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INCIDENCE STRUCTURES OF TYPE (p, n)
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(Received October 4, 1999)

Abstract. Every incidence structure J (understood as a triple of sets (G, M, I), I ⊆ G×M)
admits for every positive integer p an incidence structure J p = (Gp, Mp, Ip) where Gp

(Mp) consists of all independent p-element subsets in G (M) and Ip is determined by some
bijections. In the paper such incidence structures J are investigated the J p’s of which have
their incidence graphs of the simple join form. Some concrete illustrations are included with
small sets G and M .

Keywords: incidence structures, independent sets

MSC 2000 : 06B05, 08A35

Definition 1. Let G and M be sets and I ⊆ G × M . Then the triple J =
(G, M, I) is called an incidence structure.1 If A ⊆ G, B ⊆ M , then we denote

A↑ = {m ∈ M | g I m ∀g ∈ A}, B↓ = {g ∈ G | g I m ∀m ∈ B}.

Moreover, we denote A↑↓ := (A↑)↓, B↓↑ := (B↓)↑ for A ⊆ G, B ⊆ M .

Definition 2. An incidence structure J1 = (G1, M1, I1) is embedded into an
incidence structure J = (G, M, I) if G1 ⊆ G, M1 ⊆ M and I1 ⊆ I ∩ (G1 ×M1). If
I1 = I ∩ (G1 ×M1), then J1 is a substructure of J .

If we put PG = {A ⊆ G | A = A↑↓}, then the pair G = (G,PG) is a (lower)
closure space in which X↑↓ is a closure of any subset X ⊆ G in G. A set A ⊆ G

is independent in G if a /∈ (A − {a})↑↓ for all a ∈ A. In what follows we denote

Aa := A− {a}.

Supported by the Council of the Government of the Czech Republic J14/98:153100011.
1 The triple (G, M, I) is called an incidence structure with regard to consecutive appli-
cations. The name “context” is used more frequently in literature—see [1] where the
notation is taken from.
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If A ⊆ G, then we put XA(a) := A↑
a − {a}↑ for a ∈ A. Then XA(a) = ∅ iff

A↑
a ⊆ {a}↑ iff a ∈ A↑↓

a . Hence the set A is independent in G if and only if XA(a) 6= ∅
for all a ∈ A. Moreover, m ∈ XA(a) iff {m}↓ ∩ A = Aa.

Let a non-empty subset A ⊆ G be independent in G. Then we put X = {XA(a) |
a ∈ A}. For every choice QA = {ma ∈ XA(a) | XA(a) ∈ X} ⊆ M from the set X
(which exists according to the axiom of choice) we define a map α : A → QA by the
formula α(a) = ma. This map is called an A-norming map.

If we put PM = {B ⊆ M | B = B↓↑}, then M = (M,PM ) is a (upper) closure
space. A set B ⊆ M is independent inM if m /∈ (B −{m})↓↑ = B↓↑

m for all m ∈ M .

If m ∈ B, then we put Y B(m) = B↓
m − {m}↓. B is independent inM if and only if

Y B(m) 6= ∅ for all m ∈ B. Moreover, a ∈ Y B(m) iff {a}↑ ∩ B = Bm.

Let a non-empty set B ⊆ M be independent inM. Then we put Y = {Y B(m) |
m ∈ B}. For every choice QB = {am ∈ Y B(m) | Y B(m) ∈ Y} ⊆ G we consider a

map β : B → QB given by the formula β(m) = am. It will be called a B-norming

map.

Theorem 1. Let A ⊆ G, B ⊆ M be independent sets in G, M, respectively.
Then each A-norming map A → QA (each B-norming map B → QB) is injective

and the sets QA, QB are independent inM, G, respectively. (See [3].)

Remark 1. If α : A → B is a map norming an independent set A of G, then
α−1 : B → A is a map norming the independent set B of M. Moreover, from
α(a) = ma for a ∈ A we get a ∈ Y B(ma).

