Czechoslovak Mathematical Journal

C. Jayaram

Laskerian lattices

Czechoslovak Mathematical Journal, Vol. 53 (2003), No. 2, 351-363
Persistent URL: http://dml.cz/dmlcz/127805

Terms of use:

© Institute of Mathematics AS CR, 2003

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz

LASKERIAN LATTICES

C. Jayaram, Gaborone

(Received April 20, 2000)

Abstract. In this paper we investigate prime divisors, B_{w}-primes and $z s$-primes in C-lattices. Using them some new characterizations are given for compactly packed lattices. Next, we study Noetherian lattices and Laskerian lattices and characterize Laskerian lattices in terms of compactly packed lattices.

Keywords: primary element, compactly packed lattice, Laskerian lattice
MSC 2000: 06F10, 06F05, 13A15

By a C-lattice we mean a (not necessarily modular) complete multiplicative lattice, with a least element 0 and a compact greatest element 1 (a multiplicative identity), which is generated under joins by a multiplicatively closed subset C of compact elements. Throughout this paper L denotes a C-lattice and L_{*} denotes the set of all compact elements of L. For any prime element p of L, L_{p} denotes the localization at $F=\{x \in C \mid x \not \leq p\}$. For details on C-lattices and their localization theory, the reader is referred to [10]. We note that in a C-lattice $a=b$ if and only if $a_{m}=b_{m}$ for all maximal elements m of L.

In this paper we study prime divisors, B_{ω}-primes and $z s$-primes. Next we characterize compactly packed lattices. Also we establish some equivalent conditions for a C-lattice in which every prime element is locally compact to be a Noetherian lattice. Using these results we show that if L is generated by M-principal elements, then L is a Noetherian lattice if and only if the maximal elements of L are compact and every compact element of L has a normal primary decomposition. Finally, we introduce Laskerian lattices and characterize them in terms of compactly packed lattices.

Recall that an element e of L is said to be principal if it satisfies the dual identities (i) $a \wedge b e=((a: e) \wedge b) e$ and (ii) $a \vee(b: e)=(a e \vee b): e$. Principal elements were introduced into multiplicative lattices by R. P. Dilworth [6]. Elements satisfying (i)
are called meet principal and elements satisfying (ii) are called join principal. Elements satisfying the weaker identity (i') $a \wedge e=(a: e) e$ obtained from (i) by setting $b=1$ are called weak meet principal, and elements satisfying the weaker identity (ii') $a \vee(0: e)=a e: e$ obtained from (ii) by setting $b=0$ are called weak join principal. Elements satisfying both (i^{\prime}) and (ii') are called weak principal. An element $a \in L$ is said to be strong join principal if a is compact and join principal. An element $a \in L$ is said to be a radical element if $a=\sqrt{a}$. Following [1], a prime element p of L is said to satisfy the condition \oplus, if for any collection $\left\{p_{\alpha}\right\}$ of prime elements of $L, p \not \leq p_{\alpha}$ for all α implies that there exists $x \in L_{*}$ such that $x \leqslant p$ and $x \not \leq p_{\alpha}$ for all α. The lattice L is said to be a compactly packed lattice if every prime element satisfies the condition $\oplus . L$ is said to be a Noetherian lattice if L satisfies the ascending chain condition (a.c.c.). It is well known that L is a Noetherian lattice if and only if every element is a compact element. An r-lattice is a modular multiplicative lattice that is compactly generated, principally generated and has a compact greatest element 1. An r-lattice satisfying the ascending chain condition is called a Noether lattice.

For general background and terminology, the reader is referred to [2], [4], [10].
An element $b \in L$ is said to be prime to $a(a, b \in L)$ if $b c \leqslant a$ implies $c \leqslant a$. For any $a \in L(a<1)$, let $H_{a}=\left\{x \in L_{*} \mid x\right.$ is prime to $\left.a\right\}$ and $\Im_{a}=\{x \in L \mid a \leqslant$ x and $\left.H_{a} \cap[0, x]=\emptyset\right\}$. Obviously $H_{a} \cap[0, a]=\emptyset([0, a]=\{x \in L \mid 0 \leqslant x \leqslant a\})$ and H_{a} is a multiplicative closed subset of L_{*}. So by Zorn's lemma, \Im_{a} contains maximal elements and every maximal element is a prime element.

Definition 1. A prime element p containing a $(a, p \in L)$ is called a maximal prime divisor if $p \in \mathfrak{T}_{a}$ and p is a maximal element of \mathfrak{T}_{a}.

Definition 2. A prime element p containing $a(a, p \in L)$ is called a prime divisor if $p \in \Im_{\left(a_{p}\right)}=\left\{x \in L \mid a_{p} \leqslant x\right.$ and $\left.H_{\left(a_{p}\right)} \cap[0, x]=\emptyset\right\}$ and p is a maximal element of $\Im_{\left(a_{p}\right)}$.

It is well known that a prime element p containing a is a minimal prime over a if and only if for any compact element $x \leqslant p$, there exists a compact element $y \not \leq p$ such that $x^{n} y \leqslant a$ for a positive integer n ([1], Lemma 3.5). Using this result, it can be easily shown that if p is a minimal prime over a, then p is a prime divisor of a and such prime elements are called minimal prime divisors of a.

We now prove several useful lemmas.

Lemma 1. Let L satisfy the ascending chain condition (a.c.c.) for prime elements and suppose that each compact element has only finitely many minimal prime divisors. Then L is a compactly packed lattice.

Proof. By imitating the proof of Lemma 1 of [5], we can prove that for every prime element p of L, there exists $x \in L_{*}$ such that $p=\sqrt{x}$. Now the result follows from the definition of a compactly packed lattice.

