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ON THE NORMALITY OF AN ALMOST CONTACT 3-STRUCTURE
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Abstract. We study n-dimensional QR-submanifolds of QR-dimension (p− 1) immersed
in a quaternionic space form QP (n+p)/4(c), c > 0, and, in particular, determine such
submanifolds with the induced normal almost contact 3-structure.
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1. Introduction

LetM be an n-dimensional QR-submanifold of QR-dimension (p−1) isometrically
immersed in a quaternionic Kähler manifold M

(n+p)/4
. Denoting by {F,G,H} the

quaternionic Kähler structure ofM
(n+p)/4

, it follows by definition (cf. [9]) that there

exists a (p− 1)-dimensional subbundle ν of the normal bundle TM⊥ such that

(1.1)

{
Fνx ⊂ νx, Gνx ⊂ νx, Hνx ⊂ νx,

F ν⊥x ⊂ TxM, Gν⊥x ⊂ TxM, Hν⊥x ⊂ TxM

for each x ∈ M , where ν⊥ denotes the complementary orthogonal subbundle to ν

in TM⊥. Thus there is a naturally distinguished unit normal vector field ξ to M
such that ν⊥x = Span{ξ} for each x ∈M , and the vector fields U , V , W defined by

(1.2) U = −Fξ, V = −Gξ, W = −Hξ
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are tangent to M . On the other hand, each tangent space TxM is decomposed as

TxM = Dx ⊕D⊥
x ,

where Dx is the maximal quaternionic invariant subspace of TxM defined by

Dx = TxM ∩ FTxM ∩GTxM ∩HTxM

and D⊥
x its orthogonal complement in TxM . In our case, as already shown in [2], [9],

D⊥
x = Span{U, V,W} and so D : x 7→ Dx defines an (n−3)-dimensional distribution
on M . But D cannot be a quaternionic CR-distribution in the sense of [1]. Further

it is clear that
FTxM, GTxM, HTxM ⊂ TxM ⊕ Span{ξ}

and, consequently, for any tangent vector X to M , we have the following decompo-

sition in tangential and normal components

(1.3)

{
FX = ϕX + u(X)ξ, GX = ψX + v(X)ξ,

HX = θX + w(X)ξ.

By means of the hermitian property of {F,G,H} it can be easily shown that ϕ, ψ and
θ are skew-symmetric endomorphisms acting on TxM . Moreover it is known ([9], [10],

[11]) that the aggregate {ϕ, ψ, θ, u, v, w} gives an almost contact 3-structure on the
QR-submanifoldM of QR-dimension (p− 1) in M

(n+p)/4
(see also Proposition 2.1).

On the other hand the normality of an almost contact 3-structure was defined
by one of the present authors ([13]) and by Yano, Ishihara and Konishi ([14]) in a

different point of view. But, in this paper, it will be shown that the normalities of
the induced almost contact 3-structure in the sense of [13] and [14] are equivalent to
each other, and the submanifold with the induced normal almost contact 3-structure
will be determined when the ambient manifold M is a quaternionic space form of

constant Q-sectional curvature c > 0.

2. Fundamental formulas for QR-submanifolds

Let M
(n+p)/4

be a real (n+ p)-dimensional quaternionic Kähler manifold. Then,
by definition, there is a 3-dimensional vector bundle V consisting of tensor fields of
type (1,1) over M satisfying the following conditions (a), (b) and (c):
(a) In any coordinate neighborhood U , there is a local basis {F,G,H} of V such
that

(2.1)

{
F 2 = −I, G2 = −I, H2 = −I,
FG = −GF = H, GH = −HG = F, HF = −FH = G.
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(b) There is a Riemannian metric g which is hermitian with respect to all of F , G

and H .

(c) For the Riemannian connection ∇ with respect to g

(2.2)



∇F
∇G
∇H


 =




0 r −q
−r 0 p

q −p 0






F

G

H




where p, q and r are local 1-forms defined in U . Such a local basis {F,G,H}
is called a canonical local basis of the bundle V in U .

For canonical local bases {F,G,H} and {′F,′G,′H} of V in coordinate neighbor-
hoods U and ′U , it follows that in U ∩ ′U

(2.3)




′F
′G
′H


 = (sxy)



F

G

H


 (x, y = 1, 2, 3)

with differentiable functions sxy, where the matrix S = (sxy) is contained in SO(3) as
a consequence of (2.1). As is well known [5], [6], every quaternionic Kähler manifold
is orientable.

