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LASKERIAN LATTICES

����� ����� 	 ��

, Gaborone

(Received April 20, 2000)

Abstract. In this paper we investigate prime divisors, Bw-primes and zs-primes in
C-lattices. Using them some new characterizations are given for compactly packed lat-
tices. Next, we study Noetherian lattices and Laskerian lattices and characterize Laskerian
lattices in terms of compactly packed lattices.
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By a C-lattice we mean a (not necessarily modular) complete multiplicative lattice,

with a least element 0 and a compact greatest element 1 (a multiplicative identity),
which is generated under joins by a multiplicatively closed subset C of compact

elements. Throughout this paper L denotes a C-lattice and L∗ denotes the set of all
compact elements of L. For any prime element p of L, Lp denotes the localization

at F = {x ∈ C | x � p}. For details on C-lattices and their localization theory, the
reader is referred to [10]. We note that in a C-lattice a = b if and only if am = bm

for all maximal elements m of L.

In this paper we study prime divisors, Bω-primes and zs-primes. Next we charac-
terize compactly packed lattices. Also we establish some equivalent conditions for a

C-lattice in which every prime element is locally compact to be a Noetherian lattice.
Using these results we show that if L is generated byM -principal elements, then L is

a Noetherian lattice if and only if the maximal elements of L are compact and every
compact element of L has a normal primary decomposition. Finally, we introduce

Laskerian lattices and characterize them in terms of compactly packed lattices.

Recall that an element e of L is said to be principal if it satisfies the dual identi-

ties (i) a∧ be = ((a : e)∧ b)e and (ii) a∨ (b : e) = (ae∨ b) : e. Principal elements were
introduced into multiplicative lattices by R.P. Dilworth [6]. Elements satisfying (i)
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are called meet principal and elements satisfying (ii) are called join principal. Ele-

ments satisfying the weaker identity (i′) a∧ e = (a : e)e obtained from (i) by setting
b = 1 are called weak meet principal, and elements satisfying the weaker identity (ii′)
a ∨ (0 : e) = ae : e obtained from (ii) by setting b = 0 are called weak join principal.
Elements satisfying both (i′) and (ii′) are called weak principal. An element a ∈ L is
said to be strong join principal if a is compact and join principal. An element a ∈ L

is said to be a radical element if a =
√

a. Following [1], a prime element p of L is said
to satisfy the condition ⊕, if for any collection {pα} of prime elements of L, p � pα

for all α implies that there exists x ∈ L∗ such that x 6 p and x � pα for all α. The
lattice L is said to be a compactly packed lattice if every prime element satisfies the

condition ⊕. L is said to be a Noetherian lattice if L satisfies the ascending chain
condition (a.c.c.). It is well known that L is a Noetherian lattice if and only if every

element is a compact element. An r-lattice is a modular multiplicative lattice that
is compactly generated, principally generated and has a compact greatest element 1.

An r-lattice satisfying the ascending chain condition is called a Noether lattice.

For general background and terminology, the reader is referred to [2], [4], [10].

An element b ∈ L is said to be prime to a (a, b ∈ L) if bc 6 a implies c 6 a. For
any a ∈ L (a < 1), let Ha = {x ∈ L∗ | x is prime to a} and =a = {x ∈ L | a 6
x and Ha ∩ [0, x] = ∅}. Obviously Ha ∩ [0, a] = ∅ ([0, a] = {x ∈ L | 0 6 x 6 a}) and
Ha is a multiplicative closed subset of L∗. So by Zorn’s lemma, =a contains maximal
elements and every maximal element is a prime element.

Definition 1. A prime element p containing a (a, p ∈ L) is called a maximal
prime divisor if p ∈ Ta and p is a maximal element of Ta.

Definition 2. A prime element p containing a (a, p ∈ L) is called a prime divisor
if p ∈ =(ap) = {x ∈ L | ap 6 x and H(ap) ∩ [0, x] = ∅} and p is a maximal element

of =(ap).

