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ON A TWO-POINT BOUNDARY VALUE PROBLEM

FOR SECOND ORDER SINGULAR EQUATIONS

��� � � � � � � �
	���
, Brno, and � � � �����  � , Granada

(Received November 3, 1999)

Abstract. The problem on the existence of a positive in the interval ]a, b[ solution of the
boundary value problem

u′′ = f(t, u) + g(t, u)u′; u(a+) = 0, u(b−) = 0

is considered, where the functions f and g : ]a, b[ × ]0,+∞[ → � satisfy the local Cara-
théodory conditions. The possibility for the functions f and g to have singularities in the
first argument (for t = a and t = b) and in the phase variable (for u = 0) is not excluded.
Sufficient and, in some cases, necessary and sufficient conditions for the solvability of that
problem are established.
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1. Statement of the problem and formulation of main results

The following notation is used throughout the paper.�
is the set of real numbers,

�
+ = [0,+∞[.

L(]a, b[;D), where D ⊂ �
, is the set of functions p : ]a, b[ → D which are Lebesgue

integrable on the segment [a, b].
Lloc(]a, b[;D), where D ⊂ �

, is the set of functions u : ]a, b[ → D which are
Lebesgue integrable on each segment contained in ]a, b[.
C([a, b];D), where D ⊂ �

, is the set of continuous functions u : [a, b] → D.
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AC ′([a, b];D), where D ⊂ �
, is the set of functions u : [a, b] → D which are

absolutely continuous together with their first derivatives on [a, b].
AC ′loc(I ;D), where I ⊆ ]a, b[, D ⊂ �

, is the set of functions u : I → D such that

u ∈ AC ′(I0;D) for every segment I0 ⊂ I .

Car(]a, b[×D;
�
), where D ⊂ �

, is the Carathéodory class, i.e., the set of functions

f : ]a, b[ × D → �
such that f(t, ·) : D → �

is continuous for almost all t ∈ ]a, b[,
f(·, x) : ]a, b[ → �

is measurable for all x ∈ D, and

sup{|f(·, x)| : x ∈ D0)} ∈ L(]a, b[;
�

+ )

for any compact D0 ⊂ D.

Carloc(]a, b[ × D;
�
), where D ⊂ �

, is the set of functions f : ]a, b[ × D → �
whose restrictions to [a + ε, b − ε] ×D belong to Car([a + ε, b − ε] ×D;

�
) for any

ε ∈ ]0, 1
2 (b− a)[.

[p]− = 1
2 (|p| − p).

u(s+) and u(s−) are one-sided limits of the function u at the point s from the
right and from the left, respectively.

Consider the boundary value problem

u′′ = f(t, u) + g(t, u)u′,(1.1)

u(a+) = 0, u(b−) = 0,(1.2)

where f, g ∈ Carloc(]a, b[×]0,+∞[;
�
). Under a solution of problem (1.1), (1.2) we

understand a function u ∈ AC ′loc(]a, b[; ]0,+∞[) satisfying equation (1.1) almost
everywhere in ]a, b[ and boundary conditions (1.2).
The aim of the present paper is to investigate the problem of solvability of prob-

lem (1.1), (1.2) provided the functions f and g possess singularities both in the
independent (for t = a and t = b) and in the phase (for u = 0) variable. Singular
problems of such a type arise frequently in applications (cf., for example, [1], [3], [4],
[6]–[8], [22]–[24]). The first essential step in their investigation was made by S. Tal-

iaferro in his work [25] in which he established a necessary and sufficient condition
for the solvability of problem (1.1), (1.2) with g(t, x) ≡ 0 and f(t, x) = −h(t)/xλ,

where λ > 0 and h ∈ Lloc(]a, b[;
�

+ ). Problem (1.1), (1.2) has been more often
considered in the case when the function g does not depend on the second argument,

and f(t, x) 6 0 for a < t < b, x > 0 (cf., for example, [1]–[18], [21]–[27] and refer-
ences therein). In that case, equation (1.1) is in its turn easily reduced to a two-term

equation of the type

(1.10) u′′ = f(t, u)
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with nonpositive right-hand side. The restriction on the sign of the function f was

overcome for the first time in [19], where criteria for the solvability of problem (1.10),
(1.2) were established under the assumption that

(1.3)
∫ b

a

(s− a)(b− s)f∗r (s) ds < +∞ for r > 1,

where f∗r (·) = max{|f(·, x)| : 1
r 6 x 6 r} for r > 1 (see also later works [12]–[14]).

In [17], the equation of a more general type u′′ = H(t, u, u′) was considered, but
again under the assumption that the function H is nonpositive. So, in spite of a large

number of publications, the question of the solvability of problem (1.1), (1.2) has not
yet been studied throughly enough. Below we will give new sufficient, and in some

cases, necessary and sufficient conditions for the solvability of problem (1.1), (1.2).
Moreover, as it has been noted above, the possibility for both the functions f and g

to have singularities in the first argument and in the phase variabe, is not excluded.
Note also that Theorem 1.2 below enables one to establish criteria for the solvability

of problem (1.1), (1.2) even in the case when condition (1.3) is not fulfilled.
Before we proceed to formulating the main results, we introduce the following

definition.

Definition 1.1. The continuous function σ : ]a, b[ → ]0,+∞[ is said to be a
lower (upper) function of equation (1.1) if σ ∈ AC ′loc(]a, b[\{t1, t2, . . . , tn}; ]0,+∞[),
where a < t1 < t2 < . . . < tn < b, there exist finite limits σ(a+), σ(b−), σ′(ti+),
σ′(ti−), i = 1, n,

σ′(ti−) < σ′(ti+) (σ′(ti−) > σ′(ti+)), i = 1, n,

and almost everywhere in ]a, b[ the inequality

σ′′(t) > f(t, σ(t)) + g(t, σ(t))σ′(t) (σ′′(t) 6 f(t, σ(t)) + g(t, σ(t))σ′(t))

is fulfilled.

Definition 1.1 is a particular case of the definition of lower and upper functions
introduced in [15] (see also [17] and [19]).