Lemma 2. If every prime element of L is locally compact, then L satisfies a.c.c. on prime elements.

Proof. The proof of the lemma is similar to that of [5, Lemma 2].
An element $a \in L$ is said to have a primary decomposition, if there exist primary elements $q_{1}, q_{2}, \ldots, q_{n}$ in L such that $a=q_{1} \wedge \ldots \wedge q_{n}$. If q is a primary element of L, then $\sqrt{q}=p$ is a prime element and it is called the prime associated with q. Note that if q_{1} and q_{2} are primary elements associated with the same prime, then $q_{1} \wedge q_{2}$ is also a primary element associated with p. An element $a \in L$ is said to have a normal primary decomposition, if $a=q_{1} \wedge \ldots \wedge q_{n}$ ($q_{i}^{\prime s}$ are primary elements with distinct radicals) and if no q_{i} contains the meet of the other primary elements. Note that if a has a primary decomposition, then this primary decomposition can be reduced to a normal primary decomposition.

Lemma 3. Let $a \in L$ have a normal primary decomposition $a=q_{1} \wedge \ldots \wedge q_{n}$ and put $p_{i}=\sqrt{q_{i}}$. Then a compact element x of L is non prime to a if and only if $x \leqslant p_{i}$ for some i.

Proof. If x is non prime to a, then $x y \leqslant a$ for a compact element $y \not \leq a$. So $y \not \leq q_{i}$ for some i. Since $x y \leqslant a \leqslant q_{i}, y \not \leq q_{i}$ and q_{i} is primary, it follows that $x \leqslant \sqrt{q_{i}}=p_{i}$.

Conversely, assume that $x \leqslant p_{i}$ for some i. Since $\bigwedge_{i=1}^{n} q_{i}$ is a normal primary decomposition of a, it follows that $a<\bigwedge_{j \neq i} q_{j}$. Choose any compact element $y \leqslant \bigwedge_{j \neq i} q_{j}$ such that $y \not \leq a$. As $x \leqslant p_{i}=\sqrt{q_{i}}, x^{k} \leqslant q_{i}$ for a positive integer k and so $x^{k} y \leqslant a$. Let i be the smallest integer such that $x^{i} y \leqslant a$. Then $x\left(x^{i-1} y\right) \leqslant a$ and $x^{i-1} y \not \leq a$ and hence x is non prime to a.

Lemma 4. Let $a \in L$ have a normal primary decomposition $a=q_{1} \wedge \ldots \wedge q_{m}$ and put $p_{i}=\sqrt{q_{i}}$. Let p be a prime element of a. Then $a_{p}=\bigwedge\left\{q_{i} \mid p_{i} \leqslant p\right\}$.

Proof. The proof of the lemma follows from [10, Properties 0.7 and 0.8$]$.

Lemma 5. Let $a \in L$ have a normal primary decomposition $a=q_{1} \wedge \ldots \wedge q_{m}$ and put $p_{i}=\sqrt{q_{i}}$. If p is a prime element containing a, then $p=p_{i}$ for some i if and only if p is a prime divisor of a.

Proof. Suppose $p=p_{k}$ for some $k(1 \leqslant k \leqslant m)$. Then by Lemma $4, a_{p}=$ $\bigwedge\left\{q_{i} \mid p_{i} \leqslant p_{k}\right\}$. As $\bigwedge_{i=1}^{m} q_{i}$ is a normal primary decompostion of a, it follows that $\bigwedge\left\{q_{i} \mid p_{i} \leqslant p_{k}\right\}$ is a normal primary decomposition of a_{p}. By Lemma $3, p \in \Im_{\left(a_{p}\right)}$ and it is not hard to show that p is a maximal element of $\Im_{\left(a_{p}\right)}$. Therefore p is a prime divisor of a.

Conversely, assume that p is a prime divisor of a. Since $a \leqslant p$, it follows that $p_{i} \leqslant p$ for some i. Note that $a_{p}=\bigwedge\left\{q_{i} \mid p_{i} \leqslant p\right\}$ is a normal primary decomposition of a_{p}. By Lemma 3, each $p_{i}\left(p_{i} \leqslant p\right)$ is an element of $\Im_{\left(a_{p}\right)}$. Since $p \in \Im_{\left(a_{p}\right)}$ for any compact element $x \leqslant p, x$ is non prime to a_{p} and so by Lemma $3, x \leqslant p_{i}\left(p_{i} \leqslant p\right)$ for some i. This show that $p=p_{i}$ for some i.

Definition 3. A prime element p containing a is called a B_{w}-prime of a if p is a minimal prime divisor of $(a: x)$ for some $x \in L_{*}$.

Definition 4. A prime element p containing $a(a, p \in L)$ is said to be a $z s$-prime of a if $p=\sqrt{(a: x)}$ for some $x \in L_{*}$.

Remark 1. Clearly if p is a $z s$-prime of a, then p is a B_{w}-prime of a and it is not hard to show that every B_{w}-prime of a is a prime divisor of a. Also it should be mentioned that if R is a commutative ring with identity and $L(R)$ is the lattice of all ideals of R, then a prime ideal P containing an ideal I of R is a B_{w}-prime ($z s$-prime) of I if and only if P is a B_{w}-prime ($z s$-prime) of I in the sense of [8].

Theorem 1. Let $a \in L$ have a normal primary decomposition $a=q_{1} \wedge \ldots \wedge q_{m}$ and put $p_{i}=\sqrt{q_{i}}$. Suppose p is a prime element containing a. Then the following statements are equivalent:
(i) $p=p_{i}$ for some $i(1 \leqslant i \leqslant m)$.
(ii) p is a $z s$-prime of a.
(iii) p is a B_{w}-prime of a.
(iv) p is a prime divisor of a.