It is well known that a prime element p containing a is a minimal prime over a

if and only if for any compact element x 6 p, there exists a compact element y � p

such that xny 6 a for a positive integer n ([1], Lemma 3.5). Using this result, it can

be easily shown that if p is a minimal prime over a, then p is a prime divisor of a

and such prime elements are called minimal prime divisors of a.

We now prove several useful lemmas.

Lemma 1. Let L satisfy the ascending chain condition (a.c.c.) for prime ele-
ments and suppose that each compact element has only finitely many minimal prime

divisors. Then L is a compactly packed lattice.
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��������
. By imitating the proof of Lemma 1 of [5], we can prove that for every

prime element p of L, there exists x ∈ L∗ such that p =
√

x. Now the result follows
from the definition of a compactly packed lattice. �

Lemma 2. If every prime element of L is locally compact, then L satisfies a.c.c.
on prime elements.

��������
. The proof of the lemma is similar to that of [5, Lemma 2]. �

An element a ∈ L is said to have a primary decomposition, if there exist primary
elements q1, q2, . . . , qn in L such that a = q1∧ . . .∧qn. If q is a primary element of L,

then
√

q = p is a prime element and it is called the prime associated with q. Note
that if q1 and q2 are primary elements associated with the same prime, then q1∧q2 is

also a primary element associated with p. An element a ∈ L is said to have a normal
primary decomposition, if a = q1 ∧ . . . ∧ qn (q′si are primary elements with distinct

radicals) and if no qi contains the meet of the other primary elements. Note that if
a has a primary decomposition, then this primary decomposition can be reduced to

a normal primary decomposition.

Lemma 3. Let a ∈ L have a normal primary decomposition a = q1 ∧ . . . ∧ qn

and put pi =
√

qi. Then a compact element x of L is non prime to a if and only if

x 6 pi for some i.

��������
. If x is non prime to a, then xy 6 a for a compact element y � a.

So y � qi for some i. Since xy 6 a 6 qi, y � qi and qi is primary, it follows that
x 6 √

qi = pi.

Conversely, assume that x 6 pi for some i. Since
n∧

i=1

qi is a normal primary

decomposition of a, it follows that a <
∧
j 6=i

qj . Choose any compact element y 6
∧
j 6=i

qj

such that y � a. As x 6 pi =
√

qi, xk 6 qi for a positive integer k and so xky 6 a.

Let i be the smallest integer such that xiy 6 a. Then x(xi−1y) 6 a and xi−1y � a

and hence x is non prime to a. �

Lemma 4. Let a ∈ L have a normal primary decomposition a = q1 ∧ . . . ∧ qm

and put pi =
√

qi. Let p be a prime element of a. Then ap =
∧{qi | pi 6 p}.

��������
. The proof of the lemma follows from [10, Properties 0.7 and 0.8]. �

Lemma 5. Let a ∈ L have a normal primary decomposition a = q1 ∧ . . . ∧ qm

and put pi =
√

qi. If p is a prime element containing a, then p = pi for some i if and

only if p is a prime divisor of a.
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��������
. Suppose p = pk for some k (1 6 k 6 m). Then by Lemma 4, ap =

∧{qi | pi 6 pk}. As
m∧

i=1

qi is a normal primary decompostion of a, it follows that
∧{qi | pi 6 pk} is a normal primary decomposition of ap. By Lemma 3, p ∈ =(ap)

and it is not hard to show that p is a maximal element of =(ap). Therefore p is a
prime divisor of a.

Conversely, assume that p is a prime divisor of a. Since a 6 p, it follows that
pi 6 p for some i. Note that ap =

∧{qi | pi 6 p} is a normal primary decomposition
of ap. By Lemma 3, each pi (pi 6 p) is an element of =(ap). Since p ∈ =(ap) for any
compact element x 6 p, x is non prime to ap and so by Lemma 3, x 6 pi (pi 6 p)
for some i. This show that p = pi for some i. �

Definition 3. A prime element p containing a is called a Bw-prime of a if p is

a minimal prime divisor of (a : x) for some x ∈ L∗.

Definition 4. A prime element p containing a (a, p ∈ L) is said to be a zs-prime

of a if p =
√

(a : x) for some x ∈ L∗.