Definition 3. Let us consider an incidence structure J = (G, M, I) and a posi-
tive integer p > 2. Let Gp and Mp be the sets of all independent sets of G andM,
respectively, of cardinality p. Then J p = (Gp, Mp, Ip) is an incidence structure of
independent sets of J , where A Ip B if and only if there exists an A-norming map

α : A → B for A ∈ Gp, B ∈ Mp.

Remark 2. If A ∈ Gp, then XA(a) 6= ∅ for all a ∈ A and there exists a set
B ∈ Mp and a norming map α : A → B. Similarly for a set B ∈ M p. Hence A↑ 6= ∅,
B↓ 6= ∅ in J p for all A ∈ Gp, B ∈ Mp. If Gp = ∅, then Mp = ∅ and J p = (∅, ∅, ∅).
For every incidence structure J and for every p > 2 there exists a unique incidence
structure J p.

Definition 4. J = (G, M, I) is said to be an incidence structure of type (p, n),
where p > 1, n > 1 are positive integers, if in J p = (Gp, Mp, Ip) we have Gp =
{A0, . . . , An}, Mp = {B0, . . . , Bn−1} and Ai Ip Bi iff i = j or i = j + 1 for all
j ∈ {0, . . . , n− 1}.

10



Remark 3. If J is the structure of type (p, n), then the incidence graph of the
structure J p can be drawn in the form

A0

B0

A1

B1

A2

Bn−2

An−1

Bn−1

An
Gp :

Mp :

and J p is called a simple join.

Theorem 2. If J = (G, M, I) is an incidence structure of type (p, n), then
(a) |Ai ∩ Ai+1| = p− 1 for all i ∈ {0, . . . , n− 1},
(b) |Bi ∩ Bi+1| = p− 1 for all i ∈ {0, . . . , n− 2}.
���������

. (a) Since Ai, Ai+1 Ip Bi for all i ∈ {0, . . . , n − 1}, there exist norming
mappings αi : Ai → Bi, βi : Bi → Ai+1 and βiαi : Ai → Ai+1 is a bijective mapping

of the sets Ai, Ai+1. We put αi(a) = ma, βi(ma) = a′ for each a ∈ Ai. Since the
inverse mapping α−1

i : Bi → Ai, in which α−1
i (ma) = a, is also norming, we get

a, a′ ∈ Y Bi

(ma) for each a ∈ Ai.

Let us suppose that there exist two distinct elements b1, b2 ∈ Ai+1 − Ai. Then

there exist distinct elements a1, a2 ∈ Ai such that βiαi(a1) = b1, βiαi(a2) = b2. It
is obvious that a1, b1 ∈ Y Bi

(ma1) and a2, b2 ∈ Y Bi

(ma2). If we put A′ = Ai
ai
∪ {bi},

then |A′| = p and A′ 6= Ai, Ai+1. We obtain a ∈ Y Bi

(ma) for all a ∈ Ai
a1
. The set A′

is independent in G and α : a 7→ ma for all a ∈ Ai
a1
, b1 7→ ma1 , is a norming mapping

of the set A′ to Bi. Hence A′ Ip Bi. However, this contradicts A′ 6= Ai, Ai+1.

(b) It can be proved similarly to (a).

Notation. Since |Ai ∩Ai+1| = p− 1, we can put Ri = Ai ∩Ai+1, Ai = {a′i}∪Ri,
Ai+1 = {ai+1}∪Ri for all i ∈ {0, . . . , n−1}. In a similar way we put Qi = Bi∩Bi+1,

Bi = {m′
i} ∪Qi, Bi+1 = {mi+1} ∪Qi.

Remark 4. In Theorems 3–7 we suppose that an incidence structure J =
(G, M, I) of type (p, n) is given, where Gp = {A0, . . . , An}, Mp = {B0, . . . , Bn−1},
and all former notation is respected.