Theorem 1.1. Let σ1 and σ2 be respectively lower and upper functions of

equation (1.1) and let

σ1(t) 6 σ2(t) for a < t < b,(1.4)

σ1(a+) = 0, σ1(b−) = 0, σ2(a+) 6= 0, σ2(b−) 6= 0.
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Assume, moreover, that for every 0 < η < min{σ2(t) : a 6 t 6 b} there exist γ ∈ ]a, b[
and functions pη , qη ∈ Lloc(]a, b[;

�
+ ) such that

(1.5)
∫ b

a

qη(s) ds < +∞,

∫ b

a

(s− a)(b− s)pη(s) ds < +∞

and

|f(t, x)| 6 pη(t), g(t, x) sgn(γ − t) > −qη(t)

for a < t < b, σ1η(t) 6 x 6 σ2(t),

where

(1.6) σ1η(·) = max{η, σ1(·)}.

Then the problem (1.1), (1.2) has at least one solution u such that

(1.7) σ1(t) 6 u(t) 6 σ2(t) for a < t < b.

Remark 1.1. Theorem 1.1 covers the case when both the functions f and g
have nonintegrable singularities with respect to the independent variable. Note that

singularities of the function g may be “sufficiently large”. As an example, consider
the problem

u′′ =
λ

t(1− t)
− λ

t(1− t)u3
+

(
1 +

1− 2t
t2(1− t)2

) u′
u2
,(1.8)

u(0+) = 0, u(1−) = 0,

where λ > 0. We can easily see that σ2(t) ≡ 1 is an upper function of the equation,
and σ1(t) = εt(1− t) for 0 6 t 6 1, where 0 < ε < λ

2+λ is a lower function. Putting

now γ = 1
2 , by Theorem 1.1 problem (1.8) has at least one solution.

Corollary 1.1. Let a function f be nondecreasing in the second argument and
let there exist r > 0 such that

(1.9) f(t, r) 6 0 for a < t < b,

with the strict inequality on the subset of ]a, b[ of a positive measure. Let, moreover,
on the set ]a, b[× ]0,+∞[ the inequality

(1.10) |g(t, x)| 6 q∗(t)

hold, where q∗ ∈ L(]a, b[;
�

+ ). Then the condition

(1.11)
∫ b

a

(s− a)(b− s)|f(s, x)| ds < +∞ for 0 < x 6 r

is necessary and sufficient for the solvability of problem (1.1), (1.2).
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Remark 1.2. In the case when the function g does not depend on the second
argument, problem (1.1), (1.2) under the conditions of Corollary 1.1 is uniquely
solvable. Note also that for g(t, x) ≡ 0 the above corollary implies Theorem 1.2
in [19] (see also [17], Theorem 4.31]).

Corollary 1.2. Let a function f be nondecreasing in the second argument and
there exist r > 0 such that conditions (1.9) are fulfilled. Let, moreover, there exist
c ∈ ]a, b[ such that the mapping (t, x) 7−→ g(t, x) sgn(c − t) is nondecreasing in the
second argument, and

∫ b

a

|g(s, x)| ds < +∞ for x > 0.

Then condition (1.11) is necessary and sufficient for the solvability of problem (1.1),

(1.2).

As an example, consider the equation

(1.12) u′′ = h(t)
(
δuα − 1

uλ

)
+
g(t)
uµ

u′ − ϕ(t),

where δ > 0, α > 0, λ > 0, µ > 0, h, ϕ ∈ Lloc(]a, b[;
�

+ ), h(t) 6≡ 0, c ∈ ]a, b[, and

g(t) sgn(c− t) 6 0 for a < t < b,

∫ b

a

|g(s)| ds < +∞.

Then by Corollary 1.2, for the solvability of the problem (1.12), (1.2) it is necessary

and sufficient to have

(1.13)
∫ b

a

(s− a)(b− s)h(s) ds < +∞ and
∫ b

a

(s− a)(b− s)ϕ(s) ds < +∞.

Consider now the equation

(1.14) u′′ =
h(t)
u
,

where h ∈ Lloc(]a, b[;
�
) can, in general, change its sign.

Corollary 1.3. Let the function h admit the representation

h(t) = p(t)− q(t), p(t) > 0, q(t) > 0 for a < t < b,
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where

∫ b

a

p(s)
(s− a)(b− s)

ds < +∞,

∫ b

a

(s− a)(b− s)q(s) ds < +∞

and

(b− t)
∫ t

a

(s− a)q(s) ds+ (t− a)
∫ b

t

(b− s)q(s) ds(1.15)

> (t− a)(b− t)
√
b− a

√∫ b

a

(s− a)(b− s)q(s) ds

× exp
[

2
b− a

∫ b

a

p(s)
(s− a)(b− s)

ds
]
for a < t < b.

Then problem (1.14), (1.2) has at least one solution.

According to Corollary 1.3, for example the problem

u′′ =
(
kt(1− t)√
|2t− 1|

− λ

)
1
u

; u(0+) = 0, u(1−) = 0,

where k > 0 and λ > 2
3e8k, has at least one solution.

Theorem 1.2. Let σ1 and σ2 be respectively lower and upper functions of

equation (1.1) satisfying conditions (1.4). Assume, moreover, that for every 0 <

η < min{σ2(t) : a 6 t 6 b} there exist functions pη, qη ∈ Lloc(]a, b[;
�

+ ) such that
conditions (1.5) and

f(t, x) > −pη(t), |g(t, x)| 6 qη(t) for a < t < b, σ1η(t) 6 x 6 σ2(t)

are fulfilled, where σ1η is the function defined by (1.6). Then problem (1.1), (1.2)
has at least one solution.

