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Abstract. We investigate some (universal algebraic) properties of residuated lattices—
algebras which play the role of structures of truth values of various systems of fuzzy logic.
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The interest in fuzzy logic has been rapidly growing recently (see [14], also [6, 19]).

Several new algebras playing the role of the structures of truth values have been
introduced and axiomatized (i.e. a system of logical axioms complete w.r.t. semantics

defined over the class of corresponding algebras has been found). The aim of this
paper is to investigate some (universal algebraic) properties of algebraic structures

of fuzzy logic. We investigate, among others, some congruence properties which
have shown to be important in universal algebra. Whenever possible, we apply some

general condition known from universal algebra (we use Mal’cev-type conditions).
Doing so, we obtain instances of the universal algebraic conditions for the algebraic

structures of fuzzy logic in question. This approach, in a sense, makes visible the
“very reason” of why a structure obeys a property.

The most general structure considered here is that of a residuated lattice. Residu-
ated lattices were introduced in [9] (it should be, however, noted that the motivation

was by far not logical) and reinvigorated in the context of fuzzy logic in [12]. The
following definition stems from [16]:

Definition 1. A residuated lattice is an algebra L = 〈L,∧,∨,⊗,→, 0, 1〉 such

that (i) 〈L,∧,∨, 0, 1〉 is a lattice (the corresponding order will be denoted by 6) with
the least element 0 and the greatest element 1, (ii) 〈L,⊗, 1〉 is a commutative monoid

(i.e. ⊗ is commutative, associative, and x⊗1 = x holds), (iii) x⊗y 6 z iff x 6 y → z

holds (adjointness condition).
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A residuated lattice satisfies the prelinearity axiom [15, 14] iff (x → y)∨(y → x) =
1 holds. A residuated lattice is divisible [15] iff x ∧ y = x ⊗ (x → y). It can be
shown [15] that divisibility is equivalent to the following condition: for each x 6 y

there is z such that x = y⊗z. A residuated lattice satisfies the law of double negation

(and is called integral, commutative Girard -monoid [15]) iff x = (x → 0) → 0
holds. A residuated lattice has square roots if there is a unary operation

1
2 satisfying

(1) x
1
2 ⊗ x

1
2 = x, and (2) y ⊗ y 6 x implies y 6 x

1
2 . A Heyting algebra is a

residuated lattice where x ⊗ y = x ∧ y. A BL-algebra [14] is a residuated lattice

which is divisible and satisfies the prelinearity axiom. An MV-algebra [4, 6, 14, 15]
is a residuated lattice in which x ∨ y = (x → y) → y holds. Equivalently [15],

MV-algebra is a residuated lattice which is divisible and satisfies the law of double
negation. Thus, each BL-algebra satisfying the law of double negation is an MV-

algebra (which is the way MV-algebras are defined in [14]). A Π-algebra (product
algebra) [14] is a BL-algebra satisfying (z → 0) → 0 6 ((x⊗z) → (y⊗z)) → (x → y)
and x ∧ (x → 0) = 0. A G-algebra (Gödel algebra) is a BL-algebra which satisfies
x ⊗ x = x (i.e. a Heyting algebra satisfying the prelinearity axiom). A Boolean

algebra is a residuated lattice which is both a Heyting algebra and an MV-algebra
(relation to the usual axiomatization is x → y = x′ ∨ y).

Emphasizing the monoidal structure, residuated lattices are called integral, com-
mutative, residuated l-monoids [2, 15, 16]. The operations ⊗ (multiplication) and →
(residuum) model conjunction and implication of the corresponding logical calculus.
It is easy to see that w.r.t. 6, ⊗ is isotonic and → is isotonic in the second and

antitonic in the first argument. Moreover, the following are true in each residuated
lattice (see e.g. [12]):

x = 1 → x,(1)

x 6 y iff x → y = 1,(2)

x 6 (x → y) → y and x⊗ (x → y) 6 y.(3)

From the point of view of logic, the structure of residuated lattices is implied by

some natural requirements, see [12] and also [14].

Remark. There are other definitions of MV-algebras. Recall the original Chang’s

definition [4], see also [6], and the definition in terms of → and 0 only [11] (the
corresponding algebras are called Wajsberg algebras).