Proof. $\quad(\mathrm{i}) \Rightarrow$ (ii). Suppose (i) holds. Since $\bigwedge_{i=1}^{m} q_{i}$ is a normal primary decomposition of a, it follows that $\bigwedge_{j \neq i} \sqrt{q_{j}} \not \leq \sqrt{q_{i}}$, so there exists $x \in L_{*}$ such that $x \not \leq \sqrt{q_{i}}$ and $x \leqslant \bigwedge_{j \neq i} \sqrt{q_{j}}$. Therefore $x^{k} \leqslant \bigwedge_{j \neq i} q_{j}$ for a positive integer k. Consequently $p_{i}=\sqrt{\left(a: x^{k}\right)}$. Hence p is a $z s$-prime of a and (ii) \Rightarrow (iii) \Rightarrow (iv) follows from Remark 1 while (iv) \Rightarrow (i) follows from Lemma 5. This completes the proof of the theorem.

Lemma 6. Let $p \leqslant q$ be prime elements of L and let a be an element of L. Then the following statements hold.
(i) p is a minimal prime over a if and only if p_{q} is a minimal prime over a_{q} in L_{q}.
(ii) p is a B_{w}-prime of a in L if and only if p_{q} is a B_{w}-prime of a_{q} in L_{q}.
(iii) If p is the unique B_{w}-prime of a, then a is p-primary.
(iv) If $x \in L_{*}, x_{p}=p_{p}$ and x_{q} is a p_{q}-primary element of L_{q}, then $x_{q}=p_{q}$.
(v) If $\left\{\sqrt{(a: x)} \mid x \in L_{*}\right\}$ satisfies a.c.c., then every B_{w}-prime of a is also a $z s$-prime of a.
(vi) Let $a \in L$. If a has only finitely many B_{w}-primes, then $\{z s$-primes of $a\}=$ $\left\{B_{w}\right.$-primes of $\left.a\right\}=\{$ prime divisors of $a\}$.

Proof. (i) and (iv) follow from [10, Properties $0.5,0.7$ and 0.8]. The proof of (ii) is a direct consequence of (i) and the proofs of (iii), (v) and (vi) are similar to those of [8, Lemma 1.1, Lemma 3.2 and Proposition 3.5].

Theorem 2. The following statements on L are equivalent:
(i) L satisfies a.c.c. on radical elements.
(ii) For every $a \in L$, there exists $x \in L_{*}$ such that $\sqrt{a}=\sqrt{x}$.
(iii) L is a compactly packed lattice.
(iv) Every $a \in L$ has only finitely many minimal prime divisors and L satisfies a.c.c. on prime elements.
(v) Every compact element has only finitely many minimal prime divisors and L satisfies a.c.c. on prime elements.

Proof. (i) \Rightarrow (ii). Suppose (i) holds and let $a \in L$. Then $\left\{\sqrt{x} \mid x \in L_{*}\right.$ and $x \leqslant a\}$ has a maximal element, say \sqrt{y}. Obviously $\sqrt{a}=\sqrt{y}$. (ii) \Rightarrow (iii) follows from [1, Theorems 6.1, 6.2 and 6.5]. We show that (iii) \Rightarrow (iv). Suppose (iii) holds. Note that by [1, Theorems 6.1, 6.2 and 6.5], if p is a prime element, then $p=\sqrt{a}$ for some $a \in L_{*}$. Again by Zorn's lemma, for every $a \in L, \sqrt{a}=\sqrt{x}$ for some $x \in L_{*}$. Therefore by [1, Theorem 6.1], every element has only finitely many minimal prime divisors. Obviously, L has a.c.c on prime elements. (iv) \Rightarrow (v) is obvious. (v) \Rightarrow (i) follows from Lemma 1 and the fact that if every prime element is the radical of some compact element, then every radical element is the radical of some compact element.

Remark. If R is a commutative ring with identity, then $L(R)$, the lattice of all ideals of R, is a compactly packed lattice if and only if R has a Noetherian spectrum (in the sense of [11]).

Theorem 3. Suppose every prime element of L is locally compact. If L satisfies any one of the following conditions:
(i) every compact element of L has a normal primary decomposition;
(ii) every compact element of L has only finitely many B_{w}-primes;
(iii) every compact element of L has only finitely many prime divisors;
(iv) each $x \in L_{*}$ has only finitely many minimal prime divisors and \sqrt{x} is compact, then every prime element is compact.