Remark 1.3. Theorem 1.2 covers also the case when condition (1.3) is not fulfilled
for the function f . Indeed, consider the problem

(1.16) u′′ = u− 1
u2

+
λ(1− 2t)

u2
u′ +

α

t2(1− t)2
; u(0+) = 0, u(1−) = 0,

where α > 0 and λ ∈ �
. It is easily seen that σ1(t) = εt(1−t), where 0 < ε < 1

1+α+|λ| ,
is a lower function and σ2(t) ≡ 1 is an upper function. Consequently, by Theorem 1.2,
problem (1.16) is solvable. It should also be noted that in the case λ 6 0 and α < 0,
problem (1.16) by Corollary 1.2 has no solution.
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From Theorem 1.2, for the equation

(1.17) u′′ = h(t)uλ − p(t)
uµ

+ ϕ(t),

where λ > 0 and µ > 0, we obtain the following

Corollary 1.4. Let r > 0, n > 0, p0 > 0, p, h, ϕ ∈ Lloc(]a, b[;
�

+ ), and

∫ b

a

(s− a)(b− s)p(s) ds < +∞,

p0 6 p(t), (ϕ(t) + h(t))[(t− a)(b− t)]n 6 r for a < t < b.

Then problem (1.17), (1.2) is uniquely solvable.

As is readily seen from this corollary, the functions h and ϕ need not satisfy
conditions (1.13).

2. Some auxiliary propositions

In this section, lemmas on a priori estimates and a lemma on the solvability of

problem (1.1), (1.2) will be established in the case when f, g ∈ Carloc(]a, b[×
�
;
�
).

Everywhere in what follows, functions h1, h2 ∈ Lloc(]a, b[;
�

+ ) will be assumed to
satisfy the conditions

(2.1)
∫ b

a

(s− a)(b− s)h1(s) ds < +∞,

∫ b

a

h2(s) ds < +∞.

Lemma 2.1. Let r0 > 0, and let h1, h2 ∈ Lloc(]a, b[;
�

+ ) satisfy conditions (2.1).
Then there exist c0 > 0 and functions H1 ∈ C([a, a+b

2 ];
�

+ ), H2 ∈ C([a+b
2 , b];

�
+ )

satisfying the conditions H1(a) = 0, H2(b) = 0 and such that for any a1 ∈ ]a, a+b
2 [,

b1 ∈ ]a+b
2 , b[ and u ∈ AC ′([a1, b1];

�
) satisfying the inequalities

u′′(t) >− h1(t)− h2(t)|u′(t)| for a1 < t < b1,(2.2)

|u(t)| 6r0 for a1 < t < b1,

the following estimates hold:

(2.3) (t− a1)(b1 − t)|u′(t)| 6 c0 for a1 < t < b1,

(2.4)
u(t) 6 u(a1) +H1(t) for a1 6 t 6 a+ b

2
,

u(t) 6 u(b1) +H2(t) for
a+ b

2
6 t 6 b1.
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���������
. Let a function u ∈ AC ′([a1, b1];

�
) satisfy the conditions of the lemma.

Suppose

ψ0(t) = −h2(t) sgnu′(t), ψ1(t) = u′′(t) + h2(t)|u′(t)| for a1 < t < b1.

Clearly, u is a solution of the equation

(2.5) u′′ = ψ0(t)u′ + ψ1(t)

and

(2.6) ψ1(t) > −h1(t) for a1 < t < b1.

Let t0 ∈ ]a1, b1[ be an arbitrary point such that u′(t0) 6= 0. Then either

(2.7) u′(t0) > 0

or

(2.8) u′(t0) < 0.

Suppose that (2.7) ((2.8)) is satisfied. Put

µ(t) =
∫ b1

t

exp
[∫ s

t

ψ0(ξ) dξ
]

ds for t0 < t < b1

(
µ(t) =

∫ t

a1

exp
[∫ s

t

ψ0(ξ) dξ
]

ds for a1 < t < t0

)
.

Multiplying both sides of (2.5) by µ and integrating from t0 to b1 (from a1 to t0),

we obtain

−µ(t0)u′(t0)− u(b1) + u(t0) =
∫ b1

t0

µ(s)ψ1(s) ds

(
µ(t0)u′(t0) + u(t0)− u(a1) =

∫ t0

a1

µ(s)ψ1(s) ds
)
.

Hence by (2.2), (2.6) and (2.7) ((2.8)) we get

(2.9)

µ(t0)|u′(t0)| 6 2r0 +
∫ b1

t0

h1(s)µ(s) ds

(
µ(t0)|u′(t0)| 6 2r0 +

∫ t0

a1

h1(s)µ(s) ds
)
.
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We can easily check that

h−1
0 (b1 − t) 6 µ(t) 6 h0(b1 − t) for t0 < t < t1(

h−1
0 (t− a1) 6 µ(t) 6 h0(t− a1) for a1 < t < t0

)
,

where

(2.10) h0 = exp
[∫ b

a

h2(s) ds
]
.

Taking this into account, from (2.9) we find that inequality (2.3), where

(2.11) c0 =
[
2r0(b− a) +

∫ b

a

(s− a)(b− s)h1(s) ds
]

exp
[
2

∫ b

a

h2(s) ds
]
,

is fulfilled.

�

Let us now show that estimates (2.4) are satisfied, where

(2.12)

H1(t) =
[

4r0
b− a

(t− a) +
∫ t

a

(s− a)h1(s) ds

+ (t− a)
∫ a+b

2

t

h1(s)ds
]
h2

0 for a < t 6 a+ b

2
,

H2(t) =
[

4r0
b− a

(b− t) +
∫ b

t

(b− s)h1(s) ds

+ (b− t)
∫ t

a+b
2

h1(s) ds
]
h2

0 for
a+ b

2
6 t < b.

Here the number h0 is defined by (2.10).
Let us denote by w1 a solution of the boundary value problem

w′′ = ψ0(t)w′ − h1(t) w(a1) = 0, w
(a+ b

2

)
= 2r0

and show that

(2.13) w̃(t) = u(t)− u(a1)− w1(t) 6 0 for a1 < t0 <
a+ b

2
.

Assume the contrary. Let (2.13) be violated. Then there exist t∗ ∈ [a1,
a+b
2 [ and

t∗ ∈ ]t∗, a+b
2 ] such that

(2.14) w̃(t) > 0 for t∗ < t < t∗, w̃(t∗) = 0 and w̃(t∗) = 0.
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Taking into consideration (2.5) and (2.6), we obtain

w̃′′(t) > ψ0(t)w̃′(t) for t∗ < t < t∗.