Remark 1. Clearly if p is a zs-prime of a, then p is a Bw-prime of a and it is

not hard to show that every Bw-prime of a is a prime divisor of a. Also it should
be mentioned that if R is a commutative ring with identity and L(R) is the lattice
of all ideals of R, then a prime ideal P containing an ideal I of R is a Bw-prime
(zs-prime) of I if and only if P is a Bw-prime (zs-prime) of I in the sense of [8].

Theorem 1. Let a ∈ L have a normal primary decomposition a = q1 ∧ . . . ∧ qm

and put pi =
√

qi. Suppose p is a prime element containing a. Then the following

statements are equivalent:

(i) p = pi for some i (1 6 i 6 m).
(ii) p is a zs-prime of a.

(iii) p is a Bw-prime of a.

(iv) p is a prime divisor of a.

��������
. (i)⇒(ii). Suppose (i) holds. Since

m∧
i=1

qi is a normal primary de-

composition of a, it follows that
∧
j 6=i

√
qj � √

qi, so there exists x ∈ L∗ such that

x � √
qi and x 6

∧
j 6=i

√
qj . Therefore xk 6

∧
j 6=i

qj for a positive integer k. Conse-

quently pi =
√

(a : xk). Hence p is a zs-prime of a and (ii)⇒(iii)⇒(iv) follows from
Remark 1 while (iv)⇒(i) follows from Lemma 5. This completes the proof of the
theorem. �

Lemma 6. Let p 6 q be prime elements of L and let a be an element of L. Then

the following statements hold.
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(i) p is a minimal prime over a if and only if pq is a minimal prime over aq in Lq.

(ii) p is a Bw-prime of a in L if and only if pq is a Bw-prime of aq in Lq.

(iii) If p is the unique Bw-prime of a, then a is p-primary.

(iv) If x ∈ L∗, xp = pp and xq is a pq-primary element of Lq, then xq = pq.

(v) If {
√

(a : x) | x ∈ L∗} satisfies a.c.c., then every Bw-prime of a is also a zs-prime

of a.

(vi) Let a ∈ L. If a has only finitely many Bw-primes, then {zs-primes of a} =
{Bw-primes of a} = {prime divisors of a}.

��������
. (i) and (iv) follow from [10, Properties 0.5, 0.7 and 0.8]. The proof

of (ii) is a direct consequence of (i) and the proofs of (iii), (v) and (vi) are similar to
those of [8, Lemma 1.1, Lemma 3.2 and Proposition 3.5]. �

Theorem 2. The following statements on L are equivalent:

(i) L satisfies a.c.c. on radical elements.
(ii) For every a ∈ L, there exists x ∈ L∗ such that

√
a =

√
x.

(iii) L is a compactly packed lattice.

(iv) Every a ∈ L has only finitely many minimal prime divisors and L satisfies a.c.c.

on prime elements.

(v) Every compact element has only finitely many minimal prime divisors and L

satisfies a.c.c. on prime elements.
��������

. (i)⇒(ii). Suppose (i) holds and let a ∈ L. Then {√x | x ∈ L∗ and
x 6 a} has a maximal element, say √y. Obviously

√
a =

√
y. (ii)⇒(iii) follows

from [1, Theorems 6.1, 6.2 and 6.5]. We show that (iii)⇒(iv). Suppose (iii) holds.
Note that by [1, Theorems 6.1, 6.2 and 6.5], if p is a prime element, then p =

√
a for

some a ∈ L∗. Again by Zorn’s lemma, for every a ∈ L,
√

a =
√

x for some x ∈ L∗.

Therefore by [1, Theorem 6.1], every element has only finitely many minimal prime
divisors. Obviously, L has a.c.c on prime elements. (iv)⇒(v) is obvious. (v)⇒(i)
follows from Lemma 1 and the fact that if every prime element is the radical of
some compact element, then every radical element is the radical of some compact

element. �

Remark. If R is a commutative ring with identity, then L(R), the lattice of all
ideals of R, is a compactly packed lattice if and only if R has a Noetherian spectrum

(in the sense of [11]).