Proof. Note that (i) \Rightarrow (ii) follows from Theorem 1. If L satisfies (iv), then by Lemma 1, every prime element is compact. Now by Remark 1 and Lemma 6 (vi), it suffices to show that if L satisfies the condition (iii), then every prime element is compact. Suppose every compact element has only finitely many prime divisors. Let p be a prime element of L. By Lemma 1 and Lemma $2, p=\sqrt{x}$ for some $x \in L_{*}$. By hypothesis $p=p_{p}=a_{p}$ for some $a \in L_{*}$. Note that $p=\sqrt{x \vee a}$ and $(x \vee a)_{p}=p_{p}$. Let $x_{1}=x \vee a$ and let p, p_{1}, \ldots, p_{n} be the prime divisors of x_{1}. Without loss of generality assume that $p<p_{i}$ for $i=1,2, \ldots, n$. Again by hypothesis, there exist $\gamma_{i} \in L_{*}(i=1,2, \ldots, n)$ such that $(p)_{p_{i}}=\left(\gamma_{i}\right)_{p_{i}}$ for $i=1,2, \ldots, n$. Let $x_{2}=x_{1} \vee \gamma_{1} \vee \gamma_{2} \vee \ldots \vee \gamma_{n}$. Then $p=\sqrt{x_{2}}$ and $\left(x_{2}\right)_{p_{i}}=(p)_{p_{i}}$ for $i=1,2, \ldots, n$. We show that for $1 \leqslant i \leqslant n, p_{i}$ is not a prime divisor of x_{2}. Choose any $y_{i} \in L_{*}$ such that $y_{i} \leqslant p_{i}$ and $y_{i} \not \leq p$. Then each y_{i} is prime to p and each y_{i} is prime to $(p)_{p_{i}}=\left(x_{2}\right)_{p_{i}}$. This shows that $H_{\left(x_{2}\right)_{p_{i}}} \cap\left[0 p_{i}\right] \neq \emptyset$. Consequently, no p_{i} is a prime divisor of x_{2}. Suppose that $q(q \neq p)$ is any prime which contains x_{2} and suppose that $p_{i} \not \leq q$ for any i. Since $x_{1} \leqslant x_{2} \leqslant q$, we have $p<q$. Again since $p=\sqrt{x_{1}}$, it follows that p is the unique minimal prime divisor of x_{1}, so p_{q} is the unique minimal prime divisor of $\left(x_{1}\right)_{q}$ (by Lemma $6(\mathrm{i})$) in L_{q}. So p_{q} is a B_{w}-prime of $\left(x_{1}\right)_{q}$. Again if q_{q}^{\prime} is a B_{w}-prime of $\left(x_{1}\right)_{q}$ in $L_{q}\left(q^{\prime}\right.$ is a prime element and $\left.q^{\prime} \leqslant q\right)$, then by Lemma 6 (ii), q^{\prime} is a B_{w}-prime of x_{1} in L, so q^{\prime} is a prime divisor of x_{1} and hence $q^{\prime}=p$ (since $p_{i} \not \leq q$ for any i). Therefore p_{q} is the unique B_{w}-prime of $\left(x_{1}\right)_{q}$, so by Lemma 6 (iii), $x_{1_{q}}$ is p_{q}-primary and again by Lemma 6 (iv), $\left(x_{2}\right)_{q}=p_{q}$. As $p<q, q$ is not a prime divisor of x_{2}. Therefore if $p, p_{1}^{\prime}, p_{2}^{\prime}, \ldots, p_{m}^{\prime}$ are the prime divisors of x_{2}, then for $1 \leqslant i \leqslant m$, $p_{i}^{\prime}>p_{j}$ for some $j, 1 \leqslant j \leqslant n$. As L satisfies a.c.c. for prime elements, a finite number of repetitions of the above procedure yields a compact element $x_{3} \in L_{*}$ such that $\left(x_{3}\right)_{p}=p_{p}$ and p is the unique prime divisor of x_{3}. So by Lemma 6 (iii), x_{3} is p-primary and hence $x_{3}=p$. Consequently, p is compact. Thus every prime element is compact and the proof is complete.

Definition 5. An element $x \in L$ is said to be a modular element (or an m-element) if for any $a, b \in L, a \geqslant b$ implies $a \wedge(x \vee b)=(a \wedge x) \vee b$.

Definition 6. An element $x \in L$ is said to be an M-element if x^{n} is an m-element for every positive integer n.

Note that L is a modular lattice if and only if every element is an m-element. Also it is not hard to show that L is a modular lattice if and only if every compact element is a modular element.

A weak meet principal (meet principal, principal) element x is said to be m-weak meet principal (m-meet principal, m-principal) if x is a modular element.

Theorem 4. Suppose L is generated by compact m-weak meet principal elements. If every prime element is compact, then every element is compact.

Proof. Suppose every prime element is compact and let $\Psi=\{x \in L \mid$ x is not compact \} be a non empty set. By Zorn's lemma, Ψ has a maximal element, say p. By hypothesis p is not prime, so there exist compact m-weak meet principal elements $x, y \in L$ such that $x y \leqslant p, x \not \leq p$ and $y \not \leq p$. So $p<p \vee x$, $p<p: x$ and hence $p \vee x$ and $p: x$ are compact elements. Since $p \vee x$ is compact, it follows that $p \vee x=p_{1} \vee x$ for a compact element $p_{1} \leqslant p$. Observe that $p \leqslant p_{1} \vee x$, so $p=p \wedge\left(x \vee p_{1}\right)=p_{1} \vee(p \wedge x)$ (as x is an m-element) $=p_{1} \vee((p: x) x)$ (as x is weak meet principal) and therefore p is compact as $p_{1}, x,(p: x) \in L_{*}$. This contradiction shows that every element is compact.

An element $a \in L$ is said to be meet irreducible if $a=b \wedge c$ implies either $a=b$ or $a=c$. It is well known that if L satisfies a.c.c, then every element is a finite meet of meet irreducible elements.

Lemma 7. Suppose L is generated by M-meet principal elements and let $a \in L$ be a meet irreducible element. If $\{(a: x) \mid x \in L\}$ satisfies a.c.c., then a is primary.

Proof. The proof of the lemma is similar to that of [6, Theorem 3.1].
Theorem 5. Suppose L is generated by compact M-meet principal elements. If L is a Noetherian lattice, then L satisfies the conditions (i)-(iv) of Theorem 3. Conversely, if every prime element is locally compact and L satisfies the conditions of Theorem 3, then L is a Noetherian lattice.

Proof. The proof of the theorem follows from Theorems 1, 3, 4 and Lemma 7.