Remark. Important examples of residuated lattices are induced by t-norms (re-
call that a t-norm is a mapping ⊗ : [0, 1] × [0, 1] → [0, 1] which makes 〈[0, 1],⊗, 1〉
a commutative monoid, i.e. ⊗ is commutative, associative and x ⊗ 1 = x holds).
If ⊗ is a left-continuous t-norm then putting x → y =

∨{z | z ⊗ x 6 y} makes
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〈[0, 1], min, max,⊗,→, 0, 1〉 a residuated lattice (see e.g. [15]). It has been recently

proved in [7] that the class of all algebras generated in the above way by continuous
t-norms generates the variety of BL-algebras.

Logical systems corresponding to the above algebras can be found in [14, 16, 19].

Recall that a class of algebras of the same type is called a variety if it is the class
of all algebras satisfying a certain set of identities. Equivalently (Birkhoff’s result,

see e.g. [2]), a variety is a class of algebras closed under subalgebras, direct products
and homomorphic images.

Proposition 2. The class of all residuated lattices is a variety of algebras.
���������

. We give the set of defining identities for residuated lattices. Clearly,

the conditions (i) and (ii) of the definition of residuated lattices are expressible by
identities. We claim that these identities plus

(x⊗ y) → z = x → (y → z)(4)

(x ⊗ (x → y)) ∨ y = y(5)

x → (x ∨ y) = 1(6)

define residuated lattices. First, (4)–(6) hold in residuated lattices. Indeed, applying
adjointness and associativity and commutativity we get (x⊗ y) → z 6 x → (y → z)
iff x⊗ ((x⊗y) → z) 6 (y → z) iff (x⊗y)⊗ ((x⊗y) → z) 6 z which holds by (3). To
obtain the converse inequality is equally easy. Hence (4) holds. (5) and (6) follow

from (3) and (2), respectively.

To complete the proof we have to show that (i), (ii), and (4)–(6) imply the ad-
jointness condition. First, notice that (5) and (6) imply (2). Indeed, if x 6 y then

(by (6)) x → y = x → (x ∨ y) = 1. Conversely, if x → y = 1 then (by (5))
x ∨ y = (x⊗ (x → y)) ∨ y = y, i.e. x 6 y. Now, by (2) and (4) we have x⊗ y 6 z iff

(x⊗ y) → z = 1 iff x → (y → z) = 1 iff x 6 y → z. �

Remark. (1) The fact that residuated lattices form a variety of algebras was
proved by J. Pavelka in his thesis.1 It also follows from [20, II, 2.10. Remark] from

which it is clear that the structure of residuated lattices is preserved by factorization
(preservation under taking subalgebras and direct products is obvious).

(2) In a structure satisfying (i) and (ii), each of the three identities (4)–(6) is
independent of the two remaining. Indeed, take any t-norm ⊗. First, put a → b = 1
for every a, b ∈ [0, 1]. Then (5) does not hold while (4) and (6) do. Second, put

1 Thanks are due to the referee who pointed out this fact.
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a → b = 0 for every a, b ∈ [0, 1]. Then (4) and (5) hold but (6) does not. Third, let

⊗ be the  Lukasiewicz t-norm and put a → b = 1 if a 6 b and a → b = 0 otherwise.
In this case, (4) does not hold (e.g. for x = 0.7, y = 0.6, z = 0.5) while both (5) and
(6) do.

Corollary 3. (1) Each class of all residuated lattices satisfying, in addition, a

given set of conditions introduced in the paragraph following Definition 1 (prelinear-
ity, divisibility etc.) forms a variety of algebras, namely a subvariety of the variety

of all residuated lattices. (2) The class of all residuated lattices with square roots is
a variety of type 〈∧,∨,⊗,→,

1
2 , 0, 1〉.