Theorem 3. Suppose every prime element of L is locally compact. If L satisfies
any one of the following conditions:

(i) every compact element of L has a normal primary decomposition;
(ii) every compact element of L has only finitely many Bw-primes;
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(iii) every compact element of L has only finitely many prime divisors;

(iv) each x ∈ L∗ has only finitely many minimal prime divisors and
√

x is compact,

then every prime element is compact.

��������
. Note that (i)⇒(ii) follows from Theorem 1. If L satisfies (iv), then by

Lemma 1, every prime element is compact. Now by Remark 1 and Lemma 6 (vi),
it suffices to show that if L satisfies the condition (iii), then every prime element is

compact. Suppose every compact element has only finitely many prime divisors. Let
p be a prime element of L. By Lemma 1 and Lemma 2, p =

√
x for some x ∈ L∗. By

hypothesis p = pp = ap for some a ∈ L∗. Note that p =
√

x ∨ a and (x ∨ a)p = pp.
Let x1 = x ∨ a and let p, p1, . . . , pn be the prime divisors of x1. Without loss
of generality assume that p < pi for i = 1, 2, . . . , n. Again by hypothesis, there

exist γi ∈ L∗ (i = 1, 2, . . . , n) such that (p)pi = (γi)pi for i = 1, 2, . . . , n. Let
x2 = x1 ∨ γ1 ∨ γ2 ∨ . . .∨ γn. Then p =

√
x2 and (x2)pi = (p)pi for i = 1, 2, . . . , n. We

show that for 1 6 i 6 n, pi is not a prime divisor of x2. Choose any yi ∈ L∗ such that
yi 6 pi and yi � p. Then each yi is prime to p and each yi is prime to (p)pi = (x2)pi .

This shows that H(x2)pi
∩ [0 pi] 6= ∅. Consequently, no pi is a prime divisor of x2.

Suppose that q (q 6= p) is any prime which contains x2 and suppose that pi � q for

any i. Since x1 6 x2 6 q, we have p < q. Again since p =
√

x1, it follows that p is
the unique minimal prime divisor of x1, so pq is the unique minimal prime divisor

of (x1)q (by Lemma 6 (i)) in Lq. So pq is a Bw-prime of (x1)q . Again if q′q is a
Bw-prime of (x1)q in Lq (q′ is a prime element and q′ 6 q), then by Lemma 6 (ii), q′

is a Bw-prime of x1 in L, so q′ is a prime divisor of x1 and hence q′ = p (since pi � q

for any i). Therefore pq is the unique Bw-prime of (x1)q , so by Lemma 6 (iii), x1q is

pq-primary and again by Lemma 6 (iv), (x2)q = pq. As p < q, q is not a prime divisor
of x2. Therefore if p, p′1, p

′
2, . . . , p

′
m are the prime divisors of x2, then for 1 6 i 6 m,

p′i > pj for some j, 1 6 j 6 n. As L satisfies a.c.c. for prime elements, a finite
number of repetitions of the above procedure yields a compact element x3 ∈ L∗ such

that (x3)p = pp and p is the unique prime divisor of x3. So by Lemma 6 (iii), x3 is
p-primary and hence x3 = p. Consequently, p is compact. Thus every prime element

is compact and the proof is complete. �

Definition 5. An element x ∈ L is said to be a modular element (or an
m-element) if for any a, b ∈ L, a > b implies a ∧ (x ∨ b) = (a ∧ x) ∨ b.

Definition 6. An element x ∈ L is said to be anM -element if xn is anm-element
for every positive integer n.

Note that L is a modular lattice if and only if every element is an m-element.

Also it is not hard to show that L is a modular lattice if and only if every compact
element is a modular element.
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A weak meet principal (meet principal, principal) element x is said to be m-weak

meet principal (m-meet principal, m-principal) if x is a modular element.

