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Abstract. Necessary and sufficient conditions are obtained for every solution of

∆(yn + pnyn−m)± qnG(yn−k) = fn

to oscillate or tend to zero as n →∞, where pn, qn and fn are sequences of real numbers
such that qn > 0. Different ranges for pn are considered.
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1. Introduction

In this paper we study the oscillatory and asymptotic behaviour of solutions of

a class of forced nonlinear neutral difference equations of first order with variable
coefficients of the form

(1) ∆(yn + pnyn−m) + qnG(yn−k) = fn,

where ∆ is the forward difference operator defined by ∆yn = yn+1 − yn, pn, qn and

fn (n = 0, 1, 2, . . .) are sequences of real numbers such that qn > 0, G ∈ C( � , � )
satisfies xG(x) > 0 for x 6= 0 and m > 0, k > 0. We assume

(H1) G(x) is nondecreasing and
∣∣∣∣
∞∑

n=0

fn

∣∣∣∣ < ∞.

We discuss the problem in various ranges of pn, viz.
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(i) −1 < b1 6 pn 6 0,
(ii) 0 6 pn 6 b2 < 1,
(iii) 1 < b3 6 pn 6 b4 < ∞ and
(iv) −∞ < b5 6 pn 6 b6 < −1,
where bi, 1 6 i 6 6, is a constant. We have obtained conditions which are necessary
and sufficient for every solution of (1) to be oscillatory or tend to zero as n → ∞.
Equation (1) is studied in Section 2. In section 3, the same problem is considered
for

(2) ∆(yn + pnyn−m)− qnG(yn−k) = fn.

By a solution of (1) (or (2)) on [0,∞] we mean a sequence {yn} of real numbers
which is defined for n > −r and which satisfies (1) (or (2)) for n = 0, 1, 2, . . ., where
r = max{k, m}. If

(3) yn = An for n = −r, . . . , 0

are given, then (1) (or (2)) has a unique solution satisfying the initial conditions (3).

A solution {yn} of (1) (or (2)) is said to be oscillatory if for every N > 0 there exists
an n > N such that ynyn+1 6 0; otherwise, it is called nonoscillatory.
In recent years, several papers on oscillation of solutions of neutral delay difference

equations have appeared (see [1]–[3], [5]–[7], [9], [10]). In [1], Cheng and Lin have

provided a complete characterization of oscillation of solutions of

(4) ∆(yn + pyn−m) + qyn−k = 0, n = 0, 1, 2, . . .

where p and q are real numbers, m > 0 and k > 0 are integers. Their study depends
on the theory of envelopes and on the characteristic equation of (4). However, the

method depending on the characteristic equation does not work for equations with
variable coefficients. In [5], Lalli et al have considered oscillation of

∆(yn + pyn−m) + qnyn−k = 0,

where qn > 0, and some of their results generalize the results in [2]. They have also
considered the forced equation of the form

∆(yn + pnyn−m) + qnyn−k = fn.

However, there are examples to which their results cannot be applied but where
our results hold. The method developed in this work is different from those in [3],
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[5], [6]. Our work heavily depends on a lemma which may be regarded as the discrete

analogue of Lemma 1.5.2 in [4]. It seems that not much work has been done on
equations of the form (1). In [9], Thandapani et al have considered m-th order
nonlinear equations of neutral type. However, equation (1) or (2) does not follow

from those equations for m = 1 due to their assumptions on the nonlinear term
F (n, u). Our assumptions cannot always be compared with those in [3], [5], [6]
because the approaches are different. However, some of our results extend the results
in [3], [5], [6]. In an earlier work [7], we have studied (1) with pn = p. Equations (1)

and (2) may be regarded as a discrete analogoue of

(y(t) + p(t)y(t− τ))′ ± q(t)G(y(t − δ)) = f(t).

Oscillatory and asymptotic behaviour of solutions of such equations are studied
in [8] with help of Lemma 1.5.2 in [4].

2. Oscillation of solutions of equation (1)

In this section we obtain necessary and sufficient conditions for every solution

of (1) to be oscillatory or tending to zero as n → ∞. The following lemma, which
may be regarded as the discrete analogue of Lemma 1.5.2 in [4], plays a key role in

this work. For completeness, its proof is given.

Lemma 2.1. Let {fn}, {gn} and {pn} be sequences of real numbers defined for
n > n0 > 0 such that

(5) fn = gn + pngn−m, n > n0 + m,

where m > 0 is an integer. Suppose that there exist real numbers b1, b2, b3, b4 such

that pn is in one of the following ranges:

(I) −∞ < b1 6 pn 6 0,
(II) 0 6 pn 6 b2 < 1 or
(III) 1 < b3 6 pn 6 b4 < ∞.

If gn > 0 for n > n0, lim inf
n→∞

gn = 0 and lim
n→∞

fn = L exists, then L = 0.
���������

. We may write (5) as

(6) fn+m − fn = gn+m + (pn+m − 1)gn − pngn−m, n > n0 + m.

Since lim inf
n→∞

gn = 0, there exists a subsequence {gnk
} of {gn} such that lim

k→∞
gnk

= 0.