���������
. (1) Each inequality t1 6 t2 can be equivalently expressed by an identity,

e.g. t1 ∨ t2 = t2. The first assertion then follows from the fact that each of the

additional conditions is an inequality or an equality.
(2) We have to show that the condition y⊗y 6 x implies y 6 x

1
2 can be expressed

by identities. Indeed, it is easy to verify that

((y ⊗ y) ∨ x)
1
2 ∧ y = y

is an identity equivalent to the above condition. �

Remark. Note that the fact that BL-algebras form a variety is proved in [14,
Lemma 2.3.10]. However, the proof there consists in proving that adjointness is

equivalent to a set of five identities which includes our (5) and (6) (in fact, instead
of (5), the identity ((x → y) ⊗ x) ∨ y = y is used; they are equivalent in case of

commutativity of ⊗). Moreover, one of them ((x ∧ y)⊗ z = (x ⊗ z) ∧ (x ⊗ y)) does
not hold in residuated lattices.

Residuated lattices are defined as algebras with lattice structure, monoidal struc-

ture, and an “additional” operation → bound by adjointness. The following propo-
sition shows that an alternative definition is possible in which ⊗ plays the role of the

“additional” operation.

Proposition 4. L = 〈L,∧,∨,⊗ →, 0, 1〉 is a residuated lattice iff
(i) 〈L,∧,∨, 0, 1〉 is a bounded lattice,

(ii′) 〈L,→, 1〉 satisfies

x = 1 → x(7)

x → (y → z) = y → (x → z),(8)

(iii) ⊗ and → satisfy the adjointness property.
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���������
. It is easy to see that (i), (ii′), and (iii) hold in any residuated lattice.

Conversely, it suffices to show that (i), (ii′), and (iii) imply that 〈L,⊗, 1〉 is a com-
mutative monoid. We have x⊗ 1 6 t iff x 6 1 → t iff (by (7)) x 6 t, which implies
x ⊗ 1 = x. Furthermore, x ⊗ y 6 t iff (1 → x =)x 6 y → t iff 1 6 x → (y → t)
iff (by (8)) 1 6 y → (x → t) iff . . . iff y ⊗ x 6 t, i.e. x ⊗ y = y ⊗ x. Finally,
(x⊗ y)⊗ z 6 t iff . . . iff (1 → x =)x 6 y → (z → t) iff 1 6 x → (y → (z → t)) iff (by

(8)) 1 6 z → (y → (x → t)) iff . . . iff x ⊗ (y ⊗ z) 6 t, i.e. (x⊗ y)⊗ z = x ⊗ (y ⊗ z).
Therefore 〈L,⊗, 1〉 is a commutative monoid. �

We are going to show (a little bit more than) that for every finite set of identities

of residuated lattices there is an equivalent single identity. Let ti, si, i ∈ I , be terms
of residuated lattices. We say that L satisfies the generalized identity

∧
i∈I

ti =
∧
i∈I

si

if both
∧
i∈I

ti and
∧
i∈I

si evaluate to the same element whenever they make sense

(i.e. infima of the elements to which ti’s and si’s evaluate exist).

Proposition 5. Let {pi = qi | i ∈ I} be a set of identities of residuated lattices.
Then there is a generalized identity p = q such that for any class K of residuated
lattices it holds that

K |= {pi = qi | i ∈ I} iff K |= p = q.

If I is finite then p = q can be chosen to be an identity.
���������

. Let all variables which occur in pi = qi be x1, . . . , xn, and let p′i and

q′i be the terms which result from pi and qi, respectively, by replacing xj by xij ,
j = 1, . . . , n (xij are new variables). Doing so, the sets of variables of different

identities p′i = q′i are disjoint. Put p :=
∧
i∈I

(p′i ∨ xi) and q :=
∧
i∈I

(q′i ∨ xi). Clearly,

K |= {pi = qi | i ∈ I} implies K |= p = q. Conversely, let K |= p = q. Take any

L ∈ K and take any evaluation e of variables such that e(xk) = 0 for k = i and
e(xk) = 1 for k 6= i. It is immediate that p = p′i and q = q′i hold in L, therefore

p′i = q′i and also pi = qi hold in L which completes the proof. �

Each of the defining identities of residuated lattices of Proposition 2 and Propo-
sition 4 contains at most three variables. Next we prove that residuated lattices

cannot be defined by identities with two variables.

