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Abstract. The Cantor-Bernstein theorem was extended to σ-complete boolean algebras
by Sikorski and Tarski. Chang’s MV-algebras are a nontrivial generalization of boolean
algebras: they stand to the infinite-valued calculus of  Lukasiewicz as boolean algebras
stand to the classical two-valued calculus. In this paper we further generalize the Cantor-
Bernstein theorem to σ-complete MV-algebras, and compare it to a related result proved
by Jakubík for certain complete MV-algebras.
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1. Introduction

The Cantor-Bernstein theorem states that, if a set X can be embedded into a
set Y , and vice versa, then there is a one-one map of X onto Y . The theorem was

proved by Dedekind in 1887, conjectured by Cantor in 1895, and again proved by
Bernstein in 1898, [6, p. 85].

For any boolean algebra A, let [0, a] denote the boolean algebra of all x ∈ A such
that 0 6 x 6 a, equipped with the restriction of the join and meet of A, where the

complement of y ∈ [0, a] is the meet of a with the complement ¬y of y in A. (Note
that Sikorski [8, p. 29] writes A|a instead of [0, a].)

Research supported by COST ACTION 15 on Many-valued logics for computer science
applications, Project on Logic of the Italian MURST, Project VS 96049 of the Czech Min-
istry of Education and Grant 201/97/0437 of the Grant Agency of the Czech Republic.
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Sikorski [9] and Tarski [10] proved the following generalization of the (Dedekind)-

Cantor-Bernstein theorem: For any two σ-complete boolean algebras A and B and
elements a ∈ A and b ∈ B, if B is isomorphic to [0, a] and A is isomorphic to [0, b],
then A and B are isomorphic. To obtain the Cantor-Bernstein theorem it suffices to

assume that A and B are the powersets of X and Y , respectively, with the natural
set-theoretic boolean operations.

Our aim in this paper is to further generalize the Cantor-Bernstein theorem to MV-
algebras—the latter being an interesting “non-commutative” extension of boolean

algebras (see [7] for a precise formulation of this). Since, as proved in [3] and [5], the
σ-completeness assumption is indispensable already in the boolean algebraic setup,

our Cantor-Bernstein theorem shall be proved for σ-complete MV-algebras.

2. MV-algebras

AnMV-algebra A = (A, 0,⊕,¬) is an algebra where the operation⊕ : A×A → A is
associative and commutative with 0 as the neutral element, the operation ¬ : A → A

satisfies the identities ¬¬x = x and x⊕ ¬0 = ¬0, and, in addition,

(1) y ⊕ ¬(y ⊕ ¬x) = x⊕ ¬(x⊕ ¬y).

Example 2.1. The real unit interval [0, 1] equipped with the operations x⊕ y =
min(1, x + y) and ¬x = 1− x is an MV-algebra.

Following common usage, for any elements x, y of an MV-algebra we will use the

abbreviations 1 = ¬0, x � y = ¬(¬x ⊕ ¬y) and x 	 y = x � ¬y. We will denote by
(A,∨,∧) the underlying distributive lattice of A, where x ∨ y = x ⊕ ¬(x ⊕ ¬y) and
x∧ y = x�¬(x�¬y). With reference to the underlying order of A, for any element
a ∈ A we let the interval [0, a] be defined by

[0, a] = {x ∈ A | 0 6 x 6 a}.

An MV-algebra A is σ-complete (complete) iff every sequence (every family, re-

spectively) of elements of A has supremum in A with respect to the underlying order
of A.

As shown by Chang, boolean algebras coincide with MV-algebras satisfying the
equation x⊕x = x. In this case the operation⊕ coincides with ∨, and the operation�
coincides with ∧.
An element a in an MV-algebra A is called boolean iff a ⊕ a = a. We let B(A)

denote the set of boolean elements of A. It is not hard to see that the operations of A
make B(A) a boolean algebra. As shown in Corollary 3.3 below, if A is a σ-complete
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MV-algebra, then B(A) is a σ-complete boolean algebra, and the σ-infinitary oper-

ations of B(A) agree with the restrictions of the corresponding operations of A.
A homomorphism between two MV-algebras is a map that sends zero to zero, and

preserves the operations ⊕ and ¬. A one-one surjective homomorphism is called an
isomorphism.

For further information on MV-algebras we refer to [1], [2] and [7].