From now on we consider a real n-dimensional QR-submanifold M of QR-

dimension (p− 1) immersed in M
(n+p)/4

and use the same notations as in Section 1.
We now take a local orthonormal basis {ξα; α = 1, . . . , p} (ξ1 = ξ) of normal
vectors to M and consider the following decompositions in tangential and normal
components:

(2.4)

{
Fξα = −Uα + P1ξα, Gξα = −Vα + P2ξα,

Hξα = −Wα + P3ξα

(α = 1, . . . , p). Then P1, P2 and P3 are skew-symmetric endomorphisms acting on

TxM
⊥. Moreover, by means of (1.3), the hermitian property of {F,G,H} and (2.4)

imply





g(X,ϕUα) = −u(X)g(ξ1, P1ξα),

g(X,ψVα) = −v(X)g(ξ1, P2ξα),

g(X, θWα) = −w(X)g(ξ1, P3ξα), α = 1, . . . , p,

(2.5)





g(Uα, Uβ) = δαβ − g(P1ξα, P1ξβ),

g(Vα, Vβ) = δαβ − g(P2ξα, P2ξβ),

g(Wα,Wβ) = δαβ − g(P3ξα, P3ξβ), α, β = 1, . . . , p.

(2.6)

573



Also, from g(FX, ξα) = −g(X,Fξα), g(GX, ξα) = −g(X,Gξα) and g(HX, ξα) =
−g(X,Hξα), it follows that

g(X,Uα) = u(X)δ1α, g(X,Vα) = v(X)δ1α, g(X,Wα) = w(X)δ1α

and hence

g(U1, X) = u(X), g(V1, X) = v(X), g(W1, X) = w(X),(2.7)

Uα = 0, Vα = 0, Wα = 0, α = 2, . . . , p.

On the other hand, comparing (1.2) and (2.4) with α = 1, we have U1 = U , V1 = V ,

W1 = W , which together with (2.7) imply

(2.8) g(U,X) = u(X), g(V,X) = v(X), g(W,X) = w(X).

In the sequel we shall use the notations U , V , W instead of U1, V1, W1.

Next, applying F to the first equation of (1.3) and using (2.4), (2.7) and (2.8), we
have

ϕ2X = −X + u(X)U, u(X)P1ξ = −u(ϕX)ξ.

Similarly we have

{
ϕ2X = −X + u(X)U, ψ2X = −X + v(X)V,

θ2X = −X + w(X)W,
(2.9)

{
u(X)P1ξ = −u(ϕX)ξ, v(X)P2ξ = −v(ψX)ξ,

w(X)P3ξ = −w(θX)ξ,
(2.10)

from which, taking account of the skew-symmetry of P1, P2 and P3 and using (2.5),

we also have

(2.11)





u(ϕX) = 0, v(ψX) = 0, w(θX) = 0,

ϕU = 0, ψV = 0, θW = 0,

P1ξ = 0, P2ξ = 0, P3ξ = 0.

So (2.4) can be rewritten in the form

(2.12)

{
Fξ = −U, Gξ = −V, Hξ = −W,
Fξα = P1ξα, Gξα = P2ξα, Hξα = P3ξα,

where α = 2, . . . , p.
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Applying G and H to the first equation of (1.3) and using (1.3), (2.1) and (2.12),

we have

θX + w(X)ξ = − ψ(ϕX)− v(ϕX)ξ + u(X)V,

ψX + v(X)ξ = θ(ϕX) + w(ϕX)ξ − u(X)W,

and consequently

(2.13)

{
ψ(ϕX) = −θX + u(X)V, v(ϕX) = −w(X),

θ(ϕX) = ψX + u(X)W, w(ϕX) = v(X).

From the other equations of (1.3) we have by a quite similar method
{
ϕ(ψX) = θX + v(X)U, u(ψX) = w(X),

θ(ψX) = −ϕX + v(X)W, w(ψX) = −u(X),
(2.14)

{
ϕ(θX) = −ψX + w(X)U, u(θX) = −v(X),

ψ(θX) = ϕX + w(X)V, v(θX) = u(X).
(2.15)

From the first three equations of (2.12), we also have

(2.16)





ψU = −W, v(U) = 0, θU = V, w(U) = 0,

ϕV = W, u(V ) = 0, θV = −U, w(V ) = 0,

ϕW = −V, u(W ) = 0, ψW = U, v(W ) = 0.

On the other hand, we may put

(2.17)





P1ξα =
p∑

β=2

P1αβξβ , P2ξα =
p∑

β=2

P2αβξβ ,

P3ξα =
p∑

β=2

P3αβξβ , α = 2, . . . , p,

from which, substituting into the last three equations of (2.12) and using the hermi-

tian property of {F,G,H}, we have

(2.18)





∑
γ
P1αγP1γβ = −δαβ,

∑
γ
P2αγP2γβ = −δαβ ,

∑
γ
P3αγP3γβ = −δαβ.