Proposition 6. Residuated lattices cannot be defined by identities with at most
two variables.
���������

. Consider the lattice in Fig. 1. Put x ⊗ y = x ∧ y, x → y = 1 for
x 6 y, x → y = y for x > y, a → b = b, and b → a = a. Consider the operation ∨′
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which is defined the same way as ∨ except for a ∨ b = 1 and b ∨ a = 1. It is easy to
see that L = 〈{0, a, b, c, 1},∧,∨,⊗,→, 0, 1〉 is a residuated lattice (in fact, a Heyting
algebra) but L′ = 〈{0, a, b, c, 1},∧,∨′,⊗,→, 0, 1〉 is not. However, every subalgebra
of L′ generated by an (at most) two-element subset is a residuated lattice (it is a

subalgebra of L). Therefore, L′ (which is not a residuated lattice) satisfies every

identity with at most two variables which is valid in all residuated lattices. �

a

0

b

c

1

Figure 1. Residuated lattice from the proof of Proposition 6.

In the following we denote by ConA the congruence lattice of the algebra A =
〈A, F 〉. In what follows we define some congruence properties of algebras. These

properties apply to varieties in the following generic way: a variety has a property X

if each of its algebras has X .

Congruence regularity and its forms. An algebra A = 〈A, F 〉 is (congruence)

regular if for each θ, ϕ ∈ Con A and any a ∈ A we have that [a]θ = [a]ϕ implies θ = ϕ,
i.e. every congruence is fully determined by any of its classes. Regular varieties have

been characterized by Mal’cev type conditions, see [8, 13, 22]: a variety V is regular
iff there exist ternary terms t1, . . . , tn such that [t1(x, y, z) = z, . . . , tn(x, y, z) =
z iff x = y] holds in V . It is often the case that an algebra satisfies only some
weaker form of regularity. Suppose c is a constant from the type of algebras or

c is equationally definable within the class of algebras under consideration. An
algebra A is (congruence) c-regular if each θ ∈ Con A is determined by the class

containing c, i.e. if [c]θ = [c]ϕ implies θ = ϕ for every θ, ϕ ∈ Con A. It has been proved
in [10] that a variety V is c-regular iff there exist binary terms r1, . . . , rn such that

[r1(x, y) = c, . . . , rn(x, y) = c iff x = y] holds in V . An algebra A is (congruence) c-

locally regular if for each θ, ϕ ∈ ConA and any a ∈ A we have that [a]θ = [a]ϕ implies

[c]θ = [c]ϕ. It has been proved in [3] that a variety V is c-locally regular iff there exist
binary terms q1, . . . , qn such that [q1(x, y) = x, . . . , qn(x, y) = x iff y = 0] holds in V .

It is clear that c-regularity and c-local regularity are complementary w.r.t. regularity
in that an algebra (with c) is regular iff it is both c-regular and c-locally regular.

The following result is well known.
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Proposition 7. The variety of all residuated lattices is 1-regular.
���������

. For the above characterization put r(x, y) = (x → y)∧(y → x). Clearly,

r(x, x) = 1. On the other hand, if r(x, y) = 1 then 1 6 x → y, 1 6 y → x i.e. x 6 y

and y 6 x, thus x = y. �

Proposition 8. The variety of all residuated lattices satisfying the law of double
negation is 0-regular.
���������

. Put r(x, y) = ((x → y) ∧ (y → x)) → 0. Then r(x, x) = 1 → 0 = 0. If

r(x, y) = 0 then (x → y) ∧ (y → x) = (((x → y) ∧ (y → x)) → 0) → 0 = r(x, y) →
0 = 0 → 0 = 1, i.e. x → y = 1 and y → x = 1, thus x 6 y and y 6 x which yields
x = y. �

However, residuated lattices are not 0-regular in general. Consider the following
(counter)examples.

Example 9. Take any chain L with |L| > 2, put ⊗ = min, x → y = 1 if x 6 y

and x → y = y otherwise. L is a G-algebra. Take any a ∈ L, 0 < a < 1, and let θa

be the equivalence having [a) = {x ∈ L | a 6 x} and {b} (for b < a) as its classes.

One easily verifies that θa ∈ ConL. We have [0]θa = [0]ω = {0} (where ω ∈ Con L is
the identity) but θa 6= ω. Thus, L is not 0-regular.