Suppose that (I) holds. As the sequence {pnk+m − 1} is bounded, we have
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lim
k→∞

(pnk+m − 1)gnk
= 0 and hence (6) yields that

lim
k→∞

[gnk+m − pnk
gnk−m] = 0.

Since gnk+m > 0 for large k, we have lim
k→∞

pnk
gnk−m = 0. From (5) it follows that

L = lim
k→∞

fnk
= lim

k→∞
[gnk

+ pnk
gnk−m] = 0.

Next suppose that (II) holds. Replacing n by nk −m in (6) and then taking limit as
k →∞, we obtain

lim
k→∞

[(1− pnk
)gnk−m + pnk−mgnk−2m] = 0.

Since 1− b2 > 0, we have

0 6 (1− b2) lim inf
k→∞

gnk−m 6 lim inf
k→∞

[(1− pnk
)gnk−m + pnk−mgnk−2m] = 0

and

0 6 (1− b2) lim sup
k→∞

gnk−m 6 lim sup
k→∞

[(1− pnk
)gnk−m + pnk−mgnk−2m] = 0.

Hence lim
k→∞

gnk−m = 0. From (5) we get

L = lim
k→∞

fnk
= lim

k→∞
[gnk

+ pnk
gnk−m] = 0.

Finally, let (III) hold. Putting nk + m in place of n in (6) and letting k → ∞, one
obtains

lim
k→∞

[gnk+2m + (pnk+2m − 1)gnk+m − pnk+mgnk
] = 0.

As the sequence {pnk+m} is bounded, we have

lim
k→∞

[gnk+2m + (pnk+2m − 1)gnk+m] = 0.

Since gnk+2m > 0 for large k and {pnk+2m − 1} is a positive bounded sequence, we
conclude that lim

k→∞
gnk+m = 0. Thus from (5) we obtain

L = lim
k→∞

fnk+m = lim
k→∞

[gnk+m + pnk+mgnk
] = 0.

Hence the lemma is proved. �
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Corollary 2.2. Suppose that the conditions of Lemma 2.1 hold. If gn < 0 for
n > n0, lim sup

n→∞
gn = 0 and lim

n→∞
fn = L exists, then L = 0.

���������
. Setting hn = −gn for n > n0, we get −fn = hn + pnhn−m, hn > 0 for

n > n0 and lim inf
n→∞

hn = 0. The conclusion follows from Lemma 2.1. �

Theorem 2.3. Let −1 < b1 6 pn 6 0 and let (H1) hold. Every solution of

equation (1) oscillates or tends to zero as n →∞ if and only if

(H2)
∞∑

n=0

qn = ∞.

���������
. Suppose the (H2) holds. Let {yn} be a solution of (1) on [0,∞). If {yn}

is oscillatory, then there is nothing to prove. Suppose that {yn} is nonoscillatory.
Hence there exists N1 > 0 such that yn < 0 or > 0 for n > N1. We show that

lim
n→∞

yn = 0 in either case. Let yn < 0 for n > N1. Setting

zn = yn + pnyn−m(7)

and

wn = zn −
n−1∑

i=0

fi(8)

for n > N1 + m, we obtain

(9) ∆wn = −qnG(yn−k) > 0

for n > N1 + m + k. Hence there exists N2 > N1 + m + k such that wn > 0 or < 0
for n > N2. Let wn > 0 for n > N2. We claim that {yn} is bounded. If not, then
there is a subsequence {ynj} of {yn} such that nj → ∞ and ynj → −∞ as j → ∞
and

ynj = min{yn : N2 6 n 6 nj}.

We may choose nj sufficiently large so that nj −m > N2 and hence

(10) wnj = ynj +pnj ynj−m−
nj−1∑

i=0

fi 6 (1+pnj )ynj −
nj−1∑

i=0

fi 6 (1+b1)ynj −
nj−1∑

i=0

fi.

Thus wnj < 0 for large nj , a contradiction. Thus our claim holds and hence {wn} is
bounded. Consequently, lim

n→∞
wn exists. If lim sup

n→∞
yn = α, −∞ < α < 0, then there
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exists β < 0 such that yn < β for n > N3 > N2. From (9) we get

r−1∑

n=N3+k

qnG(yn−k) = −
r−1∑

n=N3+k

∆wn = wN3+K − wr > −wr,

which implies that
∞∑

n=N3+k

qnG(yn−k) > −∞.

However,
∞∑

n=N3+k

qnG(yn−k) < G(β)
∞∑

n=N3+k

qn = −∞

by (H2), a contradiction. Hence lim sup
n→∞

yn = 0. As lim
n→∞

zn exists, Corollary 2.2

implies that lim
n→∞

zn = 0. Next suppose that wn < 0 for n > N2. Hence lim
n→∞

wn

exists. If {yn} is unbounded, then proceeding as above we obtain from (10) that
lim

j→∞
wnj = −∞, a contradiction. Thus {yn} is bounded and hence lim sup

n→∞
yn exists.