Theorem 6. Let L be a quasi-local lattice generated by M-principal elements. Suppose the maximal element m is compact. Then the following statements are equivalent:
(i) L is a Noetherian lattice.
(ii) Every compact element of L has a normal primary decomposition.
(iii) For any two compact elements a and b of L, there exists an integer n such that $\left(a \vee b^{\ell}\right) \wedge\left(a: b^{\ell}\right)=a$ for $\ell \geqslant n$.
(iv) $\bigwedge_{n=1}^{\infty}\left(m^{n} \vee a\right)=a$ for all compact elements a of L.
(v) If $b=a \vee m b$ and $a \in L_{*}$, then $a=b$.

Proof. (i) \Rightarrow (ii) follows from Lemma 7 and by imitating the proof of [3, Theorem 4.1], it can be easily shown that (ii) \Rightarrow (iii) \Rightarrow (iv). (i) \Rightarrow (iv) and (i) \Rightarrow (v) follow from [1, Corollary 1.4 and Theorem 1.1]. Now we prove that (iv) \Rightarrow (i) and (v) \Rightarrow (i). Suppose L is not Noetherian. By the proof of Theorem 4, there exists a prime element p such that p is maximal among the set of all non compact elements. Clearly $p \neq m$. Choose any M-principal element $x \leqslant m$ such that $x \not \leq p$. Then $x^{n} \not \leq p$ for all $n \in \mathbb{Z}^{+}$. Let $n \geqslant 1$. Then $p<p \vee x^{n}$, so $p \vee x^{n}$ is compact and hence $p \vee x^{n}=p_{1} \vee x^{n}$ for a compact element $p_{1} \leqslant p$. If $a \leqslant p$ is any principal element, then $a \vee p_{1}=\left(a \vee p_{1}\right) \wedge\left(p_{1} \vee x^{n}\right)=p_{1} \vee\left(\left(a \vee p_{1}\right) \wedge x^{n}\right)=p_{1} \vee\left(\left(\left(a \vee p_{1}\right): x^{n}\right) x^{n}\right)$ as x^{n} is an m-principal element. Since $\left.\left(a \vee p_{1}\right): x^{n}\right) x^{n} \leqslant p, x^{n} \not \leq p$ and p is prime, it follows that $\left.\left(a \vee p_{1}\right): x^{n}\right) \leqslant p$. So $a \leqslant p_{1} \vee x^{n} p \leqslant p_{1} \vee m^{n} p$ and therefore $p=p_{1} \vee m^{n} p$ and this is true for all $n \in \mathbb{Z}^{+}$. Consequently, either (iv) or (v) implies that $p=p_{1}$, a contradiction. This shows that L is a Noetherian lattice and the proof is complete.

Theorem 7. Suppose L is generated by M-principal elements. Then the following statements are equivalent:
(i) L is a Noetherian lattice.
(ii) The maximal elements of L are compact and every compact element of L has a normal primary decomposition.

Proof. (i) \Rightarrow (ii) follows from Lemma 7. Suppose (ii) holds. By hypothesis and Lemma 4, every compact element of L_{m} (m is a maximal element) has a normal primary decomposition, so by Theorem $6, L$ is a locally Noetherian lattice. Again by Theorem $5, L$ is a Noetherian lattice. This completes the proof of the theorem.

Corollary 1. Suppose L is an r-lattice in which every compact element is a finite meet of primary elements. If p is a compact prime element minimal over a principal element, then $\operatorname{rank} p \leqslant 1$.

Proof. The proof of the theorem follows from Theorem 6 and [6, Theorem 6.4].

Corollary 2. Suppose L is an r-lattice in which every compact element has a normal primary decomposition. If the prime elements are comparable and the maximal element is compact, then $\operatorname{dim} L \leqslant 1$.

Definition 7. L is said to be a Laskerian lattice if every element is a finite meet of primary elements.

Noether lattices [6] are Laskerian lattices. If R is a Laskerian ring (see [7], [9]), then the lattice $I(R)$ of all ideals of R is a Laskerian r-lattice. If L is an idempotent (i.e., $a^{2}=a$ for all $a \in L$) distributive lattice satisfying the ascending chain condition, then L is a Laskerian lattice ($[1$, Theorem 6.1]).

We need the following lemma.

Lemma 8. Let L be a Laskerian lattice generated by strong join principal elements. If p is a prime element containing a, then $a_{p}=\bigwedge\{q \mid a \leqslant$ q and q is p-primary\}.

Proof. Let $b=\bigwedge\{q \mid a \leqslant q$ and q is p-primary $\}$. Clearly $a_{p} \leqslant b$. Suppose $a_{p}<b$. Then there exists a strong join principal element $x \leqslant b$ such that $x \not \leq a_{p}$. As L is Laskerian, it follows that $a \vee x p$ has a normal primary decomposition, say $a \vee x p=q_{1} \wedge \ldots \wedge q_{n}$, and $p_{i}=\sqrt{q_{i}}\left(q_{i}^{\prime s}\right.$ are p_{i}-primary). By Lemma $4,(a \vee x p)=$ $\bigwedge\left\{q_{i} \mid p_{i} \leqslant p\right\}$. By Theorem 1.4 of [2], $x_{p} \not \leq(a \vee x p)_{p}$, so $x_{p} \not \leq q_{i}\left(p_{i} \leqslant p\right)$ for some i and hence $x \not \leq q_{i}$. Again since $x p \leqslant q_{i}$, it follows that $p \leqslant p_{i}$, so q_{i} is p-primary. This contradiction shows that $b=a_{p}$ and the proof is complete.

Theorem 8. Suppose L is generated by strong join principal elements. If L is Laskerian, then L is a compactly packed lattice.