Also, from (2.1), (2.12) and (2.17), we have

(2.19)





∑
β

P1αβP2βγ = −P3αγ ,
∑
β

P1αβP3βγ = P2αγ ,

∑
β

P2αβP3βγ = −P1αγ ,
∑
β

P2αβP1βγ = P3αγ ,

∑
β

P3αβP1βγ = −P2αγ ,
∑
β

P3αβP2βγ = P1αγ .
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The equations (2.6)–(2.11) and (2.13)–(2.16) tell us

Proposition 2.1 ([9], [10], [11]). An n-dimensional QR-submanifold of QR-

dimension (p − 1) in a quaternionic Kähler manifold M
(n+p)/4

admits an almost

contact 3-structure.

In general if the condition

[ϕi, ϕi] + dui ⊗ Ui = 0

is satisfied for some 1 6 i 6 3, then the almost contact structure (ϕi, Ui, ui) is said
to be normal, where we put

ϕ1 = ϕ, ϕ2 = ψ, ϕ3 = θ,

U1 = U, U2 = V, U3 = W ; u1 = u, u2 = v, u3 = w

and [ϕi, ϕi] denotes the Nijenhuis tensor of ϕi. In their papers [8] and [14], Ishihara,

Konishi, Kuo and Yano have proved

Lemma 2.2. If, for an almost contact 3-structure{(ϕi, Ui, ui); i = 1, 2, 3}, any
two of the almost contact structures (ϕi, Ui, ui) are normal, then so is the third.

Moreoreover, in [14] the following lemma was proved.

Lemma 2.3. For an almost contact 3-structure {(ϕi, Ui, ui); i = 1, 2, 3}, a nec-
essary and sufficient condition in order that the almost contact structures (ϕi, Ui, ui)
are all normal is that the condition

(2.20)

{
2[ϕ1, ϕ2] + du1 ⊗ U2 + du2 ⊗ U1 = 0,

LU1ϕ2 + LU2ϕ1 = 0, du1∧ϕ2 + du2∧ϕ1 = 0

be valid, where [ϕ1, ϕ2] denotes the Nijenhuis tensor of ϕ1 and ϕ2, dui∧ϕj the 2-form
defined by

(dui∧ϕj)(X,Y ) = dui(ϕjX,Y ) + dui(X,ϕjY )

and LUi the Lie derivative with respect to Ui.
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3. Further properties of the induced almost contact 3-structure

In this section we shall use the same notations and terminology as in the previous

section.
Now let ∇ be the Levi-Cività connection on M and ∇⊥ the normal connection

induced from ∇ in the normal bundle TM⊥ of M . Then Gauss and Weingarten
formulae are given by

∇XY = ∇XY + h(X,Y ),(3.1)

∇Xξα = −AαX +∇⊥
Xξα, α = 1, . . . , p(3.2)

for X , Y tangent to M . Here h denotes the second fundamental form and
Aα the shape operator corresponding to ξα. They are related by h(X,Y ) =

p∑
α=1

g(AαX,Y )ξα. Furthermore, put

(3.3) ∇⊥
Xξα =

p∑

β=1

sαβ(X)ξβ ,

where (sαβ) is the skew-symmetric matrix of connection forms of ∇⊥.

Differentiating the first equation of (1.3) covariantly and using (1.3), (2.2), (2.4),
(2.7), (3.1) and (3.2), we have

(∇Y ϕ)X = r(Y )ψX − q(Y )θX + u(X)A1Y − g(A1Y,X)U,(3.4)

(∇Y u)X = r(Y )v(X)− q(Y )w(X) + g(ϕA1Y,X).

From the other equations of (1.3) we also have

(∇Y ψ)X = − r(Y )ϕX + p(Y )θX + v(X)A1Y − g(A1Y,X)V,(3.5)

(∇Y v)X = − r(Y )u(X) + p(Y )w(X) + g(ψA1Y,X),

(∇Y θ)X = q(Y )ϕX − p(Y )ψX + w(X)A1Y − g(A1Y,X)W,(3.6)

(∇Y w)X = q(Y )u(X)− p(Y )v(X) + g(θA1Y,X).