Example 10. Let L be the standard product algebra, i.e. L = [0, 1], ⊗ is the
(number-theoretic) product, a → b = 1 if a 6 b, a → b = b/a if a > b. One easily

checks that ConL contains the following three congruence relations: two trivial
congruences (the identity ω and the full congruence L × L) plus the congruence ϕ

with two classes {0} and (0, 1]. This shows that L is not 0-regular. Morevover, one
can check that there are no other congruences on L. (Indeed, if θ is a congruence on

L then [1]θ 6= {1} on account of 1-regularity.) Thus there is some a < 1 such that
a ∈ [1]θ. If a < b < 1 then also b ∈ [1]θ (the same argument as for lattices shows

this fact). Therefore, if 0 ∈ [1]θ then θ = L× L. If 0 6∈ [1]θ, take any b > 0. Clearly,
there is some n > 0 such that an < b. Compatibility of θ yields an ∈ [1]θ (〈a, 1 ∈ θ

implies 〈a2, 1〉 ∈ θ implies . . . implies 〈an, 1〉 ∈ θ), hence b ∈ [1]θ. Since b is arbitrary
we conclude [1]θ = (0, 1], i.e. θ = ϕ.)

Proposition 11. The variety of all MV-algebras is 0-locally regular.
���������

. Take n = 2, q1(x, y) = (x → y) → 0, q2(x, y) = x∨y. Clearly, q1(x, 0) =
(x → 0) → 0 = x, q2(x, 0) = x. Conversely, let q1(x, y) = x and q2(x, y) = x. The
law of double negation and q1(x, y) = x yields x → y = x → 0, q2(x, y) = x yields

y 6 x. We therefore get by divisibility y = x ∧ y = x⊗ (x → y) = x⊗ (x → 0) = 0.
�
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Proposition 12. The variety of all Heyting algebras is 0-locally regular.
���������

. Take n = 2, q1(x, y) = x ⊗ (y → 0), q2(x, y) = x ∨ y. Clearly,

q1(x, 0) = x, q2(x, 0) = x. Conversely, if q1(x, y) = x and q2(x, y) = x, then
x 6 y → 0 and y 6 x, thus y 6 y → 0. We therefore have y = y ∧ (y → 0) = 0. �

Proposition 13. The variety of all Π-algebras is 0-locally regular.
���������

. Take n = 1, q1(x, y) = (x ⊗ (y → 0)) ∨ (((y → 0) → 0) ⊗ (x → 0)).
On the one hand, q1(x, 0) = x. Conversely, suppose q1(x, y) = x in some Π-algebra
L and let us prove y = 0. Since each Π-algebra is a subdirect product of linearly

ordered Π-algebras (see Theorem 4.8 in [15], also Lemma 2.3.16 and the proof of
Theorem 2.3.22 in [14]) we may safely assume that L is linearly ordered. Distinguish

two cases, x = 0 and x > 0. If x = 0 then 0 = q(0, y) = (y → 0) → 0, therefore
1 = 0 → 0 = ((y → 0) → 0) → 0 = y → 0, i.e. y = 0. If x > 0 then x = q(x, y) =
x ⊗ (y → 0) and thus y → 0 = 1 (linearly ordered Π-algebras allow cancellation by
elements > 0 [14, Lemma 4.1.7]) which yields y = 0. �

Remark. Since the variety of all G-algebras is a subvariety of the variety of all
Heyting algebras, Proposition 12 implies that G-algebras are also 0-locally regular.

However, there is a single 0-local regularity term for G-algebras. Indeed, take q1(x, y)
as in the proof of Proposition 13, follow the proof up to “If x > 0”, and continue

as follows. If x > 0 then x = q1(x, y) = x ∧ (y → 0), i.e. 0 < x 6 (y → 0) which
yields y = 0. We don’t know whether there exists a single term in case of Heyting

algebras (note that a Heyting algebra is a subdirect product of linearly ordered
Heyting algebras iff it is a G-algebra).

From Proposition 8 and Proposition 11 we get

Proposition 14. The variety of all MV-algebras is congruence regular.