However, this contradicts condition (2.14). Thus (2.13) is valid.

We can directly verify that

w1(t) 6 H1(t) for a1 6 t 6 a+ b

2
,

whereH1 is the function defined by (2.12). Consequently, the first of inequalities (2.4)
is valid.

Analogously one can prove that

u(t) 6 u(b1) + w2(t), w2(t) 6 H2(t) for
a+ b

2
6 t 6 b1,

where w2 is a solution of the boundary value problem

w′′ = ψ0(t)w′ − h1(t); w
(a+ b

2

)
= 2r0, w(b1) = 0.

�

Lemma 2.2. Let r0 > 0, α ∈ ]a, a+b
2 [, β ∈ ]a+b

2 , b[, γ ∈ ]α, β[, and let h1, h2 ∈
Lloc(]a, b[;

�
+ ) satisfy conditions (2.1). Then there exists a function ϕ ∈ L(]a, b[;

�
+)

such that ϕ is bounded in ]a, b[, and for any a1 ∈ ]a, α[, b1 ∈ ]β, b[, and a function
u ∈ AC ′([a1, b1];

�
) satisfying condition (2.2) and inequalities

u′′(t) sgn((γ − t)u′(t)) > − h1(t)− h2(t)|u′(t)| for a1 < t < b1,(2.15)

u′′(t) > − h1(t)− h2(t)|u′(t)| for α < t < β,(2.16)

the estimate

(2.17) |u′(t)| 6 ϕ(t) for a1 < t < b1

holds.
���������

. Let u ∈ AC ′([a1, b1];
�
) satisfy the conditions of the lemma. By virtue

of (2.16), (2.2) and Lemma 2.1, the estimate

(2.18) |u′(γ)| 6 c0
(γ − α)(β − γ)
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is fulfilled, where c0 is the number given by (2.11). Let us show that

(2.19) |u′(t)| 6 ϕ0(t) for a1 < t < γ,

where

(2.20) ϕ0(t) =
(

c0
(γ − α)(β − γ)

+
∫ γ

t

h1(s) ds
)

exp
[∫ b

a

h2(s) ds
]
for a < t < γ.

Assume the contrary. Let (2.19) be violated. Then by (2.18) and (2.20), there

exist t∗ ∈ ]a1, γ[ and t∗ ∈ ]t∗, γ[ such that

|u′(t)| > ϕ0(t) for t∗ 6 t < t∗,(2.21)

|u′(t∗)| = c0
(γ − α)(β − γ)

.

For the sake of definiteness we assume that u′(t) > 0 for t∗ < t < t∗. Then by virtue
of the lemma on the differential inequality, from (2.15) we find

|u′(t∗)| 6
(
|u′(t∗)|+

∫ t∗

t∗

exp
[∫ s

t∗

h2(ξ) dξ
]
h1(s) ds

)
6 ϕ0(t∗).

However, the last inequality contradicts condition (2.21). Consequently, esti-

mate (2.19) is valid.

Analogously we can show that

(2.22) |u′(t)| 6 ϕ1(t) for γ 6 t < b1,

where

ϕ1(t) =
(

c0
(γ − α)(β − γ)

+
∫ t

γ

h1(s) ds
)

exp
[∫ b

a

h2(s) ds
]
for γ < t < b.

Suppose now

ϕ(t) =

{
ϕ0(t) for a < t 6 γ

ϕ1(t) for γ < t < b
.

It is evident from (2.19) and (2.22) that estimate (2.17) is satisfied. It is not also
difficult to see that the function ϕ is bounded in ]a, b[, and ϕ ∈ L(]a, b[;

�
+). �
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Lemma 2.3. Let f, g ∈ Carloc(]a, b[ ×
�
;
�
), and let σ1 and σ2 be lower and

upper functions of equation (1.1) satisfying conditions (1.4). Moreover, let there
exist functions p0, q0 ∈ Lloc(]a, b[;

�
+ ) such that

∫ b

a

(s− a)(b− s)p0(s) ds < +∞,

∫ b

a

q0(s) ds < +∞

and

f(t, x) > − p0(t), |g(t, x)| 6 q0(t) for a < t < b, σ1(t) 6 x 6 σ2(t),(2.23)

(|f(t, x)| 6 p0(t), g(t, x) sgn(c− t) > −q0(t) for a < t < b, σ1(t) 6 x 6 σ2(t)).(2.24)

Then problem (1.1), (1.2) has at least one solution u satisfying (1.7).

���������
. Let conditions (2.23) be fulfilled. Choose sequences (tik)+∞k=1, (sik)+∞k=1,

and (cik)+∞k=1 (i = 1, 2) such that

a < t1k+1 < t1k <
a+ b

2
< t2k < t2k+1 < b, k = 1, 2, 3, . . . ,

s1k+1 ∈ ]t1k+1, t1k[, s2k+1 ∈ ]t2k, t2k+1[, t11 < s11 <
a+ b

2
< s21 < t21,

c1k = σ1(t1k), c2k = σ1(t2k), k = 1, 2, 3, . . . ,(2.25)

lim
k→+∞

t1k = a, lim
k→+∞

t2k = b.(2.26)

Let r0 = max{|σ1(t)| + |σ2(t)| : a 6 t 6 b} and let c0 be the number defined
by (2.11), where h1(t) = p0(t), h2(t) = q0(t) for a < t < b,

ϕ̃(t) =





c0
(t− t1k+1)(t2k+1 − t)

for t ∈ ]s1k+1, s1k[ ∪ ]s2k, s2k+1[,

c0
(t− t11)(t21 − t)

for t ∈ ]s11, s21[,
(2.27)

%(t) = ϕ̃(t) + |σ′1(t)|+ |σ′2(t)|+ 1 for a < t < b,(2.28)

F (t, x, y) = f(t, x) + g(t, x)y for a < t < b, x, y ∈ �
,

F̃ (t, x, y) =





F (t, x, y) for |y| 6 %(t),
(
2− |y|

%(t)

)
F (t, x, y) for %(t) < |y| 6 2%(t),

0 for |y| > 2%(t),

(2.29)
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q(t) = |g(t, σ1(t))| + |g(t, σ2(t))| for a < t < b,

F0(t, x, y) =





F̃ (t, σ1(t), y) +
σ1(t)− x

1 + |σ1(t)− x|q(t) for x 6 σ1(t),

F̃ (t, x, y) for σ1(t) < x < σ2(t),

F̃ (t, σ2(t), y) +
x− σ2(t)

1 + |x− σ2(t)|
q(t) for x > σ2(t).