Proceeding as above we may show that lim sup
n→∞

yn = 0. Since lim
n→∞

zn exists, we have

lim
n→∞

zn = 0 by Corollary 2.2. Hence in either case wn > 0 or < 0 for n > N2, we

have lim sup
n→∞

yn = 0 and lim
n→∞

zn = 0. As zn 6 yn + b1yn−m for n > N2, we infer that

0 = lim inf
n→∞

zn 6 lim inf
n→∞

[yn + b1yn−m] 6 lim inf
n→∞

yn + lim sup
n→∞

(b1yn−m)

= lim inf
n→∞

yn + b1 lim inf
n→∞

yn−m

= (1 + b1) lim inf
n→∞

yn

implies that lim inf
n→∞

yn = 0. Hence lim
n→∞

yn = 0. Suppose that yn > 0 for n > N1.

Setting ỹn = −yn, the sequence {ỹn} is a solution of

(11) ∆(ỹn + pnỹn−m) + qnG̃(ỹn−k) = f̃n

where f̃n = −fn and G̃(y) = −G(−y). As all conditions of the theorem are satisfied
for (11), lim

n→∞
ỹn = 0 and hence lim

n→∞
yn = 0.

For the proof of the necessity part of the theorem, we assume that

∞∑

n=0

qn < ∞

and show that (1) admits a positive solution {yn} such that lim inf
n→∞

yn > 0. It is
possible to choose an integer N > 0 such that

(12)

∣∣∣∣
∞∑

n=N

fn

∣∣∣∣ <
1 + b1

10
and G(1)

∞∑

n=N

qn <
1 + b1

5
, beacuse lim

n→∞

∞∑

i=n

fi = 0.

88



Let X = `N
∞ be the Banach space of all real bounded sequences x = {xn} with the

sup norm
‖x‖ = sup{|xn| : n > N}.

Let K = {x ∈ X : xn > 0 for n > N}. For x, y ∈ X we define x 6 y if and only if

y − x ∈ K. Thus X is a partially ordered Banach space. Let

W =
{

x ∈ X :
1 + b1

10
6 xn 6 1, n > N

}
.

If x0 = {x0
n}, where x0

n = 1
10 (1+b1) for n > N , then x0 = inf W and x0 ∈ W . LetW ∗

be a nonempty subset of W. The supremum ofW ∗ is the sequence x∗ = {x∗n : n > N},
where x∗n = sup{xn : x = {xi : i > N} ∈ W ∗}. Clearly, x∗ ∈ W . For y ∈ W , we

define

(Ty)n =





(Ty)N+r, N 6 n 6 N + r,

−pnyn−m +
1 + b1

5
+

∞∑

i=n

qiG(yi−k)−
∞∑

i=n

fi, n > N + r,

where r = max{k, m}. Hence using (12) we obtain, for n > N ,

(Ty)n 6 − b1 +
2(1 + b1)

5
+

1 + b1

10
< 1

and

(Ty)n > 1 + b1

5
− 1 + b1

10
=

1 + b1

10
.

Thus T : W → W . Clearly, for x, y ∈ W , x 6 y implies that Tx 6 Ty. Hence T has

a fixed point in W by the Knaster-Tarski fixed point theorem (see Theorem 1.7.3
in [4]). If y = {yn} ∈ W is this fixed point of T , then

yn =





yN+r, N 6 n 6 N + r,

−pnyn−m +
1 + b1

5
+

∞∑

i=n

qiG(yi−k)−
∞∑

i=n

fi, n > N + r.

Hence y is a positive solution of (1) with lim inf
n→∞

yn > 1
10 (1 + b1) > 0. Thus the

theorem is proved. �

Remark. Theorem 2.3 extends Theorem 3.4 in [5] and Lemma 11.4.4 in [4].

Example. Consider

∆
(
yn +

(
e−(n+1) − 1

2

)
yn−1

)
+

1
2
e−6(3e2n + 2en)y3

n−2

= e−2(n+1) +
(
e−1 +

1
2
e
)
e−n, n > 0.
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As all conditions of Theorem 2.3 are satisfied, every nonoscillatory solution of the

equation tends to zero as n → ∞. In particular, y = {e−n} is a positive solution of
the equation with yn → 0 as n →∞.

Theorem 2.4. Let 0 6 pn 6 b2 < 1 and let (H1) hold.

(i) If (H2) holds, then every solution of (1) oscillates or tends to zero as n →∞.
(ii) Suppose that G satisfies the Lipschitz condition on intervals of the form [a, b],

0 < a < b < ∞. If every solution of equation (1) oscillates or tends to zero as
n →∞, then (H2) holds.

���������
. (i) Assume that (H2) holds. Let y = {yn} be a nonoscilatory solution

of (1) on [0,∞). Hence yn > 0 or < 0 for n > N1 > 0. We show that lim
n→∞

yn = 0

in either case. Let yn < 0 for n > N1. Setting zn and wn for n > N1 + m as in (7)

and (8) respectively, we obtain (9) for n > N1 + m + k. Then wn > 0 or < 0 for
n > N2 > N1 + k + m. Let wn > 0 for n > N2. If {yn} is unbounded, then there
exists a subsequence {ynj} of {yn} such that nj → ∞ and ynj → −∞ as j → ∞.
Chossing nj sufficiently large so that nj −m > N2, we get

wnj = ynj + pnj ynj−m −
nj−1∑

i=0

fi < ynj −
nj−1∑

i=0

fi.