Theorem 3.
1. {a′i}↑ ∩ Bi = {ai+1}↑ ∩ Bi for all i ∈ {0, . . . , n− 1},
2. {m′

i}↓ ∩ Ai+1 = {mi+1}↓ ∩ Ai+1 for all i ∈ {0, . . . , n− 2}.
���������

. 1. There exist norming maps αi : Ai → Bi, βi : Bi → Ai+1 for each
i ∈ {0, . . . , n − 1}, where βiαi : Ai → Ai+1 is bijective. If a ∈ Ai, then we put
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βiαi(a) = βi(ma) = a, where a, a ∈ Y Bi

(ma). Assume that a ∈ Ri. If a 6= a, then

a, a ∈ Ai+1 and a, a ∈ Y Bi

(ma) implies a contradiction to the independence of Ai+1.
Hence a = a, βiαi(Ri) = Ri and βiαi(a′i) = ai+1. This yields a′i, ai+1 ∈ Y Bi

(ma′
i
)

and thus {a′i}↑ ∩ Bi = {ai+1}↑ ∩ Bi = Bi
m′

ai

.

2. Since Ai+1 Ip Bi, Bi+1 for each i ∈ {0, . . . , n − 2} by Definition 4, there exist
norming mappings βi : Bi → Ai+1, αi+1 : Ai+1 → Bi+1, where αi+1βi : Bi → Bi+1

is bijective. If we put αi+1βi(m) = αi+1(am) = m for m ∈ Bi, then m, m ∈
XAi+1

(am). Similarly to 1 we can show that m′
i, mi+1 ∈ XAi+1

(am′
i
). Thus {m′

i}↓ ∩
Ai+1 = {mi+1}↓ ∩ Ai+1 = Ai+1

am′
i

.

Theorem 4.

1. a′i ∈ {m′
i}↓ ⇐⇒ a′i /∈ {mi+1}↓,

2. m′
i ∈ {a′i+1}↑ ⇐⇒ m′

i /∈ {ai+2}↑
for all i ∈ {0, . . . , n− 2}.
���������

. 1. There exists a norming mapping αi : Ai → Bi because Ai Ip Bi.

Since m′
i ∈ Bi, there exists an element a′ ∈ Ai such that αi(a′) = m′

i. Then
m′

i ∈ XAi

(a′) and {m′
i}↓ ∩ Ai = Ai

a′ . If we put αi(a) = ma for a ∈ Ai
a′ , then

ma ∈ XAi

(a) and Qi = Bi ∩ Bi+1 = {ma | a ∈ Ai
a′}.

Let us assume that a′i ∈ {m′
i}↓, {mi+1}↓ or a′i /∈ {m′

i}↓, {mi+1}↓. From Theorem 3
we obtain {m′

i}↓∩Ai+1 = {mi+1}↓∩Ai+1 and thus (by assumption) {mi+1}↓∩Ai =
{m′

i}↓ ∩ Ai = Ai
a′ . Hence mi+1 ∈ XAi

(a′). From Bi+1 = {mi+1} ∪ Qi it follows

that a′ 7→ mi+1, a 7→ ma for a ∈ Ai
a′ is a norming mapping of Ai onto Bi+1. Thus

Ai Ip Bi+1. It is a contradiction.

2. There exists a norming mapping βi : Bi → Ai+1 because Ai+1 Ip Bi. Since
a′i+1 ∈ Ai+1, there exists an element m′ ∈ Bi such that βi(m′) = a′i+1. Then

a′i+1 ∈ Y Bi

(m′) and {a′i+1}↑ ∩ Bi = Bi
m′ . If we put βi(m) = am for m ∈ Bi

m′ , then
am ∈ Y Bi

(m) and Ri+1 = Ai+1 ∩Ai+2 = {am | m ∈ Bi
m′}.

Let us assume that m′
i ∈ {a′i+1}↑, {ai+2}↑ or m′

i /∈ {a′i+1}↑, {ai+2}↑. From The-
orem 3 we obtain {a′i+1}↑ ∩ Bi+1 = {ai+2}↑ ∩ Bi+1 and thus (by assumption)

{ai+2}↑ ∩ Bi = {ai+1}↑ ∩ Bi = Bi
m′ . Hence ai+2 ∈ Y Bi

(m′). From Ai+2 =
{ai+2} ∪ Ri+1 it follows that β : m′

i 7→ ai+2, m 7→ am for m ∈ Bi
m′ is a norm-

ing mapping of Bi onto Ai+2. Thus Ai+2 Ip Bi. It is a contradiction. �

Remark 5. Since a′i ∈ {m′
i}↓ iff a′i /∈ {mi+1}↓, we obtain m′

i ∈ {a′i}↑ iff mi+1 /∈
{a′i}↑. Similarly a′i+1 ∈ {m′

i}↓ iff ai+2 /∈ {m′
i}↓.