Theorem 4. Suppose L is generated by compact m-weak meet principal ele-

ments. If every prime element is compact, then every element is compact.��������
. Suppose every prime element is compact and let Ψ = {x ∈ L |

x is not compact} be a non empty set. By Zorn’s lemma, Ψ has a maximal ele-
ment, say p. By hypothesis p is not prime, so there exist compact m-weak meet

principal elements x, y ∈ L such that xy 6 p, x � p and y � p. So p < p ∨ x,
p < p : x and hence p ∨ x and p : x are compact elements. Since p ∨ x is compact, it

follows that p∨x = p1∨x for a compact element p1 6 p. Observe that p 6 p1∨x, so
p = p ∧ (x ∨ p1) = p1 ∨ (p ∧ x) (as x is an m-element) = p1 ∨ ((p : x)x) (as x is weak

meet principal) and therefore p is compact as p1, x, (p : x) ∈ L∗. This contradiction
shows that every element is compact. �

An element a ∈ L is said to be meet irreducible if a = b∧ c implies either a = b or

a = c. It is well known that if L satisfies a.c.c, then every element is a finite meet of
meet irreducible elements.

Lemma 7. Suppose L is generated by M -meet principal elements and let a ∈ L

be a meet irreducible element. If {(a : x) | x ∈ L} satisfies a.c.c., then a is primary.��������
. The proof of the lemma is similar to that of [6, Theorem 3.1]. �

Theorem 5. Suppose L is generated by compact M -meet principal elements.

If L is a Noetherian lattice, then L satisfies the conditions (i)–(iv) of Theorem 3.

Conversely, if every prime element is locally compact and L satisfies the conditions

of Theorem 3, then L is a Noetherian lattice.��������
. The proof of the theorem follows from Theorems 1, 3, 4 and Lemma 7.

�

Theorem 6. Let L be a quasi-local lattice generated by M-principal elements.

Suppose the maximal element m is compact. Then the following statements are

equivalent:

(i) L is a Noetherian lattice.

(ii) Every compact element of L has a normal primary decomposition.

(iii) For any two compact elements a and b of L, there exists an integer n such that

(a ∨ b`) ∧ (a : b`) = a for ` > n.

(iv)
∞∧

n=1
(mn ∨ a) = a for all compact elements a of L.

(v) If b = a ∨mb and a ∈ L∗, then a = b.
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��������
. (i) ⇒ (ii) follows from Lemma 7 and by imitating the proof of [3,

Theorem 4.1], it can be easily shown that (ii) ⇒ (iii) ⇒ (iv). (i) ⇒ (iv) and (i) ⇒ (v)
follow from [1, Corollary 1.4 and Theorem 1.1]. Now we prove that (iv) ⇒ (i) and
(v) ⇒ (i). Suppose L is not Noetherian. By the proof of Theorem 4, there exists a

prime element p such that p is maximal among the set of all non compact elements.
Clearly p 6= m. Choose any M -principal element x 6 m such that x � p. Then

xn � p for all n ∈ � +. Let n > 1. Then p < p ∨ xn, so p ∨ xn is compact and hence
p∨xn = p1∨xn for a compact element p1 6 p. If a 6 p is any principal element, then

a∨ p1 = (a∨ p1)∧ (p1 ∨ xn) = p1 ∨ ((a ∨ p1)∧ xn) = p1 ∨ (((a ∨ p1) : xn)xn) as xn is
an m-principal element. Since (a∨ p1) : xn)xn 6 p, xn � p and p is prime, it follows

that (a∨ p1) : xn) 6 p. So a 6 p1 ∨ xnp 6 p1 ∨mnp and therefore p = p1 ∨mnp and
this is true for all n ∈ � +. Consequently, either (iv) or (v) implies that p = p1, a

contradiction. This shows that L is a Noetherian lattice and the proof is complete.
�

Theorem 7. Suppose L is generated byM -principal elements. Then the follow-

ing statements are equivalent:

(i) L is a Noetherian lattice.

(ii) The maximal elements of L are compact and every compact element of L has a

normal primary decomposition.

��������
. (i)⇒(ii) follows from Lemma 7. Suppose (ii) holds. By hypothesis and

Lemma 4, every compact element of Lm (m is a maximal element) has a normal

primary decomposition, so by Theorem 6, L is a locally Noetherian lattice. Again by
Theorem 5, L is a Noetherian lattice. This completes the proof of the theorem. �

Corollary 1. Suppose L is an r-lattice in which every compact element is a

finite meet of primary elements. If p is a compact prime element minimal over a

principal element, then rank p 6 1.