Hence wnj < 0 for large nj , a contradiction. Thus {yn} is bounded. This implies that
{wn} is bounded and hence lim

n→∞
wn exists. Proceeding as in Theorem 2.3 we obtain

lim sup
n→∞

yn = 0. As lim
n→∞

zn exists, from Corollary 2.2 it follows that lim
n→∞

zn = 0.

Next let wn < 0 for for n > N2. Hence lim
n→∞

wn exists. Consequently, lim
n→∞

zn exists.

Since zn 6 yn for n > N2, the sequence {yn} is bounded. One may proceed as in
Theorem 2.3 to show that lim sup

n→∞
yn = 0 and hence lim

n→∞
zn = 0 by Corollary 2.2.

Thus in either case wn > 0 of wn < 0 we obtain lim sup
n→∞

yn = 0 and lim
n→∞

zn = 0.

Further, zn 6 yn for n > N2 implies that lim inf
n→∞

yn = 0 and hence lim
n→∞

yn = 0. If
yn > 0 for n > N1, then we may proceed as above to obtain lim

n→∞
yn = 0. Thus the

proof of part (i) is complete.

(ii) We assume that
∞∑

n=0

qn < ∞.

We may choose N > 0 sufficiently large such that

∣∣∣∣
∞∑

n=N

fn

∣∣∣∣ <
1− b2

10
and L

∞∑

n=N

qn <
1− b2

5
,
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where L = max{L1, G(1)} and L1 is the Lipschitz constant of G on [ 1
10 (1 − b2), 1].

Let X = `N
∞ and

S =
{

x ∈ X :
1− b2

10
6 xn 6 1, n > N

}
.

Since S is a closed subset of X , we infer that S is a complete metric space, where
the metric is induced by the norm on X . For y ∈ S, define

(Ty)n =





(Ty)N+r, N 6 n 6 N + r,

−pnyn−m +
1 + 4b2

5
+

∞∑

i=n

qiG(yi−k)−
∞∑

i=n

fi, n > N + r.

Clearly, for n > N ,

(Ty)n <
1 + 4b2

5
+ L

∞∑

i=N

qi +
1− b2

10
<

1 + 4b2

5
+

1− b2

5
+

1− b2

10
< 1

and

(Ty)n > − b2 +
1 + 4b2

5
− 1− b2

10
=

1− b2

10

imply that T : S → S. Further, for u, v ∈ S and n > N + r,

|(Tu)n − (Tv)n| 6 b2‖u− v‖+
1− b2

5
‖u− v‖ = µ‖u− v‖

implies that

‖Tu− Tv‖ 6 µ‖u− v‖,

where 0 < µ = b2 + 1
5 (1− b2) = 1

5 (1+4b2) < 1. Thus T is a contraction and hence it
has a unique fixed point y = {yn} in S. Clearly, y is a positive solution of (1) with

lim inf
n→∞

yn > 0. Thus part (ii) of the theorem is proved. �

Corollary 2.5. Let 0 6 pn 6 b2 < 1 and let (H1) hold. Suppose that G satisfies

the Lipschitz condition on intervals of the form [a, b], 0 < a < b < ∞. Then every
solution of Eq. (1) oscillates or tends to zero as n →∞ if and only if (H2) holds.

Example. Consider

∆
[
yn +

(1
2

+ e−(n+1)
)
yn−1

]
+

e−3

2
(e2n+1 + e2n + 2en)y3

n−1

= e−2(n+1) + e−(n+1), n > 1.
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From Corollary 2.5 it follows that every nonoscillatory solution of the equation tends

to zero as n →∞. In particular, {e−n} is such a solution. However, Theorem 6.1
in [5] cannot be applied to this example since

Fn =
1− e−2n

e2 − 1
+

1− e−n

e− 1
> 0

implies that F−n = 0, where Fn =
n−1∑
i=0

fi and F−n = max{−Fn, 0}. Furhter, Theo-
rem 6.2 in [5] fails to hold for this equation, because lim

n→∞
Fn exists finitely.

Theorem 2.6. (i) If 1 < b3 6 pn 6 b4 < ∞ and (H1) and (H2) hold, then every
solution of (1) oscillates or tends to zero as n →∞.
(ii) If 1 < b3 6 pn 6 b4 6 1

2 b2
3, (H1) holds, G satisfies Lipschitz condition on

intervals of the form [a, b], 0 < a < b < ∞ and every solution of (1) oscillates or
tends to zero, then (H2) holds.

���������
. The proof is similar to that of Theorem 2.4. However, in this case we

choose N sufficiently large such that
∣∣∣∣
∞∑

n=N

fn

∣∣∣∣ <
b3 − 1
8b4

and L
∞∑

n=N

qn <
b3 − 1
4b3

,

where L = max{L1, G(1)} and L1 is the Lipschitz constant of G on [ b3−1
8b3b4

, 1]. We set

S =
{
x ∈ X :

b3 − 1
8b3b4

6 xn 6 1, n > N
}

and define T : S → S by

(Ty)n =





(Ty)N+r, N 6 n 6 N + r,

− 1
pn+m

yn+m +
1

pn+m

[ ∞∑

i=n+m

qiG(yi−k)−
∞∑

i=n+m

fi

]
+

2b2
3 + b3 − 1
4b3pn+m

,

n > N + r.