(2.30)

We can easily see that F0 ∈ Car(]t1k , t2k[× � 2 ;
�
) and for any natural k there exists

a function F ∗k ∈ L(]t1k, t2k[;
�

+ ) such that

|F0(t, x, y)| 6 F ∗k (t) for t1k < t < t2k, x, y ∈ �
.

Therefore the boundary value problem

u′′ = F0(t, u, u′),(2.31)

u(t1k) = c1k, u(t2k) = c2k(2.32)

has at least one solution uk (cf., for example, Lemma 2.1 in [17]).

We will show that

(2.33) v(t) = σ1(t)− uk(t) 6 0 for t1k 6 t 6 t2k.

Assume on the contrary that for some t̃ ∈ ]tik , t2k[ the inequality v(t̃) > 0 holds.
Since v(tik) = 0, i = 1, 2, there exist t∗ ∈ [t∗, t2k[ and t∗ ∈ ]tk, t2k] such that
v ∈ AC ′([t∗, t∗];

�
),

v(t) > v(t∗) > 0 for t∗ < t < t∗, v(t∗) = v(t∗),(2.34)

|v′(t)| < v(t)
1 + v(t)

for t∗ < t < t∗.(2.35)

Then

(2.36) |u′k(t)| < %(t) for t∗ < t < t∗.

In view of (2.29), (2.30) and (2.34)–(2.36), the inequality

v′′(t) > F (t, σ1(t), σ′1(t))− F (t, σ1(t), u′k(t)) + q(t)
v(t)

1 + v(t)

= g(t, σ1(t))v′(t) + q(t)
v(t)

1 + v(t)
> 0
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is satisfied almost everywhere in ]t∗, t∗[. Since v ∈ AC ′([t∗, t∗];
�
), the above inequal-

ity contradicts conditions (2.34). Consequently, inequality (2.33) holds. Analogously
we can see that uk(t) 6 σ2(t) for t1k 6 t 6 t2k. Thus

(2.37) σ1(t) 6 uk(t) 6 σ2(t) for t1k 6 t 6 t2k.

Taking this into account, by (2.30) we have

(2.38) u′′k(t) = F̃ (t, uk(t), u′k(t)) for t1k 6 t 6 t2k,

whence in view of condition (2.23) we conclude that the function uk satisfies the

conditions of Lemma 2.1 for a1 = t1k and b1 = t2k. Hence,

(2.39) (t− t1k)(t2k − t)|u′k(t)| 6 c0 for t1k < t < t2k

and

(2.40)
uk(t) 6 c1k +H1(t) for t1k < t <

a+ b

2
,

uk(t) 6 c2k +H2(t) for
a+ b

2
6 t 6 t2k,

where H1 and H2 are the functions appearing in Lemma 2.1. Due to (2.27)–(2.29)
and (2.39), from (2.38) we find

(2.41) u′′k(t) = F (t, uk(t), u′k(t)) for s1k < t < s2k.

Now (2.37), (2.39) and (2.41) imply uniform boundedness and equicontinuity of

sequences (uk)+∞k=1 and (u′k)+∞k=1 in ]a, b[ (i.e., on each compact contained in ]a, b[).
Therefore without loss of generality we assume that

lim
k→+∞

uk(t) = u0(t), lim
k→+∞

u′k(t) = u′0(t)

uniformly in ]a, b[. Clearly, u0 is a solution of equation (1.1). Moreover, from (1.4),

(2.25), (2.37) and (2.40) we conclude that u0 satisfies boundary conditions (1.2) and
inequalities (1.7).

In the case when (2.24) is satisfied, the lemma can be proved analogously. The
only difference is that there is no need to introduce sequences (sik)+∞k=1, i = 1, 2,
but we must put ϕ̃(t) = ϕ(t) for a < t < b, where ϕ is the function appearing in
Lemma 2.2 for the case α = a+γ

2 , β = b+γ
2 , and h1(t) = p0(t), h2(t) = q0(t) + q̃(t).

Here q̃(t) = 0 for t ∈ ]a, α[ ∪ ]β, b[, and q̃(t) = max{|g(t, x)| : σ∗ 6 x 6 σ∗} for
α < t < β, where σ∗ = min{σ1(t) : α 6 t 6 β}, σ∗ = max{σ2(t) : α 6 t 6 β}. �
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Finally, for the sake of convenience we give without proof some lemmas on prop-

erties of solutions of the linear equation

(2.42) u′′ = p(t)u+ q(t)u′,

where p, q ∈ Lloc(]a, b[;
�
).

Definition 2.1. Equation (2.42) is said to be oscillatory on the segment [a, b] if
every its nontrivial solution has at least one zero in the interval ]a, b[.

Lemma 2.4. Let

p(t) 6 0 for a < t < b,(2.43)
∫ b

a

|q(s)| ds < +∞,

∫ b

a

(s− a)(b− s)|p(s)| ds < +∞,

and
∫ b

a

(s− a)2(b− s)2|p(s)| ds > (b− a)3 exp
[
8

∫ b

a

|q(s)| ds
]
.

Then equation (2.42) is oscillatory.

Lemma 2.5. Let (2.43) be fulfilled and

∫ b

a

|q(s)| ds < +∞,

∫ b

a

(s− a)|p(s)| ds < +∞
(∫ b

a

(b− s)|p(s)| ds < +∞
)
,

∫ b

a

(s− a)|p(s)| ds < (b− a) exp
[
−3

∫ b

a

|q(s)| ds
]

( ∫ b

a

(b− s)|p(s)| ds < (b− a) exp
[
−3

∫ b

a

|q(s)| ds
])
.