Theorem 5. Let m′
i+1 = mi+1. If a′i+1 = ai+1, then a′i ∈ {m′

i}↓ iff a′i /∈ {mi+2}↓.
If a′i+2 = ai+2, then m′

i ∈ {a′i+1}↑ iff m′
i /∈ {ai+3}↑.
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���������
. Accepting the former notation we have Bi = {m′

i} ∪ Qi, Bi+1 =
{mi+1} ∪ Qi = {m′

i+1} ∪ Qi+1, Bi+2 = {mi+2} ∪ Qi+1. Moreover, Qi = Qi+1 and
Bi+2 = {mi+2} ∪Qi because of m′

i+1 = mi+1.

a) Let us assume that a′i+1 = ai+1. Then Ri = Ri+1 and Ai+2 = {ai+2} ∪ Ri.
By Theorem 3 we obtain {m′

i}↓ ∩ Ai+1 = {mi+1}↓ ∩ Ai+1, hence {m′
i}↓ ∩ Ri =

{mi+1}↓ ∩ Ri. Moreover, {m′
i+1}↓ ∩ Ai+2 = {mi+2}↓ ∩ Ai+2. Since Ri ⊆ Ai+2, we

obtain {m′
i+1}↓ ∩ Ri = {mi+2}↓ ∩ Ri and the equality m′

i+1 = mi+1 implies that

{m′
i}↓ ∩ Ri = {mi+2}↓ ∩ Ri.

Let us assume that either a′i ∈ {m′
i}↓, {mi+2}↓ or a′i /∈ {m′

i}↓, {mi+2}↓. Since
Ai = {a′i} ∪ Ri, Ai+2 = {ai+2} ∪ Ri, we get {m′

i}↓ ∩ Ai = {mi+2}↓ ∩ Ai. Since
AiIpBi, there exists a norming mapping αi : Ai → Bi. Let αi(a′) = m′

i, αi(a) = ma

for a ∈ Ai
a′ . Then αi(Ai

a′) = Qi. From {m′
i}↓ ∩ Ai = Ai

a′ it follows that m′
i, mi+2 ∈

XAi

(a′). Hence a′ 7→ mi+2, a 7→ ma for a ∈ Ai
a′ is a norming mapping of the set Ai

onto Bi+2 = {mi+2} ∪Qi, i.e. Ai Ip Bi+2. It is a contradiction.

b) Let us assume that a′i+2 = ai+2. Then Ri+1 = Ri+2 and Ai+3 = {ai+3}∪Ri+1.
By Theorem 3 we obtain {a′i+1}↑ ∩ Bi+1 = {ai+2}↑ ∩ Bi+1, hence {a′i+1}↑ ∩ Qi =
{ai+2}↑ ∩ Qi. Moreover, {a′i+2}↑ ∩ Bi+2 = {ai+3}↑ ∩ Bi+2. Since Qi ⊆ Bi+2,
we obtain {a′i+2}↑ ∩ Qi = {ai+3}↑ ∩ Qi and the equality a′i+2 = ai+2 implies that

{a′i+1}↑ ∩Qi = {ai+3}↑ ∩Qi.