��������
. The proof of the theorem follows from Theorem 6 and [6, Theorem 6.4].

�

Corollary 2. Suppose L is an r-lattice in which every compact element has

a normal primary decomposition. If the prime elements are comparable and the

maximal element is compact, then dim L 6 1.

Definition 7. L is said to be a Laskerian lattice if every element is a finite meet
of primary elements.
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Noether lattices [6] are Laskerian lattices. If R is a Laskerian ring (see [7], [9]),

then the lattice I(R) of all ideals of R is a Laskerian r-lattice. If L is an idempotent
(i.e., a2 = a for all a ∈ L) distributive lattice satisfying the ascending chain condition,
then L is a Laskerian lattice ([1, Theorem 6.1]).

We need the following lemma.

Lemma 8. Let L be a Laskerian lattice generated by strong join princi-

pal elements. If p is a prime element containing a, then ap =
∧{q | a 6

q and q is p-primary}.
��������

. Let b =
∧{q | a 6 q and q is p-primary}. Clearly ap 6 b. Suppose

ap < b. Then there exists a strong join principal element x 6 b such that x � ap.

As L is Laskerian, it follows that a ∨ xp has a normal primary decomposition, say
a ∨ xp = q1 ∧ . . . ∧ qn, and pi =

√
qi (q′si are pi-primary). By Lemma 4, (a ∨ xp) =∧{qi | pi 6 p}. By Theorem 1.4 of [2], xp � (a∨ xp)p, so xp � qi (pi 6 p) for some i

and hence x � qi. Again since xp 6 qi, it follows that p 6 pi, so qi is p-primary.

This contradiction shows that b = ap and the proof is complete. �

Theorem 8. Suppose L is generated by strong join principal elements. If L is

Laskerian, then L is a compactly packed lattice.

��������
. Suppose L is Laskerian. Then clearly L contains only finitely many

minimal primes. So by Theorem 2, it is enough if we show that L satisfies a.c.c. on
prime elements. Let p0 < p1 < p′1 < p2 < p′2 < p3 < p′3 < . . . be a chain of prime

elements. By Theorem 1, every element has only finitely many zs-primes. We show
that there is an element a ∈ L such that a has infinitely many zs-primes. First we

show by induction that for n ∈ � + there exist q1, . . . , qn ∈ L, an, bn and strong join
principal elements x1, x2, ..., xn in L such that

(i) qi is pi-primary for i and an = q1 ∧ . . . ∧ qn,

(ii) for 1 6 i 6 n we have xi 6
∧
j 6=i

qj and xi � qi,

(iii) x1 ∨ x2 ∨ . . . ∨ xn 6 bn, an � bn and every zs-prime of bn is contained in p′n.

Suppose n = 1. Then take q1 = p1. Since p1 < p′1 and p1 is nonminimal, it follows
that 0p′

1
< p1, so by Lemma 8, p1 � q′1 for some p′1-primary element q′1. Choose

any strong join principal element x1 6 q′1 such that x1 � q1. Let b1 = (x1)p′
1
.

Clearly q1 = p1 � b1. As L is Laskerian, b1 has a normal primary decomposition,

say b1 = h1 ∧ . . . ∧ hn, ri =
√

hi (h′si are ri-primary elements). Since b1 = (b1)p′
1
, by

Lemma 4 we have ri 6 p′1 for i = 1, 2, . . . , n. Again by Theorem 1, r′si (i = 1, 2, . . . , n)
are the only zs-primes of b1. Therefore each zs-prime of b1 is contained in p′1. Thus
the conditions (i), (ii) and (iii) are satisfied.
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Suppose we have q1, . . . , qn, an, bn and strong join principal elements satisfying

(i)–(iii). Since an � bn, there exists a strong join principal element yn+1 such that
yn+1 6 an and yn+1 � bn. Since p′n < pn+1 and bn < pn+1, by Lemma 8 there exists
a pn+1-primary element qn+1 such that bn 6 qn+1 and yn+1 � qn+1. Define an+1 =
an ∧ qn+1. We show that an+1 � bn. As L is Laskerian, bn has a normal primary
decomposition, say bn = h1 ∧ . . . ∧ hk, ri =