Thus, 1 < b3 6 pn 6 b4 < 1
2b2

3 implies that

(Ty)n 6 b3 − 1
4b2

3

+
b3 − 1
8b4b3

+
2b2

3 + b3 − 1
4b2

3

6 b3 − 1
4b2

3

+
b3 − 1
8b2

3

+
2b2

3 + b3 − 1
4b2

3

=
4b2

3 + 5b3 − 5
8b2

3

< 1

and

(Ty)n > − 1
b3
− b3 − 1

8b4b3
+

2b2
3 + b3 − 1
4b3b4

=
4b2

3 + b3 − 8b4 − 1
8b3b4

>
b3 − 1
8b3b4

.

Clearly, T is a contraction. �
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Theorem 2.7. Let −∞ < b5 6 pn 6 b6 < −1 and let (H1) hold.

(i) If

(H3)
∞∑

j=0

qnj = ∞ for every subsequence {nj} of {n},

then every solution of (1) oscillates or tends to zero or tends to ±∞ as n →∞.
(ii) Suppose that G is Lipschitzian on every interval of the form [a, b], 0 < a <

b < ∞. If every solution of (1) oscillates or tends to zero or tends to ±∞ as n →∞,
then (H2) holds.

���������
. (i) Let (H3) hold. Let {yn} be a nonoscillatory solution of (1) on [0,∞).

Hence yn > 0 or < 0 for n > N1 > 0. Let yn < 0 for n > N1. Setting zn and wn

for n > N1 + m as in (7) and (8) respectively, we get (9) for n > N1 + m + k. Thus
wn > 0 or < 0 for n > N2 > N1 + m + k. Let wn > 0 for n > N2. If λ = lim

n→∞
wn,

then 0 < λ 6 ∞. Suppose that 0 < λ < ∞. Then lim
n→∞

zn exists. We claim that {yn}
is bounded. If not, then there exists a subsequence {nj} of {n} such that nj → ∞
and ynj → −∞ as j → ∞. Hence for every M > 0 there exists N3 > N2 such that

nj > N3 implies ynj < −M . Let N4 > N3 + k. Hence

∞∑

nj=N4

qnj G(ynj−k) < G(−M)
∞∑

nj=N4

qnj = −∞

by (H3). From (9) we get

r−1∑

nj=N4

qnj G(ynj−k) = −
r−1∑

nj=N4

∆wnj = −wr + wN4 > −wr,

which implies that
∞∑

nj=N4

qnj G(ynj−k) > −λ > −∞,

a contradiction. Hence {yn} is bounded. Proceeding as in the proof of Theorem 2.3
we obtain lim sup

n→∞
yn = 0. Hence lim

n→∞
zn = 0 by Corollary 2.2. Clearly,

0 = lim sup
n→∞

zn = lim sup
n→∞

[yn + pnyn−m]

> lim sup
n→∞

[yn + b6yn−m]

> lim inf
n→∞

yn + lim sup
n→∞

(b6yn−m)

= lim inf
n→∞

yn + b6 lim inf
n→∞

yn−m = (1 + b6) lim inf
n→∞

yn
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implies that lim inf
n→∞

yn > 0 since 1 + b6 < 0. Then lim inf
n→∞

yn = 0. Consequently,
lim

n→∞
yn = 0. If λ = ∞, then lim

n→∞
zn = ∞. Since zn < pnyn−m 6 b5yn−m, we have

lim inf
n→∞

(b5yn−m) = ∞, that is, lim sup
n→∞

yn−m = −∞. Hence lim
n→∞

yn = −∞. Suppose
that wn < 0 for n > N2. Then lim

n→∞
wn exists and hence lim

n→∞
zn exists. Proceeding

as above we may show that lim
n→∞

yn = 0. If yn > 0 for n > N1, it may be shown

similarly that lim
n→∞

yn = 0 or +∞. Thus part (i) of the theorem is proved.
We claim that (H2) holds. If not, then

∞∑

n=0

qn < ∞.

Choose

M > max
{
−b5, b6 +

b6

1 + b6

}
and L =

2M − b6(M + 1)
(b6 −M)(b6 + 1)

> 0.

It is possible to find N > 0 sufficiently large such that
∣∣∣∣
∞∑

n=N

fn

∣∣∣∣ <
−b6

M − b6
and K

∞∑

n=N

qn <
−b6

M − b6
,

where K = max{K1, G(L)} and K1 is the Lipschitz constant of G on
[ −b6

M−b6
, L

]
. As

usual we take X = `N
∞. We set

S =
{
x ∈ X :

−b6

M − b6
6 xn 6 L, n > N

}

and, for y ∈ S, define

(Ty)n =





(Ty)N+r, N 6 n 6 N + r,

− 1
pn+m

yn+m − M(2− b6)
pn+m(M − b6)

+
1

pn+m

∞∑

i=n+m

qiG(yi−k)

− 1
pn+m

∞∑

i=n+m

fi, n > N + r.