Then equation (2.42) has a solution v1 (a solution v2) satisfying the conditions

v′1(t) > 0 for a < t 6 b, v1(a+) = 1
(
v′2(t) < 0 for a 6 t < b, v2(b−) = 1

)
.

The above two lemmas immediately follow from the results obtained in [20].

Lemma 2.6. Let p(t) > 0 for a < t < b, and
∫ b

a (s − a)(b − s)p(s) ds < +∞.
Then Green’s function G of the problem

u′′ = p(t)u; u(0+) = 0, u(b−) = 0

33



admits the estimates (cf., for example, [16]).

1
µ(b− a)

(t− a)(b− τ) 6 −G(t, τ) 6 µ2

b− a
(t− a)(b− τ)

for a 6 t < τ 6 b,

1
µ(b− a)

(τ − a)(b− t) 6 −G(t, τ) 6 µ2

b− a
(τ − a)(b− t)

for a 6 τ 6 t 6 b,

where µ = exp
[
(b− a)−1

∫ b

a
(s− a)(b− s)p(s) ds

]
.

3. Proof of main results

���������
of Theorem 1.1. Let

σ∗ = min{σ2(t) : a 6 t 6 b}, σ∗ = max{σ2(t) : a 6 t 6 b}, ε =
σ∗
2
.

Choose a0 ∈ ]a, γ[ and b0 ∈ ]γ, b[ such that σ1(t) < ε for t ∈ ]a, a0[ ∪ ]b0, b[. Denote
by v1 and v2 respectively solutions of the boundary value problems

v′′ = −qε(t)v′ − pε(t); v(a+) = ε, v(a0) = σ∗ + 1,

v′′ = qε(t)v′ − pε(t); v(b0) = σ∗ + 1, v(b−) = ε.

Obviously, there exist a1 ∈ ]a, a0[ and b1 ∈ ]b0, b[ such that

ε < v1(t) < σ2(t), v′1(t) > 0 for a < t < a1,

v1(a1) = σ2(a1), v′1(a1) > σ′2(a1+),

ε < v2(t) < σ2(t), v′2(t) < 0 for b1 < t < b,

v2(b1) = σ2(b1), v′2(b1) 6 σ′2(b1−).

Taking this and the conditions of the theorem into account, we conclude that

v′′1 (t) 6−
[
f(t, v1(t)) + g(t, v1(t))v′1(t)

]
− for a < t < a1,

v′′2 (t) 6−
[
f(t, v2(t)) + g(t, v2(t))v′2(t)

]
− forb1 < t < b.

Choose sequences (t1k)+∞k=1 and (t2k)+∞k=1 such that t11 ∈ ]a, a1[, t21 ∈ ]b1, b[, t1k+1 <

t1k, t2k < t2k+1, k = 1, 2, . . .,

σ1(t) < σ1(t1k) for a < t < t1k, σ1(t) < σ1(t2k) for t2k < t < b,

σ1(t1k+1) < σ1(t1k), σ′1(t1k) > 0, σ1(t2k+1) < σ2(t2k), σ′1(t2k) 6 0,

σ1(t1k) = σ1(t2k), lim
k→+∞

t1k = a, lim
k→+∞

t2k = b.
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Suppose

χk(x) =

{
σ1(t1k) for x < σ1(t1k)

x for x > σ1(t1k)
k = 1, 2, . . . ,

Fk(t, x, y) =

{
−

[
f(t, χk(x)) + g(t, χk(x))y

]
− for t ∈ ]a, t1k[ ∪ ]t2k, b[,

f(t, χk(x)) + g(t, χk(x))y for t ∈ ]t1k, t2k [̧,

σ̃1k(t) =





σ1(t1k) for a 6 t 6 t1k,

σ1(t) for t1k < t < t2k,

σ1(t2k) for t2k 6 t 6 b,

(3.1)

σ̃2(t) =





v1(t) for a 6 t 6 a1,

σ2(t) for a1 < t < b1,

v2(t) for b1 6 t 6 b,

and consider the boundary value problem

u′′ = Fk(t, u, u′),(3.2k)

u(a+) = σ1(t1k), u(b−) = σ1(t2k).(3.3k)

It is easy to see that Fk ∈ Carloc(]a, b[×
� 2 ;

�
), and σ̃11 and σ̃2 are respectively lower

and upper functions of equation (3.21). Therefore, by Lemma 2.3, problem (3.21),
(3.31) has at least one solution u1 satisfying

σ̃11(t) 6 u1(t) 6 σ̃2(t) for a 6 t 6 b.

Further, σ̃12 is a lower and u1 is an upper function of equation (3.22). Therefore, by

Lemma 2.3, problem (3.22), (3.32) has a solution u2 satisfying the condition

σ̃12(t) 6 u2(t) 6 u1(t) for a 6 t 6 b.

Continuing this process, we obtain a sequence of functions (uk)+∞k=1 satisfying equa-
tion (3.2k), conditions (3.3k), and

(3.4) σ̃1k+1(t) 6 uk+1(t) 6 uk(t) for a 6 t 6 b, k = 1, 2, . . . .

Applying (3.1), (3.4) and Lemma 2.2 (in the case, r0 = σ∗, α = a0, β = b0, η =
min{σ̃1(a1), σ̃1(b1)}, h1(t) = pη(t), h2(t) = qη(t)+q∗(t), where q∗(t) = max{|g(t, x)| :
ε0 6 x 6 σ∗} and ε0 = min{σ1(t) : a0 6 t 6 b0}), we find that sequences (uk)+∞k=1
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and (u′k)+∞k=1 are uniformly bounded and equicontinuous in ]a, b[ (i.e., on each segment
contained in ]a, b[). Therefore without loss of generality we can assume that

lim
k→+∞

uk(t) = u0(t), lim
k→+∞

u′k(t) = u′0(t)

uniformly in ]a, b[.
Clearly, u0 is a solution of equation (1.1), and

0 < σ1(t) 6 u0(t) 6 uk(t) for a < t < b, k = 1, 2, . . . .