Definition 2.2. Let A be an MV-algebra and z a fixed, but otherwise arbitrary,
element of A. Let the map hz : A → [0, z] be defined by

(2) hz(x) = x ∧ z.

Further, we define the operation ¬z : [0, z] → [0, z] by

(3) ¬zx = z � ¬x = z 	 x,

and the operation ⊕z : [0, z]× [0, z] → [0, z] by

(4) x⊕z y = (x ⊕ y) ∧ z.

A moment’s reflection shows that the ranges of both operations ¬z and ⊕z coincide
with [0, z].

Proposition 2.3. Let A be an MV-algebra and b ∈ A. We then have

(i) for each element b ∈ A, the structure ([0, b],⊕b,¬b, 0) is an MV-algebra.
If, in addition, b is a boolean element of A then

(ii) ¬bx = b ∧ ¬x for all x ∈ [0, b];
(iii) the interval [0, b] (as well as the interval [0,¬b]) is an ideal of A;
(iv) The map hb defined in (2) is a homomorphism of A onto [0, b] whose kernel

coincides with [0,¬b];
(v) The MV-algebra [0, b] is isomorphic to the quotient MV-algebra A/[0,¬b];
(vi) [0, b] is a subalgebra of A iff b = 1 iff [0, b] = A.

���������
. (i) For every x ∈ [0, b ] we have

¬b¬bx = b� ¬(b� ¬x) = b ∧ x = x

and

x⊕b ¬b0 = x⊕b b = (x⊕ b) ∧ b = b = ¬b0.
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Associativity of ⊕b follows from the identities

(x⊕b y)⊕b z = (((x ⊕ y) ∧ b)⊕ z) ∧ b

= ((x ⊕ y ⊕ z) ∧ (b⊕ z)) ∧ b

= (x ⊕ y ⊕ z) ∧ b = . . . = x⊕b (y ⊕b z).

With reference to (1) we shall now prove the identity

(5) y ⊕b ¬b(y ⊕b ¬bx) = x⊕b ¬b(x⊕b ¬by) for all x, y ∈ [0, b].

First, using distributivity of � over ∨, we transform a part of the expression on the
left-hand side of (5) as follows:

¬b(y ⊕b ¬bx) = b� ¬((y ⊕ (b� ¬x)) ∧ b)

= b� ((¬y � ¬(b� ¬x)) ∨ ¬b) = b� ¬y � ¬(b� ¬x)

= ¬y � (b ∧ x) = ¬y � x = ¬(y ⊕ ¬x).

We can now simplify the left-hand term in (5) as follows:

y ⊕b ¬b(y ⊕b ¬bx) = (y ⊕ ¬(y ⊕ ¬x)) ∧ b = (y ∨ x) ∧ b = y ∨ x,

which settles (5). The remaining verifications needed to show that [0, b] is an MV-
algebra are all trivial.
Following now the proof of [2, Proposition 6.4.1], let us assume that b ∈ B(A).

Then condition (ii) is an immediate consequence of the definition of ¬b and of the fact
that � coincides with ∧ whenever one of its arguments is boolean, [2, Theorem 1.5.3].
Similarly, (iii) follows from the definition of a boolean element, [2, Corollary 1.5.6],
and we also see that ⊕b coincides with the restriction of ⊕ to [0, b]. To prove (iv),
for all x, y ∈ A we can write (x ∧ b) ⊕ (y ∧ b) = ((x ∧ b) ⊕ y) ∧ ((x ∧ b) ⊕ b). From
(x∧ b)⊕ b = (x∧ b)∨ b = b we get (x∧ b)⊕ (y∧ b) = (x⊕y)∧ (b⊕y)∧ b = (x⊕y)∧ b.

We conclude that hb(x ⊕ y) = hb(x) ⊕ hb(y) = hb(x) ⊕b hb(y). The rest is trivial.
The proof of (v) and (vi) is the same as in [2, Proposition 6.4.3]. �

Remarks. As shown by (ii) above, whenever b is a boolean element of A, there is
no discrepancy between our present definition of ¬b and the definition in [2, (6.4)].