Since, for n > N ,

(Ty)n > − M(2− b6)
b5(M − b6)

− 2
M − b6

> −b6

M − b6

and

(Ty)n 6 − L(M − b6) + 2M − b6(M + 1)
b6(M − b6)

= L,

we have T : S → S. It may be verified that T is a contraction. Thus the theorem is
proved. �
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Remark. Clearly, (H3) implies (H2). It will be interesting to prove Theo-

rem 2.7 (i) with (H2) in place of (H3). We may note that (H2) does not imply
(H3). Indeed, considering

∆
[
yn +

( 1
n
− 3

)
yn−1

]
+ qny3

n−1 = fn, n > 1,

where

qn = (Bn−1/n2) + n2Bn > 0,

Bn =

{
0 if n is even

1 if n is odd

and

fn =
1

(n + 2)2
− 4

(n + 1)2
+

1
(n + 1)3

− 1
n3

+
3
n2

+
Bn−1

n8
+

Bn

n4

we obtain
∞∑

n=1

qn =
∞∑

m=1

q2m +
∞∑

m=0

q2m+1 =
1
4

∞∑

m=1

1
m2

+
∞∑

m=0

(2m + 1)2 = ∞.

However,
∞∑

m=1

q2m =
1
4

∞∑

m=1

1
m2

< ∞.

Clearly,
∞∑

n=1
|fn| < ∞, −∞ < p < 1/n− 3 6 −2 < −1 for p 6 −3 and {yn} =

{
1/(n + 1)2

}
is a nonoscillatory solution of the equation with yn → 0 as n → ∞.

Thus this example strengthens our belief that Theorem 2.7 can be proved with (H2)

instead of (H3) when
∣∣∣
∞∑

n=0
fn

∣∣∣ < ∞ is replaced by the stronger condition
∞∑

n=0
|fn| < ∞.

If

(H′3) lim inf
n→∞

qn > 0,

then (H′3) ⇒ (H3) ⇒ (H2). But (H3) does not imply (H′3). Indeed, taking qn = 1/n,

we observe that lim inf
n→∞

qn = 0 and
∞∑

j=1

qnj = ∞ for every subsequence {nj} of {n}.

Theorem 2.8. Suppose that −∞ < b5 6 pn 6 b6 < −1 and (H1) holds.

(i) If (H2) holds, then every bounded solution of (1) oscillates or tends to zero as
n →∞.
(ii) Let G be Lipschitzian on every interval of the form [a, b], 0 < a < b < ∞. If

every bounded solution of (1) oscillates or tends to zero as n →∞, then (H2) holds.
���������

. The proof is similiar to that of Theorem 2.7 and hence is omitted. �
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Remark. Theorems 2.7 and 2.8 extend Theorem 4.3 in [5]. It seems that the
forcing terms change substantially the qualitative behaviour of the solutions of the
equation.

Example. Theorem 2.8 implies that every bounded solution of

∆[yn + (e−n − 3)yn−2] + e−3(3e2n+1 + e2n + en+2)y3
n−1

= (e−1 + 3e2)e−n + e−2n, n > 1,

oscillates or tends to zero as n → ∞. Clearly, {e−n} is a positive solution of the
equation which tends to zero as n →∞.
Example. As all conditions of Theorem 2.7 are satisfied, every solution of

∆[yn − (1 + e + e−2n)yn−1] + (2e−(2n−1) + e−(4n+1) + e− 1)yn−1

= e−5n + (2e2 + e)e−3n + (2e−1 − e−2 + 2e2 − e)e−n, n > 1,

oscillates or tends to zero or tends to ±∞ as n → ∞. In particular, {en + e−n} is
an unbounded positive solution of the equation which tends to +∞ as n →∞.

Theorem 2.9. Let 0 6 pn 6 b < ∞. If

(H4) lim inf
n→∞

Fn = −∞ and lim sup
n→∞

Fn = +∞,

where Fn =
n−1∑
i=0

fi, then every solution of (1) oscillates.

���������
. If possible, let {yn} be a nonoscillatory solution of (1) on [0,∞). Hence

yn > 0 or < 0 for n > N1 > 0. Setting zn as in (7) for n > N1 + m, we obtain

∆(zn − Fn) = −qnG(yn−k).