This with regard to (3.3k) implies

0 6 lim
k→a+

inf u0(t) 6 lim
k→a+

supu0(t) 6 σ1(t1k), k = 1, 2, . . . ,

0 6 lim
k→b−

inf u0(t) 6 lim
k→b−

supu0(t) 6 σ1(t2k), k = 1, 2, . . . .

Consequently, u0(a+) = 0 and u0(b−) = 0. �
���������

of Corollary 1.1. First we prove the sufficiency. By Theorem 1.1, it
suffices to show that there exist lower and upper functions σ1 and σ2 of equation (1.1)

satisfying conditions (1.4).
Choose δ ∈ ]0, r[ so small that either of the equations

u′′ =
1
δ
f(t, r)u+ q∗(t)u′(3.5)

and

u′′ =
1
δ
f(t, r)u− q∗(t)u′(3.6)

is oscillatory in the intervals
[
a, a+b

2

]
and

[
a+b
2 , b

]
, respectively. For this, by

Lemma 2.4, it is sufficient to assume

δ <
8

(b− a)3
exp

[
−8

∫ b

a

q∗(s) ds
]

×min
{∫ a+b

2

a

(s− a)2
(a+ b

2
− s

)2

|f(s, r)| ds,
∫ b

a+b
2

(
s− a+ b

2

)2

(b− s)2|f(s, r)| ds
}
.

Denote by u1 and u2 the solutions of equations (3.5) and (3.6), respectively, satisfying

the initial conditions

u1(a+) = 0, u′1(a+) = 1,

u2(b−) = 0, u′2(b−) = − 1.
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(The condition
∫ b

a (s− a)(b− s)|f(s, r)| ds < +∞ guarantees the existence of u1 and
u2—cf., for example, [16], [17].) Then there exist t1 ∈ ]a, a+b

2 [ and t2 ∈ ]a+b
2 , b[ such

that

u′1(t) > 0 for a < t < t1, u′1(t1) = 0,

u′2(t) < 0 for t2 < t < b, u′2(t2) = 0.

Let

σ1(t) =





δ

u1(t1)
u1(t) for a 6 t 6 t1

δ for t1 < t < t2
δ

u2(t2)
u2(t) for t2 6 t 6 b

.

As is easily seen, σ1 ∈ AC ′loc(]a, b[;
�

+ ), σ1(t) 6 δ < r for a 6 t 6 b, and σ1 is a

lower function of equation (1.1).

Choose µ ∈ ]0, r[ so small that the equations

v′′ = − µ
[
f
(
t,

1
r

)]
−
v − q∗(t)v′

and

v′′ = − µ
[
f
(
t,

1
r

)]
−
v − q∗(t)v′

have respectively solutions v1 and v2 satisfying the conditions

v′1(t) > 0 for a < t 6 a+ b

2
, v1(a+) = 1,

v′2(t) < 0 for
a+ b

2
6 t < b, v2(b−) = 1.

For this, by Lemma 2.5, it is sufficient to assume that

µ <
b− 1

2 exp
[
3

∫ b

a
q∗(s) ds

]

×min
{(

1 +
∫ a+b

2

a

(s− a)
[
f
(
s,

1
r

)]

−
ds

)−1

,

(
1 +

∫ b

a+b
2

(b− s)
[
f
(
s,

1
r

)]

−
ds

)−1}
.

Let

σ2(t) =

{
λ1v1(t) for a 6 t < a+b

2 ,

λ2v2(t) for a+b
2 6 t < b,
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where

λi =
1

vi

(
a+b
2

)
(
v1

(a+ b

2

)
+ v2

(a+ b

2

))(
r +

1
µ

)
, i = 1, 2.

Clearly, σ2 is continuous, σ1 ∈ AC ′loc

(
]a, b[\

{
a+b
2

}
;
�

+

)
,

rσ2(t) > µσ2(t) > 1, σ2(t) > r for a 6 t 6 b, σ′2
(a+ b

2
−

)
> σ′2

(a+ b

2
+

)
,

and σ2 is an upper function of equation (1.1). Consequently, problem (1.1), (1.2)
has at least one solution.

Now let us prove the necessity. Let u be a solution of problem (1.1), (1.2). Suppose
0 < x 6 r and choose a0 ∈ ]a, b[ such that

(3.7) u(t) < x for a 6 t 6 a0.

Since the function u is bounded in [a, a0], we have

(3.8) lim
t→a+

inf(t− a)|u′(t)| = 0.

Multiplying both sides of equation (1.1) by

q(t) =
∫ t

a

exp
[∫ s

t

g(ξ, u(ξ)) dξ
]

ds for a 6 t 6 b

and integrating from t to a0, we obtain for t ∈ ]a, b[ that

(3.9) u′(t)q(t) = u′(a0)q(a0) + u(a0)− u(t)−
∫ a0

a

q(s)f(s, u(s)) ds.

Owing to (1.10), we can easily see that

1
c
(t− a) 6 q(t) 6 c(t− a) for a < t < b,

where c = exp
[∫ b

a q
∗(s) ds

]
. Moreover, taking into account condition (3.7) and the

fact that the function f is monotone, from (3.9) we easily find
∫ a0

t

(s− a)|f(s, x)| ds 6 c
(
u(t)− u(a0)− u′(a0)q(a0)

)

+ (t− a)|u′(t)| for a < t < a0.

This, due to (1.2) and (3.8), implies

(3.10)
∫ a0

a

(s− a)|f(s, x)| ds < +∞.

Analogously we can show that
∫ b

b0
(b − s)|f(s, x)| ds < +∞ for some b0 ∈ ]a, b[.