√
hi (1 6 i 6 k) where r′si are zs-primes

of bn. By (iii), each ri 6 p′n and therefore qn+1 � ri for i = 1, 2, . . . , k. If an+1 6 bn,
then an ∧ qn+1 6 bn 6 hi for i = 1, 2, . . . , k. Since qn+1 � ri for i = 1, 2, . . . , k and

h′si are ri-primary elements, it follows that an 6
k∧

i=1

hi = bn, a contradiction. This

shows that an+1 � bn. Note that bn = (bn)p′
n+1
since each ri 6 p′n < p′n+1 and by

Lemma 8, bn =
∧

λ∈∆

{cλ | bn 6 cλ and cλ is a p′n+1-primary element}. Since an+1 �
bn, it follows that an+1 � cλ for some λ ∈ ∆. Consequently, an+1 � (bn∨yn+1cλ)p′

n+1

as (bn ∨ yn+1cλ)p′
n+1

6 cλ. As pn+1 < p′n+1, we have cλ � pn+1, so there exists a
strong join principal element r 6 cλ such that r � pn+1. Define xn+1 = yn+1r and

bn+1 = (bn ∨ xn+1)p′
n+1
. Observe that xn+1 is a strong join principal element. Since

yn+1 � qn+1 and r � pn+1, it follows that xn+1 � qn+1. Thus (i) and (ii) are satisfied

for q1, q2, . . . , qn+1 and x1, x2, . . . , xn+1. Moreover, (iii) is satisfied for bn+1, by the
choice of xn+1 and bn+1. Therefore, we conclude by induction that there exist infinite

sequences {qi}∞i=1, {an}∞n=1, {xi}∞i=1 and {bn}∞n=1 such that the conditions (i), (ii)

and (iii) are satisfied for all n. Now let us define a =
∞∧

n=1
an. Since xn 6

∧
j 6=n

qj and

xn � qn, it follows that (a : xn) = (an : xn) = (qn : xn) is pn-primary, so pn is a
zs-prime of a and this is true for all n. Therefore a has infinitely many zs-primes.

This contradiction shows that L satisfies a.c.c. on prime elements and the proof is
complete. �

Theorem 9. Suppose L is generated byM -principal elements. Then L is Laske-

rian if and only if L satisfies the following conditions:

(i) L is a compactly packed lattice.

(ii) For each a ∈ L, there is a prime element p minimal over a and an M -principal

element x � p such that (a : x) is p-primary.
��������

. Suppose L is a Laskerian lattice. By Theorem 2 and Theorem 8, L is

a compactly packed lattice. Again by imitating the proof of Theorem 1 ((i) ⇒ (ii)),
it can be easily shown that L satisfies the condition (ii).

Conversely, assume that L satisfies (i) and (ii). Let a ∈ L and let p be a minimal
prime over a such that (a : x) is p-primary for some M -principal element x � p.

Then (a : x)∧ (a∨x) = ((a : x)∧a)∨ ((a : x)∧x) (x is a modular element) = a∨ ((a :
x) ∧ x) = a ∨ ((a : x2)x) (as x is weak meet principal). Note that (a : x2) 6 (a : x)
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since x � p and (a : x) is p-primary. Therefore (a : x2)x 6 (a : x)x 6 a and

hence a = (a : x) ∧ (a ∨ x). Put a1 = (a ∨ x) and q1 = (a : x). Then a = q1 ∧ a1

where
√

a <
√

a1 since x 6 √
a1. Similarly a1 = q2 ∧ a2 where q2 = (a1 : y) is

p1-primary, p1 is a minimal prime over a1, y � p1 is an m-principal element and√
a1 <

√
a2. By continuing this process, we get sequences of elements q1, q2, . . . , qn

and a1, a2, . . . , an such that ai−1 = qi ∧ ai, qi is primary for i = 1, 2, . . . , n (a0 = a)
and