If yn > 0 for n > N1, then zn > 0 and ∆(zn − Fn) 6 0 for n > N1 + m + k. Hence

zn − Fn 6 0 or > 0 for n > N2 > N1 + m + k. However, (zn − Fn) 6 0 for n > N2

implies that 0 < zn 6 Fn and hence lim inf
n→∞

Fn > 0, a contradiction to (H4). If

(zn − Fn) > 0 for n > N2, then lim
n→∞

(zn − Fn) exists. However,

zn = (zn − Fn) + Fn

implies that lim inf
n→∞

zn 6 lim
n→∞

(zn − Fn) + lim inf
n→∞

Fn < −∞, a contradiction to the
fact that zn > 0 for n > N2. Hence yn < 0 for n > N1. Consequently, zn < 0 and
∆(zn − Fn) > 0 for n > N1 + m + k. If zn − Fn > 0 for n > N2 > N1 + m + k,
then lim sup

n→∞
Fn 6 0, a contradiction to (H4). Thus zn − Fn 6 0 for n > N2 and

lim
n→∞

(zn−Fn) exists. Writing zn = (zn−Fn)+Fn, we obtain lim sup
n→∞

zn = ∞, which
contradicts the fact that zn < 0 for n > N2. Thus the theorem is proved. �
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Example. Theorem 2.9 implies that all solutions of

∆[yn + (1 + e−n)yn−1] + (e−(2n−2) + 2e−(3n−2))y3
n−1 = (−1)n+1en+1, n > 1,

oscillate. In particular, {(−1)nen} is an oscillatory solution of the equation. Here
Fn = (e + 1)−1((−1)en+1 − e).

Remark. Theorem 2.9 extends Theorem 6.2 in [5].

3. Oscillation of solutions of equation (2)

Oscillation and asymptotic behaviour of solutions of equation (2) are studied in

this section.

Theorem 3.1. Let −1 < b1 6 pn 6 0 and let (H1) hold.

(i) If (H2) holds, then every solution of (2) oscillates or tends to zero or tends
to ±∞ as n →∞.
(ii) Suppose that G satisfies the Lipschitz condition on intervals of the form [a, b],

0 < a < b < ∞. If every solution of (2) oscillates or tends to zero or ±∞ as n →∞,
then (H2) holds.

���������
. (i) Let {yn} be a nonoscillatory solution of (2) on [0,∞). Then yn > 0

or < 0 for n > N1 > 0. Let yn < 0 for n > N1. Setting zn and wn for n > N1 + m

as in (7) and (8), respectively, we obtain

∆wn = qnG(yn−k) 6 0

for n > N1 + m + k. Hence wn > 0 or < 0 for n > N2 > N1 + m + k. If wn > 0
for n > N2, then lim

n→∞
wn exists and hence lim

n→∞
zn exists. We claim that {yn} is

bounded. Otherwise, there exists a subsequence {nj} of {n} such that nj →∞ and
ynj → −∞ as j →∞ and

ynj = min{yn : N2 6 n 6 nj}.

Hence

wnj = ynj + pnj ynj−m −
nj−1∑

i=0

fi 6 (1 + pnj )ynj −
nj−1∑

i=0

fi 6 (1 + b1)ynj −
nj−1∑

i=0

fi
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implies that wnj < 0 for large nj , a contradiction. Thus the claim holds. Proceeding

as in Theorem 2.3, one may show that lim sup
n→∞

yn = 0. Hence lim
n→∞

zn = 0 by

Corollary 2.2. Because zn 6 yn + b1yn−m, we have

0 = lim inf
n→∞

zn 6 lim inf
n→∞

(yn + b1yn−m)

6 lim inf
n→∞

yn + lim sup
n→∞

(b1yn−m)

= lim inf
n→∞

yn + b1 lim inf
n→∞

yn−m

= (1 + b1) lim inf
n→∞

yn

and hence lim inf
n→∞

yn = 0. Consequently, lim
n→∞

yn = 0. Let wn < 0 for n > N2. If

λ = lim
n→∞

wn, then −∞ 6 λ < 0. Suppose that −∞ < λ < 0. Hence lim
n→∞

zn

exists. Proceeding as above one may show that {yn} is bounded beacuse otherwise
lim

j→∞
wnj = −∞, a contradiction to the fact that −∞ < λ < 0. Consequently,

lim
n→∞

yn = 0. If λ = −∞, then lim
n→∞

zn = −∞ and hence zn > yn implies that

lim
n→∞

yn = −∞. If yn > 0 for n > N1, then proceeding as above one may show that

lim
n→∞

yn = 0 or +∞. Hence the first part of the theorem is proved.
The proof of the second part of the theorem is similar to that of Theorem 2.4 and

hence it is omitted. �

Corollary 3.2. If −1 < b1 6 pn 6 0 and (H1) and (H2) hold, then every bounded

solution of (2) oscillates or tends to zero as n →∞.

���������
. This follows from Theorem 3.1 (i). �

Remark. Corollary 3.2 extends Corollary 2.1 (v) in [6].

Theorem 3.3. (i) Let 0 6 pn 6 b2 < 1 or 1 < b3 6 pn 6 b4 < ∞ and let (H1)
hold. If (H2) holds, then every solution {yn} of (2) oscillates or tends to zero as
n →∞ or lim sup

n→∞
|yn| = ∞.

(ii) Let 0 6 pn 6 b2 < 1 and let (H1) hold. If G satisfies the Lipschitz condition

on intervals of the form [a, b], 0 < a < b < ∞, and if every solution {yn} of (2)
oscillates or tends to zero as n →∞ or lim sup

n→∞
|yn| = ∞, then (H2) holds.