Proof. Suppose L is Laskerian. Then clearly L contains only finitely many minimal primes. So by Theorem 2, it is enough if we show that L satisfies a.c.c. on prime elements. Let $p_{0}<p_{1}<p_{1}^{\prime}<p_{2}<p_{2}^{\prime}<p_{3}<p_{3}^{\prime}<\ldots$ be a chain of prime elements. By Theorem 1, every element has only finitely many $z s$-primes. We show that there is an element $a \in L$ such that a has infinitely many $z s$-primes. First we show by induction that for $n \in \mathbb{Z}^{+}$there exist $q_{1}, \ldots, q_{n} \in L, a_{n}, b_{n}$ and strong join principal elements $x_{1}, x_{2}, \ldots, x_{n}$ in L such that
(i) q_{i} is p_{i}-primary for i and $a_{n}=q_{1} \wedge \ldots \wedge q_{n}$,
(ii) for $1 \leqslant i \leqslant n$ we have $x_{i} \leqslant \bigwedge_{j \neq i} q_{j}$ and $x_{i} \not \leq q_{i}$,
(iii) $x_{1} \vee x_{2} \vee \ldots \vee x_{n} \leqslant b_{n}, a_{n} \not \leq b_{n}$ and every $z s$-prime of b_{n} is contained in p_{n}^{\prime}.

Suppose $n=1$. Then take $q_{1}=p_{1}$. Since $p_{1}<p_{1}^{\prime}$ and p_{1} is nonminimal, it follows that $0_{p_{1}^{\prime}}<p_{1}$, so by Lemma $8, p_{1} \not \leq q_{1}^{\prime}$ for some p_{1}^{\prime}-primary element q_{1}^{\prime}. Choose any strong join principal element $x_{1} \leqslant q_{1}^{\prime}$ such that $x_{1} \not \subset q_{1}$. Let $b_{1}=\left(x_{1}\right)_{p_{1}^{\prime}}$. Clearly $q_{1}=p_{1} \not \leq b_{1}$. As L is Laskerian, b_{1} has a normal primary decomposition, say $b_{1}=h_{1} \wedge \ldots \wedge h_{n}, r_{i}=\sqrt{h_{i}}\left(h_{i}^{\prime s}\right.$ are r_{i}-primary elements). Since $b_{1}=\left(b_{1}\right)_{p_{1}^{\prime}}$, by Lemma 4 we have $r_{i} \leqslant p_{1}^{\prime}$ for $i=1,2, \ldots, n$. Again by Theorem $1, r_{i}^{\prime s}(i=1,2, \ldots, n)$ are the only $z s$-primes of b_{1}. Therefore each $z s$-prime of b_{1} is contained in p_{1}^{\prime}. Thus the conditions (i), (ii) and (iii) are satisfied.

Suppose we have $q_{1}, \ldots, q_{n}, a_{n}, b_{n}$ and strong join principal elements satisfying (i)-(iii). Since $a_{n} \not \leq b_{n}$, there exists a strong join principal element y_{n+1} such that $y_{n+1} \leqslant a_{n}$ and $y_{n+1} \not \leq b_{n}$. Since $p_{n}^{\prime}<p_{n+1}$ and $b_{n}<p_{n+1}$, by Lemma 8 there exists a p_{n+1}-primary element q_{n+1} such that $b_{n} \leqslant q_{n+1}$ and $y_{n+1} \not \leq q_{n+1}$. Define $a_{n+1}=$ $a_{n} \wedge q_{n+1}$. We show that $a_{n+1} \not \leq b_{n}$. As L is Laskerian, b_{n} has a normal primary decomposition, say $b_{n}=h_{1} \wedge \ldots \wedge h_{k}, r_{i}=\sqrt{h_{i}}(1 \leqslant i \leqslant k)$ where $r_{i}^{\prime s}$ are $z s$-primes of b_{n}. By (iii), each $r_{i} \leqslant p_{n}^{\prime}$ and therefore $q_{n+1} \not \leq r_{i}$ for $i=1,2, \ldots, k$. If $a_{n+1} \leqslant b_{n}$, then $a_{n} \wedge q_{n+1} \leqslant b_{n} \leqslant h_{i}$ for $i=1,2, \ldots, k$. Since $q_{n+1} \not \leq r_{i}$ for $i=1,2, \ldots, k$ and $h_{i}^{\prime s}$ are r_{i}-primary elements, it follows that $a_{n} \leqslant \bigwedge_{i=1}^{k} h_{i}=b_{n}$, a contradiction. This shows that $a_{n+1} \not \leq b_{n}$. Note that $b_{n}=\left(b_{n}\right)_{p_{n+1}^{\prime}}$ since each $r_{i} \leqslant p_{n}^{\prime}<p_{n+1}^{\prime}$ and by Lemma $8, b_{n}=\bigwedge_{\lambda \in \Delta}\left\{c_{\lambda} \mid b_{n} \leqslant c_{\lambda}\right.$ and c_{λ} is a p_{n+1}^{\prime}-primary element $\}$. Since $a_{n+1} \not \pm$ b_{n}, it follows that $a_{n+1} \not \leq c_{\lambda}$ for some $\lambda \in \Delta$. Consequently, $a_{n+1} \not \leq\left(b_{n} \vee y_{n+1} c_{\lambda}\right)_{p_{n+1}^{\prime}}$ as $\left(b_{n} \vee y_{n+1} c_{\lambda}\right)_{p_{n+1}^{\prime}} \leqslant c_{\lambda}$. As $p_{n+1}<p_{n+1}^{\prime}$, we have $c_{\lambda} \not \leq p_{n+1}$, so there exists a strong join principal element $r \leqslant c_{\lambda}$ such that $r \not \leq p_{n+1}$. Define $x_{n+1}=y_{n+1} r$ and $b_{n+1}=\left(b_{n} \vee x_{n+1}\right)_{p_{n+1}^{\prime}}$. Observe that x_{n+1} is a strong join principal element. Since $y_{n+1} \not \leq q_{n+1}$ and $r \not \leq p_{n+1}$, it follows that $x_{n+1} \not \leq q_{n+1}$. Thus (i) and (ii) are satisfied for $q_{1}, q_{2}, \ldots, q_{n+1}$ and $x_{1}, x_{2}, \ldots, x_{n+1}$. Moreover, (iii) is satisfied for b_{n+1}, by the choice of x_{n+1} and b_{n+1}. Therefore, we conclude by induction that there exist infinite sequences $\left\{q_{i}\right\}_{i=1}^{\infty},\left\{a_{n}\right\}_{n=1}^{\infty},\left\{x_{i}\right\}_{i=1}^{\infty}$ and $\left\{b_{n}\right\}_{n=1}^{\infty}$ such that the conditions (i), (ii) and (iii) are satisfied for all n. Now let us define $a=\bigwedge_{n=1}^{\infty} a_{n}$. Since $x_{n} \leqslant \bigwedge_{j \neq n} q_{j}$ and $x_{n} \not \leq q_{n}$, it follows that $\left(a: x_{n}\right)=\left(a_{n}: x_{n}\right)=\left(q_{n}: x_{n}\right)$ is p_{n}-primary, so p_{n} is a $z s$-prime of a and this is true for all n. Therefore a has infinitely many $z s$-primes. This contradiction shows that L satisfies a.c.c. on prime elements and the proof is complete.