Consequently, conditions (1.11) are satisfied. �
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���������
of Corollary 1.2. First we prove the sufficiency. To this end, by Theo-

rem 1.1 it suffices to show that there exist lower and upper functions σ1 and σ2 of
equation (1.1) satisfying conditions (1.4). According to Corollary 1.1, the equation

u′′ = f(t, u)

has solutions u1 and u2 satisfying the conditions

u1(t) > 0 for a < t < c, u1(a+) = 0, u1(c−) = 0,

u2(t) > 0 for c < t < b, u2(c+) = 0, u2(b−) = 0.

It is evident that there exist t1 ∈ ]a, c[ and t2 ∈ ]c, b[ such that

u′1(t) > 0 for a < t < t1, u′1(t1) = 0,

u′2(t) < 0 for t2 < t < b, u′2(t2) = 0.

Set δ = u2(t2)/u1(t1) and

σ1(t) =





min{1, δ} · u1(t) for a 6 t < t1,

min{1, δ} · u1(t1) for t1 6 t 6 t2,

min
{

1,
1
δ

}
· u2(t) for t2 < t 6 b.

It is not difficult to see that σ1 is a lower function of equation (1.1).

Choose ν > 0 such that

ν

∫ c

a

f(s, r)q1(s) ds =
∫ b

c

f(s, r)q2(s) ds,

where

q1(t) =
∫ t

a

exp
[∫ s

c

g(ξ, r) dξ
]

ds, q2(t) =
∫ b

t

exp
[∫ s

c

g(ξ, r) dξ
]

ds for a < t < b.

Suppose

h(t) =





max{1, ν} · f(t, r) for a < t < c

max
{

1,
1
ν

}
· f(t, r) for c < t < b

and consider the equation

u′′ = h(t) + g(t, r)u′.
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We can readily see that the above equation has a solution σ2 satisfying the condi-

tions

σ2(t) > 1 + max{σ1(t) : a 6 t 6 b}, σ′2(t) sgn(c− t) > 0 for a < t < b.

Taking now into account the fact that the functions f and g sgn(c−t) are monotone,
we conclude that σ2 is an upper function of equation (1.1) and conditions (1.4) hold.

Hence problem (1.1), (1.2) has at least one solution.
Let us now prove the necessity. Let u be a solution of problem (1.1), (1.2). Clearly,

(3.8) holds. Suppose x ∈ ]0, r] and choose a0 ∈ ]a, c[ such that

(3.11) u(t) < x, u′(t) > 0 for a < t < a0.

Multiplying both sides of equation (1.1) by t−a and integrating from t to a0, we get

(t− a)u′(t)− (a0 − a)u′(a0) + u(a0)− u(t)

= −
∫ a0

t

(s− a)f(s, u(s)) ds+
∫ a0

t

(s− a)g(s, u(s))u′(s) ds for a < t < a0.

If we now take into consideration the fact that the functions f and g are monotone,

then due to conditions (3.11) from the last equality we obtain

∫ a0

t

(s−a)|f(s, x)| ds 6 (t−a)u′(t)− (a0−a)u′(a0)+u(a0)−u(t) for a < t < a0,

whence according to (1.2) and (3.8) we conclude that (3.10) is satisfied. Analogously
we can see that

∫ b

b0
(s − a)|f(s, x)| ds < +∞ for some b0 ∈ ]c, b[. Consequently,

(1.11) is valid. �
���������

of Corollary 1.3. Denote by v a solution of the problem

(3.12) v′′ =
p(t)

(t− a)2(b− t)2
v − λq(t); v(a+) = 0, v(b−) = 0,

where

(3.13) λ =
[∫ b

a

(s− a)(b− s)q(s) ds
]− 1

2

exp
[ −1
b− a

∫ b

a

p(s) ds
(s− a)(b− s)

]√
b− a.

By Green’s formula (cf., for example, [16], [17]),

v(t) = λ

∫ b

a

G0(t, τ)q(τ) dτ for a 6 t 6 b,
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where G0 is Green’s function of the problem

v′′ =
p(t)

(t− a)2(b− t)2
v; v(a+) = 0, v(b−) = 0.

Applying Lemma 2.6, we can easily find

v(t) =
λ%2

0

b− a

∫ b

a

(s− a)(b− s)q(s) ds for a 6 t 6 b,(3.14)

v(t) > λ%−1
0

b− a

[
(b− t)

∫ t

a

(s− a)q(s) ds(3.15)

+ (t− a)
∫ b

t

(b− s)q(s) ds
]
for a 6 t 6 b,

where %0 = exp
[
(b− a)−1

∫ b

a
[(s− a)(b− s)]−1p(s) ds

]
.

By (1.15) and (3.13), from (3.14) and (3.15) we obtain

(t− a)(b− t) 6 v(t) 6 1
λ
for a 6 t 6 b.

Owing to this, (3.12) results in

v′′(t) > p(t)− q(t)
v(t)

for a < t < b.

Hence v is a lower function of equation (1.14).

Let w be a solution of the problem

w′′ = −q(t)
w

; w(a+) = 1 + max{v(t) : a 6 t 6 b} = w(b−).

Then it is clear that w is an upper function of equation (1.14). Hence, by Theo-
rem 1.1, problem (1.14), (1.2) has at least one solution. �

Theorem 1.2 is proved similarly to Theorem 1.1.
���������

of Corollary 1.4. Suppose δ = 1
4 (b−a)2 and k = 1+ n

µ , and choose ε > 0
such that

εδk < 1, εδk−1 <
1
2k
, εµ(r + δn)δµ < p0.

Then it can be readily verified that σ1(t) = ε[(t− a)(b− t)]k for a 6 t 6 b is a lower
function of equation (1.17), and σ1(t) < 1 for a 6 t 6 b.
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Assume now that σ2 is a solution of the problem

u′′ = −p(t)
uµ

; u(a+) = 1, u(b−) = 1.

Evidently, σ2(t) > 1 for a 6 t 6 b.

Thus σ1 and σ2 are respectively lower and upper functions of equation (1.17)
satisfying conditions (1.4). Hence by Theorem 1.2, problem (1.17), (1.2) is solvable.

The uniqueness follows from the fact that the right-hand side of equation (1.17) is a
nondecreasing function. �
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