���������
. The proof is similar to that of Theorem 3.1 and hence it is omitted. �
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Remark. The necessity part for the case 1 < b3 6 pn 6 b4 < ∞ is true if b4 < b2
3.

It is required to show that T : S → S, where

S = {x = {xn} ∈ `N
∞ : a 6 xn 6 b, n > N} for y ∈ S,

(Ty)n =





(Ty)N+r, N 6 n 6 N + r,

−yn+m

pn+m
+

%

pn+m
− 1

pn+m

[ ∞∑

i=n+m

qiG(yi−k) +
∞∑

i=n+m

fi

]
, n > N + r,

∣∣∣∣
∞∑

n=N

fn

∣∣∣∣ <
b3 − 1

2
, K

∞∑

n=N

qn <
1
2
(b3 − 1), K = max{K1, G(b)},

a = [2%(b2
3 − b4) + b3b4 + b4 − 2b2

3b4]/2b2
3b4 > 0,

b = (2% + b3 − 1)/2b3,

% > [2b2
3b4 − b4 + b3b4]/2(b2

3 − b4) > 0

and K1 is the Lipschitz constant of G on [a, b]. In Theorem 2.6, we have taken
1 < b3 6 pn 6 b4 6 1

2b2
3 in order to prove that T is a self-mapping on S. This cannot

be achieved if we assume b4 6 b2
3. Indeed, in Theorem 2.6 we used the fact that

4b2
3 − 8b4 > 0, that is, b4 < 1

2b2
3.

Corollary 3.4. If 0 6 pn 6 b2 < 1 or 1 < b3 6 pn 6 b4 < ∞ and if (H1) and

(H2) hold, then every bounded solution of (2) oscillates or tends to zero as n →∞.

Example. Consider

∆
[
yn +

(1
2

+ e−(n+1)
)
yn−1

]
− e−3(e2n−1 + en−2)y3

n−1

= −
(
e−2n +

1
2
e−n +

1
2
e−(n−1)

)
, n > 1.

Theorem 2.4 in [6] cannot be applied to this example, beacuse lim
n→∞

Fn exists finitely,

where

Fn = −
[e2(1− e−2n)

e2 − 1
+

e(1− e−n)
2(e− 1)

+
e2(1− e−n)

2(e− 1)

]
.

However, from Corollary 3.4 it follows that every bounded solution of the equation
oscillates or tends to zero as n → ∞. In particular, {e−n} is a positive solution of
the equation which tends to zero as n →∞.

Theorem 3.5. If −∞ < b5 6 pn 6 b6 < −1 and (H1) and (H3) hold, then every
solution of (2) oscillates or tends to zero or tends to ±∞ as n →∞.

���������
. The proof is similar to that of Theorem 2.7 and hence it is omitted. �
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Remark. The necessity part for the case −∞ < b5 6 pn 6 b6 < −1 holds
similarly.

Theorem 3.6. If −∞ < b5 6 pn 6 b6 < −1 and (H1) and (H2) hold, then every

bounded solution of (2) oscillates or tends to zero as n →∞.
���������

. The proof is similar to that of Theorem 2.8. �

Remark. Theorem 3.6 extends and improves Theorem 2.3 in [6].

Theorem 3.7. If 0 6 pn 6 b < ∞ and (H4) holds, then bounded solutions of (2)
oscillate.

���������
. If possible, let {yn} be a bounded nonoscillatory solution of (2) on

[0,∞). Hence yn > 0 or < 0 for n > N1 > 0. Setting zn as in (7) for n > N1 + m,
we obtain

(14) ∆(zn − Fn) = qnG(yn−k).

Let yn > 0 for n > N1. Hence zn > 0 and ∆(zn − Fn) > 0 for n > N1 + m + k.
Then {zn − Fn} is nondecreasing for n > N2 > N1 + m + k. If zn − Fn < 0 for
n > N2, then 0 < zn < Fn leads to a contradiction because lim inf

n→∞
Fn = −∞.

Hence there exists n∗ > N2 such that zn∗ − Fn∗ > 0. Consequently, n > n∗ implies
that zn − Fn > 0. Again this leads to a contradiction, since {zn} is bounded and
lim sup

n→∞
Fn = ∞. Hence yn < 0 for n > N1. From (14) it follows that {zn − Fn} is

nonincreasing and (7) yields zn < 0 for n > N2 > N1+m+k. Clearly, zn−Fn > 0 for
n > N2 contradicts lim sup

n→∞
Fn = +∞. Hence zn∗ −Fn∗ 6 0 for some n∗ > N2. Then

n > n∗ implies that zn − Fn 6 0. Since {zn} is bounded, we have lim inf
n→∞

Fn > −∞,
a contradiction. Hence {yn} oscillates. This completes the proof of the theorem. �

Remark. Theorem 3.7 extends Theorem 2.4 in [6].

Example. Theorem 3.7 implies that every bounded solution of the equation

∆
(
yn +

1
n

yn−2

)
−

(
3 +

1
n + 1

+
1
n

+ 2n
)
y3

n−1 = (−1)n(2n + 1), n > 1

oscillates. In particular, {(−1)n} is an oscillatory solution of the equation. Here
Fn = (−1)n−1n.
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