Let us assume that either m′
i ∈ {a′i+1}↑, {ai+3}↑ or m′

i /∈ {a′i+1}↑, {ai+3}↑. Then
{a′i+1}↑∩Bi = {ai+3}↑∩Bi. By assumption Ai+1 Ip Bi, where Ai+1 = {a′i+1}∪Ri+1.
Hence there exists a norming mapping βi : Bi → Ai+1, where βi(m′) = a′i+1 for a

certain m′ ∈ Bi and βi(m) = am for m ∈ Bi
m′ . Then βi(Bi

m′) = Ri+1. From
{a′i+1}↑ ∩ Bi = Bi

m′ = {ai+3}↑ ∩ Bi we get a′i+1, ai+3 ∈ Y Bi

(m′). From Ai+3 =
{ai+3} ∪ Ri+1 we obtain that m′ 7→ ai+3, m 7→ am for m ∈ Bi

m′ is a norming
mapping of the set Bi onto Ai+3, i.e. Ai+3 Ip Bi. It is a contradiction. �

Theorem 6. If 0 6 i 6 n− 2, then a′i 6= ai+1, a
′
i+1, ai+2, a

′
i+2.

���������
. Let us recall that Ai = {a′i} ∪Ri, Ai+1 = {ai+1} ∪Ri = {a′i+1} ∪Ri+1,

Ai+2 = {ai+2} ∪ Ri+1 = {a′i+2} ∪Ri+2.

1. If a′i = ai+1, then Ai+1 = Ai. This is a contradiction.

2. Let a′i = a′i+1. If ai+1 = a′i+1, then a′i = ai+1, a contradiction. If ai+1 6= a′i+1,
then a′i+1 ∈ Ri and a′i ∈ Ri. This is a contradiction again.

3. We prove that a′i 6= ai+2. Since Ai Ip Bi, there exists a norming mapping
αi : Ai → Bi, where αi(a) = ma for a ∈ Ai.

a) Let ai+1 6= a′i+1. From a′i 6= a′i+1 we obtain ma′
i
6= ma′

i+1
. Hence ma′

i
6= m′

i

or ma′
i+1

6= m′
i. First assume that ma′

i+1
6= m′

i. This yields ma′
i+1

∈ Qi and

ma′
i+1

∈ Bi+1 = {mi+1} ∪ Qi. From ma′
i
∈ XAi

(a′i), ma′
i+1

∈ XAi

(a′i+1) we obtain
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a′i I ma′
i+1
and a′i+1 /I ma′

i+1
. By Theorem 3 {a′i+1}↑ ∩ Bi+1 = {ai+2}↑ ∩ Bi+1, thus

ai+2 /I ma′
i+1
. Since a′i I ma′

i+1
, we get ai+2 6= a′i. If ma′

i
6= m′

i, then we can proceed
similarly.

b) Let ai+1 = a′i+1. First we assume that m′
i ∈ {a′i}↑. According to Theorem 3,

{a′i}↑ ∩ Bi = {ai+1}↑ ∩ Bi, which implies m′
i ∈ {ai+1}↑ and m′

i ∈ {a′i+1}↑. From
Theorem 4 we get m′

i /∈ {ai+2}↑. Hence a′i I m′
i, ai+2 /I m′

i and thus a′i 6= ai+2. If

m′
i ∈ {a′i}↑, then we can proceed similarly.
4. We show that a′i 6= a′i+2. If a′i+2 = ai+2, then a′i 6= a′i+2 according to 3. Let

a′i+2 6= ai+2. Then a′i+2 ∈ Ri+1. If ai+1 = a′i+2, then a′i = a′i+2 implies a′i = ai+1.

This is a contradiction to 1. Hence ai+1 6= a′i+2. From a′i+2 ∈ Ri+1 we obtain
a′i+2 ∈ Ri and thus a′i 6= a′i+2. �

Remark 6. In an incidence structure of type (p, n) the case a′i = ai+3 is possible,

as is shown in Fig. 5.

Theorem 7. If 0 6 i 6 n− 3, then m′
i 6= mi+1, m

′
i+1, mi+2, m

′
i+2.

���������
. Analogous to Theorem 6. �

Theorem 8. Let J = (G, M, I) be an incidence structure and p > 1 a positive
integer. Let Ai ⊆ G, |Ai| = p for i ∈ {0, . . . , n} and Bi ⊆ M , |Bi| = p for

i ∈ {0, . . . , n− 1}, where n > 1. Let the following conditions be valid:
1. The sets A0, B0 are independent in G, M, respectively, and there exists a
norming mapping α0 : A0 → B0.