√
a0 <

√
a1 <

√
a2 < . . . <

√
an. Since L satisfies a.c.c. on radical elements, it

follows that
√

a0 <
√

a1 <
√

a2 < . . . <
√

an is a finite chain with
√

an as a maximal

element. Then an = 1 and hence a = q1 ∧ . . . ∧ qn. This shows that L is Laskerian
and the proof is complete. �

Lemma 9. Suppose L is a compactly packed lattice. Let a ∈ L and let p be a

minimal prime over a. Then p =
√

(a : x) for a compact element x � p.
��������

. Let a ∈ L and let p be a minimal prime over a. Since L satis-
fies a.c.c. on radical elements, it follows that Γ = {

√
(a : x) | x ∈ L∗, x �

p and p is a minimal prime over
√

(a : x)} has a maximal element, say
√

(a : x).
Suppose p0 is any other minimal prime over

√
(a : x). Choose any element y 6 p0

such that y � p. Since xy � p and
√

(a : x) 6
√

(a : xy), it follows by the maximal-
ity that

√
(a : x) =

√
(a : xn) =

√
(a : xy) 6

√
(a : xym) for all m, n ∈ � +. Since

y 6 p0 and p0 is any other minimal prime over
√

(a : x), it follows that there exists
z � p0 such that ynz 6

√
(a : x), so z 6

√
(a : x) 6 p0, a contradiction. This shows

that p is the unique minimal prime over
√

(a : x) and hence p =
√

(a : x). �

Lemma 10. Suppose L is a compactly packed lattice in which every primary

element with non maximal prime radical is compact. Then for each a ∈ L, there is

a prime element p minimal over a and a compact element x � p such that (a : x) is
p-primary.
��������

. Let a ∈ L and let p ∈ L be a minimal prime over a. By Lemma 9,
p =

√
(a : x) for some x � p. If p is maximal, then (a : x) is p-primary. Suppose p

is non maximal. Note that q = ap is p-primary. Again by hypothesis, xq 6 a for a
compact element x � p. As q is p-primary, it follows that q = (a : x). �

Theorem 10. Suppose L is a compactly packed lattice generated byM -principal

elements. If every primary element with non maximal prime radical is compact, then

L is a Laskerian lattice.
��������

. Suppose every primary element with non maximal prime radical is

compact. Let a ∈ L and let p be a minimal prime over a. Then by Lemma 9 and
Lemma 10, (a : x) is p-primary for a compact element x � p. As L is generated
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by M -principal elements, it follows that there is an M -principal element x1 6 x

such that x1 � p. Since (a : x) 6 (a : x1) and (a : x) is p-primary, it follows that
(a : x) = (a : x1). Now the result follows from Theorem 9. �

Let r∗ =
∧{m ∈ L | m is a maximal element of L}. The element r∗ is called

the Jacobson radical of L. The following theorem gives some of the properties of
Laskerian lattices.

Theorem 11. Suppose L is a Laskerian lattice generated by compact join prin-

cipal elements. Let a, c ∈ L and let b =
∞∧

n=1
(an ∨ c). Then the following statements

hold.

(i) If a is compact and a 6 r∗, then b = c.

(ii) 0 =
∧{q ∈ L | q is m-primary for a maximal element m of L}.

(iii) If both a and b are compact elements of L, then b = ∨{r ∈ L | r is join principal,
a ∨ (c : r) = 1}.

(iv) If both a (a < 1) and b′ =
∞∧

n=1
an are compact elements of L, then

∞∧
n=1

an = 0 if

and only if there is no zero divisor r (6= 0) such that a ∨ r = 1.
��������

. (i) Suppose a is compact and let a 6 r∗. Let m be any maximal
element of L. Note that for any m-primary element q of L b 6 q if and only if c 6 q.

Therefore by Lemma 8, bm = cm and hence b = c.
(ii) Let x be any compact join principal element such that x 6

∧{q ∈ L |
q is m-primary for a maximal element m of L}. Then by Lemma 8, xm = 0m for
every maximal element m of L. Consequently, x = 0.
(iii) By imitating the proof of [1, Theorem 1.2], we can get the result and (iv)

directly follows from (iii). This completes the proof of the theorem. �
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