Theorem 9. Suppose L is generated by M-principal elements. Then L is Laskerian if and only if L satisfies the following conditions:
(i) L is a compactly packed lattice.
(ii) For each $a \in L$, there is a prime element p minimal over a and an M-principal element $x \not \leq p$ such that ($a: x$) is p-primary.

Proof. Suppose L is a Laskerian lattice. By Theorem 2 and Theorem 8, L is a compactly packed lattice. Again by imitating the proof of Theorem $1((\mathrm{i}) \Rightarrow(\mathrm{ii}))$, it can be easily shown that L satisfies the condition (ii).

Conversely, assume that L satisfies (i) and (ii). Let $a \in L$ and let p be a minimal prime over a such that $(a: x)$ is p-primary for some M-principal element $x \not \leq p$. Then $(a: x) \wedge(a \vee x)=((a: x) \wedge a) \vee((a: x) \wedge x)(x$ is a modular element $)=a \vee((a:$ $x) \wedge x)=a \vee\left(\left(a: x^{2}\right) x\right)$ (as x is weak meet principal). Note that $\left(a: x^{2}\right) \leqslant(a: x)$
since $x \not \leq p$ and $(a: x)$ is p-primary. Therefore $\left(a: x^{2}\right) x \leqslant(a: x) x \leqslant a$ and hence $a=(a: x) \wedge(a \vee x)$. Put $a_{1}=(a \vee x)$ and $q_{1}=(a: x)$. Then $a=q_{1} \wedge a_{1}$ where $\sqrt{a}<\sqrt{a_{1}}$ since $x \leqslant \sqrt{a_{1}}$. Similarly $a_{1}=q_{2} \wedge a_{2}$ where $q_{2}=\left(a_{1}: y\right)$ is p_{1}-primary, p_{1} is a minimal prime over $a_{1}, y \not \leq p_{1}$ is an m-principal element and $\sqrt{a_{1}}<\sqrt{a_{2}}$. By continuing this process, we get sequences of elements $q_{1}, q_{2}, \ldots, q_{n}$ and $a_{1}, a_{2}, \ldots, a_{n}$ such that $a_{i-1}=q_{i} \wedge a_{i}, q_{i}$ is primary for $i=1,2, \ldots, n\left(a_{0}=a\right)$ and $\sqrt{a_{0}}<\sqrt{a_{1}}<\sqrt{a_{2}}<\ldots<\sqrt{a_{n}}$. Since L satisfies a.c.c. on radical elements, it follows that $\sqrt{a_{0}}<\sqrt{a_{1}}<\sqrt{a_{2}}<\ldots<\sqrt{a_{n}}$ is a finite chain with $\sqrt{a_{n}}$ as a maximal element. Then $a_{n}=1$ and hence $a=q_{1} \wedge \ldots \wedge q_{n}$. This shows that L is Laskerian and the proof is complete.

Lemma 9. Suppose L is a compactly packed lattice. Let $a \in L$ and let p be a minimal prime over a. Then $p=\sqrt{(a: x)}$ for a compact element $x \not \leq p$.

Proof. Let $a \in L$ and let p be a minimal prime over a. Since L satisfies a.c.c. on radical elements, it follows that $\Gamma=\left\{\sqrt{(a: x)} \mid x \in L_{*}, x \not \leq\right.$ p and p is a minimal prime over $\sqrt{(a: x)}\}$ has a maximal element, say $\sqrt{(a: x)}$. Suppose p_{0} is any other minimal prime over $\sqrt{(a: x)}$. Choose any element $y \leqslant p_{0}$ such that $y \not \leq p$. Since $x y \not \leq p$ and $\sqrt{(a: x)} \leqslant \sqrt{(a: x y)}$, it follows by the maximality that $\sqrt{(a: x)}=\sqrt{\left(a: x^{n}\right)}=\sqrt{(a: x y)} \leqslant \sqrt{\left(a: x y^{m}\right)}$ for all $m, n \in \mathbb{Z}^{+}$. Since $y \leqslant p_{0}$ and p_{0} is any other minimal prime over $\sqrt{(a: x)}$, it follows that there exists $z \not \leq p_{0}$ such that $y^{n} z \leqslant \sqrt{(a: x)}$, so $z \leqslant \sqrt{(a: x)} \leqslant p_{0}$, a contradiction. This shows that p is the unique minimal prime over $\sqrt{(a: x)}$ and hence $p=\sqrt{(a: x)}$.