Remark. (1) A moment’s reflection shows that if r1(x, y) is a term characterizing

0-regularity and q1(x, y), q2(x, y) are terms characterizing 0-local regularity then
t1(x, y, z) = q1(z, r1(x, y)) and t2(x, y, z) = q2(z, r1(x, y)) are terms characterizing

regularity. Therefore, from the proofs of Proposition 8 and Proposition 11 we get
that t1(x, y, z) = z ⊗ ((x → y) ∧ (y → x)) (since z ⊗ ((((x → y) ∧ (y → x)) →
0) → 0) = z ⊗ ((x → y) ∧ (y → x))) and t2(x, y, z) = z ∨ (((x → y) ∧ (y → x)) → 0)
are terms characterizing regularity of MV-algebras. Using Chang’s axiomatization of

MV-algebras [4] and Chang’s subdirect representation theorem [5, Lemma 3], another
two-element set of regularity terms for MV-algebras was obtained in [1]. The result

in [1] says even more: there is no single regularity term t1(x, y, z) for MV-algebras,
i.e. one cannot take n = 1 in the characterization of regularity. From this result it
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follows directly that there is no single term q1(x, y) characterizing 0-local regularity

of MV-algebras. It might be a bit surprising that a single term for 0-local regularity
exists in case of both Π-algebras and G-algebras (see the proof of Proposition 13 and
the preceding remark).

(2) It follows that for the three most important cases of BL-algebras—MV-

algebras, G-algebras, and Π-algebras—we have the following: MV-algebras are
regular; both G-algebras and Π-algebras are 1-regular but not 1-locally regular (oth-

erwise they would be regular, contrary to Example 9 and Example 10), and 0-locally
regular but not 0-regular.

Permutability and its forms. An algebra A = 〈A, F 〉 is (congruence) per-

mutable if for every θ, ϕ ∈ ConA, θ ◦ϕ = ϕ◦θ. It was proved in [18] that a variety V
is permutable iff there is a term p(x, y, z) such that x = p(x, z, z) and p(x, x, z) = z

hold in V .

Proposition 15. The variety of all residuated lattices is permutable.
���������

. Consider the term

p(x, y, z) = x⊗ ((y → z) ∧ (z → y)) ∨ z ⊗ ((x → y) ∧ (y → x)).

We have p(x, z, z) = x ∨ z ⊗ ((x → z) ∧ (z → x)). Since z ⊗ ((x → z) ∧ (z → x)) 6
z⊗ (z → x) 6 x we have p(x, z, z) = x. Similarly, p(x, x, z) = z. Therefore, p(x, y, z)
is a term which guarantees permutability. �

Remark. (1) If the congruence lattice is permutable, it is also Arguesian [17].

Therefore congruence lattices of residuated lattices are Arguesian (note that the
Arguesian identity is the lattice theoretic form of Desargues’ theorem from projective

geometry).

(2) An algebra A = 〈A, F 〉 is c-permutable if for every θ, ϕ ∈ ConA we have

[c]θ◦ϕ = [c]ϕ◦θ (note that neither θ ◦ϕ nor ϕ ◦ θ have to be congruence relations). A
variety with an equationally defined constant c is c-permutable iff there exists a bi-

nary term s such s(x, x) = c and s(x, c) = x (see e.g. [21]). Sometimes one works only
with c-permutability (let us mention Ursini’s work on c-permutable varieties (sub-

tractive varieties in Ursini’s terminology), see e.g. [21] and the references therein).
Clearly, if p(x, y, z) is a term characterizing permutability then s(x, y) = p(x, y, c) is

a term characterizing c-permutability. Therefore, from Proposition 15 it follows by
an easy computation that s(x, y) = x → y is a term charaterizing 1-permutability

and s(x, y) = x ⊗ (y → 0) is a term characterizing 0-permutability of residuated
lattices.
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Distributivity. From general lattice theory we obtain the following assertion.

Proposition 16. The congruence lattice of any residuated lattice L is a compete
Brouwerian lattice, i.e. x ∧ ∨

i

yi =
∨
i

(x ∧ yi) holds in ConL.

���������
. The congruence lattice of any lattice is a complete Brouwerian lat-

tice [2, p. 138]. The proposition thus follows from the fact that for any residuated

lattice, ConL is a complete sublattice of the congruence lattice of its lattice reduct
〈L,∧,∨〉. �

It follows directly that the congruence lattice of a residuated lattice is distributive
(and hence also modular).
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