If in a boolean algebra B we denote by I the principal ideal generated by ¬b,

then I = [0,¬b] and the algebra [0, b] is isomorphic to B/I via the map x ∈ [0, b] 7→
x/I ∈ B/I. Condition (v) is a generalization of this fact to MV-algebras.
If a is not a boolean element of A, then [0, a] need not be a homomorphic image

of A. For an example, let A = {0, 1/2, 1} be a subalgebra of the MV-algebra [0, 1]
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of Example 2.1. Then [0, 1/2] = {0, 1/2} is not a homomorphic image of A, because
A has no other ideals than {0}. One more example is given in 5.2 below.
On the other hand, the existence of a homomorphism of A onto [0, a] need not

imply that a is a boolean element of A. As a matter of fact, in the MV-algebra [0, 1]
of Example 2.1, multiplication by 1/2 is a homomorphism of [0, 1] onto the interval
MV-algebra [0, 1/2], but the element 1/2 is not boolean in [0, 1].
The proof of the following result is immediate.

Lemma 2.4. Let A and B be MV-algebras and let α : A → B be an isomorphism

of A onto B. For any a ∈ A, the restriction of the map α to the interval [0, a] of A is
an isomorphism of the MV-algebra [0, a] onto the interval [0, α(a)] of B, once these
two intervals are equipped with the MV-algebraic operations of Definition 2.2 and
Proposition 2.3 (i).

Corollary 2.5. For each a ∈ B(A), the mapping x 7→ (x ∧ a, x ∧ ¬a) is an
isomorphism of A onto the product MV-algebra [0, a]× [0,¬a].
���������

. The same as for [2, Lemma 6.4.5]. �

3. Partitions of unity and decompositions

In Lemma 3.4 below we will give an infinitary generalization of Corollary 2.5. To

this purpose, we prepare

Notation. We set � = {1, 2, 3, . . .}, � 0 = � ∪ {0} and � ∞ = � ∪ {∞}.

Lemma 3.1. Let A be a σ-complete MV-algebra. Let x1, x2, . . . ∈ A. Then the

following countably infinitary de Morgan identities hold:

∧

n∈  
xn = ¬

∨

n∈  
¬xn(6)

and
∨

n∈  
xn = ¬

∧

n∈  
¬xn.(7)

���������
. Let a =

∧
n∈  xn and b =

∨
n∈  ¬xn. For all n ∈ � we have a 6 xn,

whence ¬a > ¬xn. Therefore ¬a >
∨

n∈  ¬xn = b. Similarly, for all n ∈ � we have
b > ¬xn, ¬b 6 xn, whence ¬b 6

∧
n∈  xn = a and b > ¬a, which settles (6). The

proof of (7) is similar. �
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As an immediate consequence we get the following infinitary distributive laws:

Lemma 3.2. Let A be a σ-complete MV-algebra. Let x1, x2, . . . ∈ A. Then for

each x ∈ A we have

x ∧
∨

n∈  
xn =

∨

n∈  
(x ∧ xn)(8)

and

x ∨
∧

n∈  
xn =

∧

n∈  
(x ∨ xn).(9)

���������
. This is an easy adaptation of the proof of [2, Lemma 6.6.4]. �

Corollary 3.3. Let A be a σ-complete MV-algebra. Then

(i) B(A) is a σ-complete boolean algebra. As a matter of fact, for any sequence

b1, b2, . . . ∈ B(A) we have

∨

n∈  
bn ∈ B(A)(10)

and
∧

n∈  
bn ∈ B(A).(11)

(ii) For every b ∈ B(A), letting hb : A → [0, b] be as in (2), it follows that [0, b]
is a σ-complete MV-algebra, and hb preserves all existing infima and suprema.

Therefore, for all x1, x2, . . . ∈ A we can write

hb

( ∨

n∈  
xn

)
=

∨

n∈  
hb(xn)(12)

and

hb

( ∧

n∈  
xn

)
=

∧

n∈  
hb(xn).(13)

���������
. An easy adaptation of the proof of [2, Corollary 6.6.5]. �
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From Lemma 3.2 we obtain the desired generalization of Corollary 2.5, given by

the following variant of [2, Lemma 6.6.6].

Lemma 3.4. Let A be a σ-complete MV-algebra. Suppose that a sequence

b1, b2, . . . ∈ B(A) satisfies the following conditions:

(Partition of unity)
∨

n∈  
bn = 1 and bj ∧ bk = 0 for all j 6= k.

