every linear combination of them is
unbounded, except the trivial solution.

�����. Let ui, i = 0, 1, . . . , 2n−1, be 2n linearly independent solutions of (1.8)
that satisfy u

(k)
i (ξ) = δik, i, k = 0, 1, . . . , 2n− 1, where δik is the Kronecker symbol.

And let u =
2n−1∑
i=n

biui, where bi, i = n, n + 1, . . . , 2n − 1, be constants such that
at least one bi is not zero. It is easy to verify that u satisfies assumption (1.7) in
Theorem 3.1 and by virtue of Theorem 3.1, u is unbounded in E. Hence the theorem

is proved. �

Now we show the last theorem.

Theorem 3.3. Every bounded solution u of (1.5.2) satisfying assumption (1.6.2)
is a constant.

�����. According to Remark 2.5, H2n(u) is bounded. We claim that G2n(u)(t)

vanishes in �.
Suppose there is a c ∈ � such that G2n(u)(c) > 0. According to Lemma 2.3,

parts (1), (2) and the fundamental theorem of calculus, we have

|H2n(u)(t)−H2n(u)(c)| =
∣∣∣∣
∫ t

c

G2n(u)(s) ds

∣∣∣∣ � |t− c| |G2n(u)(c)|, for t � c,

and this implies that |H2n(u)(t)| → ∞ as t → ∞. This contradicts the fact that
H2n(u) is bounded. If there is a c ∈ � such that G2n(u)(c) < 0, then by the same

argument we have

|H2n(u)(c)−H2n(u)(t)| =
∣∣∣∣
∫ c

t

G2n(u)(s) ds

∣∣∣∣ � |t− c| |G2n(u)(c)| for c � t,

and this implies that |H2n(u)(t)→∞ as t →∞. This is also a contradiction.
Hence G2n(u)(t) vanishes in �. According to (2.1), we conclude that u(n) = 0

in �. This means u is a polynomial function of degree less than n. It is well known

that a bounded polynomial function must be constant. Hence we have completed
the proof of the theorem. �
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