2. |Ai ∩ Ai+1| = p− 1, |Bi ∩ Bi+1| = p− 1 for all possible i.

3. (a) {a′i}↑ ∩Bi = {ai+1}↑ ∩ Bi, i ∈ {0, . . . , n− 1}.
(b) {m′

i}↓ ∩ Ai+1 = {mi+1}↓ ∩ Ai+1, i ∈ {0, . . . , n− 2}
with respect to the former notation.

Then all sets Ai, Bi are independent in G, M, respectively, and Ai Ip Bj for i = j,

i = j + 1, j ∈ {0, . . . , n− 1}.
���������

. Let all the assumptions hold. If Ai ∈ Gp, Bi ∈ Mp for a certain
i ∈ {0, . . . , n − 2} and a norming mapping αi : Ai → Bi exists, then Ai+1 ∈ Gp,

Bi+1 ∈ Mp and there exist norming mappings βi : Bi → Ai+1, αi+1 : Ai+1 → Bi+1.
We have Ai = {a′i} ∪ Ri, Ai+1 = {ai+1} ∪ Ri, Ri = Ai ∩ Ai+1 with respect to our

notation. If we put αi(a) = ma for a ∈ Ai, then a ∈ Y Bi

(ma) and {a}↑∩Bi = Bi
ma
.

According to 3(a), {a′i}↑ ∩Bi = {ai+1}↑ ∩Bi = Bi
ma′

i

and thus a′i, ai+1 ∈ Y Bi

(ma′).

Since a ∈ Y Bi

(ma) for a ∈ Ri, the set Ai+1 is independent in G and βi : ma 7→ a

for a ∈ Ri, ma′
i
7→ ai+1 is a norming mapping of the set Bi onto Ai+1. Hence

Ai+1 Ip Bi. Moreover, ma ∈ XAi+1
(a) for a ∈ Ri and ma′

i
∈ XAi+1

(ai+1).
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If we put Bi = {m′
i} ∪ Qi, Bi+1 = {mi+1} ∪ Qi, where Qi = Bi ∩ Bi+1, then

αi(a′) = m′
i for a certain a′ ∈ Ai. According to 3(b) we have {m′

i}↓ ∩ Ai+1 =
{mi+1}↓ ∩ Ai+1 = Ai+1

a′ , which implies m′
i, mi+1 ∈ XAi+1

(a′). Let a′ ∈ Ri. Then
αi+1 : a 7→ ma for a ∈ Ri

a′ , a′ 7→ mi+1, ai+1 7→ ma′
i
is a norming mapping of the set

Ai+1 onto Bi+1 and Bi+1 is independent in M. If a′ = ai+1, then αi+1 : a 7→ ma

for a ∈ Ri, ai+1 7→ mi+1 is a norming mapping of Ai+1 onto Bi+1 again. Thus

Ai+1 Ip Bi+1.

By assumption 1 we get A0 ∈ Gp, B0 ∈ Mp and A0IpB0. Hence A1 ∈ Gp,
B1 ∈ Mp and A1IpB0, B1. This yields A2 ∈ Gp, B2 ∈ Mp, A2 Ip B1, B2 and so

on. �

Remark 7. Let the assumptions from Theorem 8 be valid. If we put Gp
1 =

{A0, . . . , An}, Mp
1 = {B0, . . . , Bn−1} and Ai Ip1 Bj iff i = j, i = j + 1, then the

incidence structure J p
1 = (Gp

1, M
p
1 , Ip1) is embedded into J p.

Theorems 2–7 can be used to construct incidence structures of type (p, n), as is
shown in the following example.

Example. Let us construct the incidence tables of some incidence structures
of type (3,3). Let J = (G, M, I) be an incidence structure of type (3.3). Then
G3 = {A0, A1, A2, A3}, M3 = {B0, B1, B2}, where Ai ⊂ G for i ∈ {0, 1, 2, 3} and
Bi ⊂ M for i ∈ {0, 1, 2}. In what follows we suppose that G =

3⋃
i=0

Ai, M =
2⋃

i=0

Bi.