Then the map x 7→ (x ∧ b1, x ∧ b2, . . .) = (x ∧ bn)n∈  is an isomorphism of A onto

the product MV-algebra
∏

n∈  [0, bn].

4. MV-algebraic Cantor-Bernstein theorem

In this section we prove the following MV-algebraic generalization of the Cantor-
Bernstein theorem.

Theorem 4.1. Let A and B be σ-complete MV-algebras. Let a ∈ B(A), b ∈
B(B), and assume α to be an isomorphism of A onto the interval algebra [0, b] of B,
and β an isomorphism of B onto the interval algebra [0, a] of A. Then A and B are

isomorphic.
���������

. Skipping all trivialities, we may safely assume 0 < a < 1 and 0 <

b < 1. Also, A and B can be safely assumed disjoint. We can now define sequences
a0, a1, a2, . . . ∈ A and b0, b1, b2, . . . ∈ B by the following inductive stipulation:

a0 = 1, b0 = 1,

an+1 = β(bn), bn+1 = α(an).

For each n = 0, 1, 2, . . ., both elements an and bn are boolean. From the assumed

injectivity of α and β we obtain

(14) a0 > a1 > a2 > . . . and b0 > b1 > b2 > . . .

Let a∞ ∈ A and b∞ ∈ B be given by a∞ =
∧

n∈  0

an and b∞ =
∧

n∈  0

bn. The

existence of a∞ and b∞ is ensured by the assumed σ-completeness of A and B. By
Corollary 3.3 (i) both a∞ and b∞ are boolean elements. For all n ∈ � 0 we have the

identities an+2 = (β ◦ α)(an) and bn+2 = (α ◦ β)(bn). Since the mapping β ◦ α is
an isomorphism of A onto [0, a2], it preserves countable infima and suprema. Since
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for each n = 0, 1, 2, . . . the underlying orders of the interval MV-algebras [0, an] and
[0, an+1] agree, we have

(β ◦ α)(a∞) = (β ◦ α)
( ∧

n∈  
an

)
=

∧

n∈  
(β ◦ α)(an) =

∧

n∈  
an+2 = a∞.

Similarly, b∞ = (α ◦ β)(b∞). One similarly obtains

(15) α(a∞) = b∞ and β(b∞) = a∞.

In particular, a∞ = 0 iff b∞ = 0. For each n = 0, 1, 2, . . . let us define dn =
an	an+1 = an∧¬an+1 and en = bn	bn+1 = bn∧¬bn+1. Then for each n = 0, 1, 2, . . .

we have

(16) α(d2n) = e2n+1 and β(e2n) = d2n+1.

A straightforward computation shows that, for any two distinct m, n ∈ � 0 , dm∧dn =
0 = em ∧ en.

Lemma 3.1 together with (14) yields

∨

n∈  
dn−1 =

∨

n∈  

n∨

k=1

dk−1 =
∨

n∈  
(1	 an) =

∨

n∈  
¬an = ¬

∧

n∈  
an = ¬a∞.

It follows that the sequence (a∞, d0, d1, d2, . . .) is a partition of unity in B(A).
Analogously, the sequence (b∞, e0, e1, e2, . . .) is a partition of unity in B(B). By
Lemma 3.4, the map

x 7→ (x ∧ a∞, x ∧ d0, x ∧ d1, x ∧ d2, . . .)

is an isomorphism of A onto the product MV-algebra [0, a∞] × [0, d0] × [0, d1] ×
[0, d2]× . . . Similarly, the map

y 7→ (y ∧ b∞, y ∧ e0, y ∧ e1, y ∧ e2, . . .)

is an isomorphism of B onto [0, b∞] × [0, e0] × [0, e1] × [0, e2] × . . . By Lemma 2.4

and (15), the restriction of α to [0, a∞] is an isomorphism of [0, a∞] onto [0, b∞], in
symbols (and with a slight abuse of notation),

α : [0, a∞] ∼= [0, b∞].
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Another application of Lemma 2.4 together with (16) yields, for each n = 0, 1, 2, . . .,

an isomorphism

α : [0, d2n] ∼= [0, e2n+1].