Lemma 10. Suppose L is a compactly packed lattice in which every primary element with non maximal prime radical is compact. Then for each $a \in L$, there is a prime element p minimal over a and a compact element $x \not \leq p$ such that $(a: x)$ is p-primary.

Proof. Let $a \in L$ and let $p \in L$ be a minimal prime over a. By Lemma 9, $p=\sqrt{(a: x)}$ for some $x \not \leq p$. If p is maximal, then $(a: x)$ is p-primary. Suppose p is non maximal. Note that $q=a_{p}$ is p-primary. Again by hypothesis, $x q \leqslant a$ for a compact element $x \not \leq p$. As q is p-primary, it follows that $q=(a: x)$.

Theorem 10. Suppose L is a compactly packed lattice generated by M-principal elements. If every primary element with non maximal prime radical is compact, then L is a Laskerian lattice.

Proof. Suppose every primary element with non maximal prime radical is compact. Let $a \in L$ and let p be a minimal prime over a. Then by Lemma 9 and Lemma $10,(a: x)$ is p-primary for a compact element $x \not \leq p$. As L is generated
by M-principal elements, it follows that there is an M-principal element $x_{1} \leqslant x$ such that $x_{1} \not \leq p$. Since $(a: x) \leqslant\left(a: x_{1}\right)$ and $(a: x)$ is p-primary, it follows that $(a: x)=\left(a: x_{1}\right)$. Now the result follows from Theorem 9 .

Let $r^{*}=\bigwedge\{m \in L \mid m$ is a maximal element of $L\}$. The element r^{*} is called the Jacobson radical of L. The following theorem gives some of the properties of Laskerian lattices.

Theorem 11. Suppose L is a Laskerian lattice generated by compact join principal elements. Let $a, c \in L$ and let $b=\bigwedge_{n=1}^{\infty}\left(a^{n} \vee c\right)$. Then the following statements hold.
(i) If a is compact and $a \leqslant r^{*}$, then $b=c$.
(ii) $0=\bigwedge\{q \in L \mid q$ is m-primary for a maximal element m of $L\}$.
(iii) If both a and b are compact elements of L, then $b=\vee\{r \in L \mid r$ is join principal, $a \vee(c: r)=1\}$.
(iv) If both $a(a<1)$ and $b^{\prime}=\bigwedge_{n=1}^{\infty} a^{n}$ are compact elements of L, then $\bigwedge_{n=1}^{\infty} a^{n}=0$ if and only if there is no zero divisor $r(\neq 0)$ such that $a \vee r=1$.

Proof. (i) Suppose a is compact and let $a \leqslant r^{*}$. Let m be any maximal element of L. Note that for any m-primary element q of $L b \leqslant q$ if and only if $c \leqslant q$. Therefore by Lemma $8, b_{m}=c_{m}$ and hence $b=c$.
(ii) Let x be any compact join principal element such that $x \leqslant \bigwedge\{q \in L \mid$ q is m-primary for a maximal element m of $L\}$. Then by Lemma $8, x_{m}=0_{m}$ for every maximal element m of L. Consequently, $x=0$.
(iii) By imitating the proof of [1, Theorem 1.2], we can get the result and (iv) directly follows from (iii). This completes the proof of the theorem.

Acknowledgement. The author would like to thank the referee for his helpful comments and suggestions.

References

[1] F. Alarcon, D. D. Anderson and C. Jayaram: Some results on abstract commutative ideal theory. Period. Math. Hungar. 30 (1995), 1-26.
[2] D. D. Anderson: Abstract commutative ideal theory without chain condition. Algebra Universalis 6 (1976), 131-145.
[3] D. D. Anderson, J. Matigevic and W. Nichols: The Krull Intersection Theorem II. Pacific J. Math. 66 (1976), 15-22.
[4] D.D. Anderson and E.W. Johnson: Dilworth's principal elements. Algebra Universalis 36 (1996), 392-404.
[5] J. T. Arnold and J. W. Brewer: Commutative rings which are locally Noetherian. J. Math. Kyoto Univ. 11-1 (1971), 45-49.
[6] R. P. Dilworth: Abstract commutative ideal theory. Pacific J. Math. 12 (1962), 481-498.
[7] R. W. Gilmer and W. Heinzer: The Laskerian property, power series rings and Noetherian spectra. Proc. Amer. Math. Soc. 79 (1980), 13-16.
[8] W. Heinzer and J. Ohm: Locally Noetherian commutative rings. Tran. Amer. Math. Soc. 158 (1971), 273-284.
[9] W. Heinzer and D. Lantz: The Laskerian property in commutative rings. J. Algebra 72 (1981), 101-114.
[10] C. Jayaram and E. W. Johnson: s-prime elements in multiplicative lattices. Period. Math. Hungar. 31 (1995), 201-208.
[11] J. Ohm and R. L. Pendleton: Rings with Noetherian spectrum. Duke Math. J. 35 (1968), 631-639.

Author's address: University of Botswana, P/Bag 00704, Gaborone, Botswana, e-mail: chillumu@mopipi.ub.bw.