From Theorem 2 we obtain A0 = {a′0}∪R0, A1 = {a1}∪R0 = {a′1}∪R1, A2 = {a2}∪
R1 = {a′2}∪R2, A3 = {a3}∪R2 and B0 = {m′

0}∪Q0, B1 = {m1}∪Q0 = {m′
1}∪Q1,

B2 = {m2} ∪Q1.

Moreover, we will assume that the following conditions are satisfied:

(P1) R0 6= R1 6= R2 6= R0,

(P2) Q0 6= Q1,

(P3) a3 6= a′0, a1 6= a′2.

According to (P1), (P3) and Theorem 6, a′i, aj are distinct elements for all possible
i, j. From R0 6= R1 and R1 6= R2 we obtain a′1 ∈ R0 and a′2 ∈ R1. The condition

a1 6= a′2 implies a′2 ∈ R0. Hence R0 = {a′1, a′2}, R1 = {a1, a
′
2}, R2 = {a1, a2}.

Similarly m′
1 ∈ Q0. If we put Q0 = {m′

1, m
′
2}, then m′

i, mj are distinct elements and

Q1 = {m1, m
′
2}. There exist a norming set α : A0 → B0 by assumptions.

1. Assume that α(a′0) = m′
0. We select such a notation that α(a′1) = m′

1, α(a′2) =
m′

2 (see Tab. 1). By Theorem 3 we get {a′0}↑ ∩B0 = {a1}↑ ∩B0 and {m′
0}↓ ∩A1 =

{m1}↓ ∩ A1. From Theorem 4, a′0 /∈ {m′
0}↓ implies a′0 ∈ {m1}↓ and thus a′0 I m1.

Moreover, {a′1}∩B1 = {a2}↑∩B1 by Theorem 3 and m′
0 ∈ {a′1}↑ implies m′

0 /∈ {a2}↑
by Theorem 4. Thus a2 /I m′

0.
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We know that {m′
1}↓ ∩ A2 = {m2}↓ ∩ A2 and a′1 /∈ {m′

1}↓ implies a′1 ∈ {m2}↓.
Thus a′1 I m2. Finally, we obtain {a′2}↑ ∩ B2 = {a3}↑ ∩ B2 and m′

1 /∈ {a3}↑ because
of m′

1 ∈ {a′2}↑. Thus a3 /I m′
1.

It remains to decide about the incidence of elements a′0, m2 and a3, m′
0. If a

′
0 6I m2,

then for instance A0 Ip B1. This is a contradiction and hence a′0 I m2.

I m′
0 m′

1 m′
2 m1 m2

a′0 − − − −
a′1 − − − −
a′2 − − − −
a1 − − −
a2 − −
a3 ? − −

Table 1.

My colleague Dr. V. Tichý has devised a computer program assigning to every

incidence structure J = (G, M, I) for |G|, |M | < 12 all incidence structures J p of
independent sets of J . In the figures enclosed part a) shows the incidence table
of the structure J , parts b), c) show all independent sets in G, M, respectively,
and part d) ahows the incidence graph of the structure J p. Fig. 1 illustrates the

described incidence structure J for a3 /I m′
0 and Fig. 2 for a3 I m′

0. Both structures
are of type (3,3).

2. Assume that α(a′0) 6= m′
0. Let for instance α(a′0) = m′

2, α(a′1) = m′
1, α(a′2) =

m′
0. Fig. 3 shows such an incidence structure J of type (3,3) which is assigned
similarly to 1.
Incidence structures in Figs. 1, 2, 3 are not isomorphic.

Figs. 4, 5 illustrate incidence structure of type (3,3), in which conditions (P1),
(P2) are satisfied but a3 6= a′0, a1 = a′2, and a3 = a′0, a1 6= a′2, respectively.

An incidence structure of type (5,4), where R0 = R1 and Q1 = Q2, is in Fig. 6.
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