Similarly, from the isomorphism β : [0, e2n] ∼= [0, d2n+1] one obtains an isomorphism

β−1 : [0, d2n+1] ∼= [0, e2n]

for each n = 0, 1, 2, . . . It is now easy to obtain an isomorphism of [0, a∞]× [0, d0]×
[0, d1]× [0, d2] × . . . onto [0, b∞] × [0, e0] × [0, e1] × [0, e2] × . . ., whence one has the
desired isomorphism of A onto B. �

If A happens to be a boolean algebra, the above theorem reduces to the boolean-
algebraic Cantor-Bernstein theorem stated in the introduction, and proved by Siko-

rski and Tarski.

5. A related result by Jakubík

In his paper [4], Jakubík proved a different form of Cantor-Bernstein theorem for

MV-algebras. In this section we shall compare Jakubík’s result with our Theorem 4.1.

A lattice isomorphism between two MV-algebras A and B is a one-one map of A
onto B that preserves the underlying lattice structures of A and B. We say that A

and B are lattice isomorphic iff there is a lattice isomorphism between A and B.

Let D ⊆ [0, 1] be the MV-algebra consisting of all rational numbers in [0, 1] whose
denominator is 1, 2, 4, 8, 16, . . . Let Q be the subalgebra of [0, 1] consisting of all
rational numbers in [0, 1]. Then D and Q are lattice isomorphic (as denumerable,
densely ordered chains with two endpoints) but they are not isomorphic MV-algebras.
As a matter of fact, the equation x⊕ x = ¬x has a solution in Q, but does not have
any solution in D. Thus, the existence of a lattice isomorphism between two MV-
algebras need not imply that the two MV-algebras are isomorphic. Trivially, if two

MV-algebras are isomorphic then their underlying lattices are isomorphic.

For any MV-algebra A let us consider the following property:

(∗) If a ∈ A and [0, a] is a boolean algebra, then a ∈ B(A).

Jakubík proved

Theorem 5.1 [4]. Let A and B be complete MV-algebras satisfying condi-

tion (∗). Suppose that for some a ∈ A, b ∈ B, A is lattice isomorphic to [0, b] and B

is lattice isomorphic to [0, a]. Then A and B are isomorphic as MV-algebras.
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The rest of this section is devoted to a comparison between Jakubík’s theorem and

our Theorem 4.1. To this aim, we present an example that simultaneously shows
the necessity of condition (∗) in Jakubík’s Theorem 5.1 and the necessity of the
assumption that a and b are boolean in our Theorem 4.1.

Example. Let K = {0, 1/2, 1} be the uniquely determined three-element sub-
algebra of the MV-algebra [0, 1] from Example 2.1. Denote by A the product of
denumerably many copies of K,

A = K ×K ×K × . . .

With pointwise defined operations, A is a complete MV-algebra. Let elements

a, b ∈ A be defined by

a = (1/2, 1, 1, 1, . . .),

b = (0, 1, 1, 1, . . .).

Then B = [0, a] equipped with the operations from Definition 2.2 is a complete MV-
algebra which is (isomorphic to) an interval of A. On the other hand, A is isomorphic

to [0, b] via the isomorphism α : A → [0, b] defined by

α((x1, x2, x3, . . .)) = (0, x1, x2, x3, . . .).

A fortiori, B is lattice isomorphic to an interval of A, and A is lattice isomorphic
to the interval [0, b] of B. Nevertheless, A and B are not isomorphic MV-algebras.

Indeed, the element c = (1/2, 0, 0, . . .) is an atom of B (minimal nonzero element)
and it also belongs to the boolean algebra B(B), while no atom of A is boolean.

Trivially, the interval [0, c] = {0, c} is a boolean algebra, but the atom c is not

boolean in A, and condition (∗) is not satisfied. On the other hand, all the other
assumptions of Theorem 5.1 are satisfied. This shows the necessity of assumption (∗)
in Jakubík’s Theorem 5.1. The present example also shows that our Theorem 4.1
would no longer hold without assuming the elements a and b therein to be boolean.

Note that Theorem 4.1 also holds for MV-algebras not satisfying condition (∗). We
can, for example, apply it to the MV-algebras A and B of the above example. On the

other hand, the assumption that a and b are boolean is not needed in Theorem 5.1.

We finally remark that Theorem 5.1 is stated for complete MV-algebras, while our
result here is valid for a larger class of σ-complete MV-algebras.

Altogether, Theorems 5.1 and 4.1 are incomparable.
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