Next, differentiating the first equation of (2.12) covariantly and comparing the
tangential and normal parts, we have

(3.7)





∇Y U = r(Y )V − q(Y )W + ϕA1Y,

g(AαU, Y ) = −
p∑

β=2

s1β(Y )P1βα, α = 2, . . . , p.
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From the other equations of (2.12), we have similarly





∇Y V = −r(Y )U + p(Y )W + ψA1Y,

g(AαV, Y ) = −
p∑

β=2

s1β(Y )P2βα, α = 2, . . . , p,
(3.8)





∇Y W = q(Y )U − p(Y )V + θA1Y,

g(AαW,Y ) = −
p∑

β=2

s1β(Y )P3βα, α = 2, . . . , p.
(3.9)

In what follows we assume that the distinguished normal vector field ξ is parallel
with respect to the normal connection, that is, ∇⊥

Xξ = 0. Hence it follows from (3.3)
that sβ1 = 0, β = 2, . . . , p, and, consequently,

AαU = 0, AαV = 0, AαW = 0, α = 2, . . . , p

because of (3.7)–(3.9).

In particular when the ambient manifold is a quaternionic space formM
(n+p)/4

(c),
that is, a quaternionic Kähler manifold of constant Q-sectional curvature c, the

curvature tensor R of M
(n+p)/4

(c) has the form

RXY Z =
c

4
{g(Y , Z)X − g(X,Z)Y

+ g(FY ,Z)FX − g(FX,Z)FY − 2g(FX, Y )FZ

+ g(GY ,Z)GX − g(GX,Z)GY − 2g(GX, Y )GZ

+ g(HY ,Z)HX − g(HX,Z)HY − 2g(HX,Y )HZ}

for X , Y , Z tangent to M
(n+p)/4

(c) (cf. [5], [6]). So the above assumption implies
that the equation of Codazzi and Ricci is of the form

g((∇XA1)Y − (∇Y A1)X,Z)(3.10)

=
c

4
{g(ϕY,Z)u(X)− g(ϕX,Z)u(Y )− 2g(ϕX, Y )u(Z)

+ g(ψY,Z)v(X)− g(ψX,Z)v(Y )− 2g(ψX, Y )v(Z)

+ g(θY, Z)w(X)− g(θX,Z)w(Y )− 2g(θX, Y )w(Z)},
g(R(X,Y )ξα, ξβ) = g(R⊥(X,Y )ξα, ξβ) + g([Aβ , Aα]X,Y )(3.11)

for any X , Y , Z tangent to M , where R and R⊥ denote the curvature tensor of ∇
and ∇⊥, respectively (cf. [3], [9], [10], [11]).
Finally we introduce a theorem due to Kwon and one of the present authors ([9])

for later use.
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Theorem K-P. Let M be an n-dimensional QR-submanifold of QR-dimension

(p − 1) in a quaternionic projective space QP (n+p)/4(4) and let the normal vector
field ξ be parallel with respect to the normal connection. If

A1ϕ = ϕA1, A1ψ = ψA1, A1θ = θA1

on M , then π−1(M) is locally a product of M1 ×M2 where M1 and M2 lie on some

(4n1 + 3)- and (4n2 + 3)-spheres, respectively, and A1 denotes the shape operator

corresponding to ξ (π is the Hopf fibration Sn+p+3(1) → QP (n+p)/4(4)).

4. The submanifolds with the induced normal

almost contact 3-structure

In this section we introduce the notion of the normality of almost contact 3-struc-
ture in the sense of [13].
From now on we put in each coordinate neighborhood U of M




◦
∇ϕ
◦
∇ψ
◦
∇θ


 =



∇ϕ
∇ψ
∇θ


 +




0 r −q
−r 0 p

q −p 0






ϕ

ψ

θ


 ,(4.1)




◦
∇U◦
∇V◦
∇W


 =



∇U
∇V
∇W


 +




0 r −q
−r 0 p

q −p 0






U

V

W


 .(4.2)

Then it follows from (2.3) that

(4.3)




◦
∇ ′ϕ
◦
∇ ′ψ
◦
∇ ′θ


 = (sxy)




◦
∇ϕ
◦
∇ψ
◦
∇θ


 ,




◦
∇ ′U◦
∇ ′V◦
∇ ′W


 = (sxy)




◦
∇U◦
∇V◦
∇W




in U ∩ ′U . Now, in each coordinate neighborhood U , we consider local tensor fields

S(ϕi, ϕj) (i, j = 1, 2, 3) of type (1, 2) such that

S(ϕi, ϕj)(X,Y )(4.4)

= (
◦
∇ϕiXϕj)Y − (

◦
∇ϕiY ϕj)X + (

◦
∇ϕjXϕi)Y − (

◦
∇ϕjY ϕi)X

+ ϕi{(
◦
∇Y ϕj)X − (

◦
∇Xϕj)Y }+ ϕj{(

◦
∇Y ϕi)X − (

◦
∇Xϕi)Y }

+ {(
◦
∇Xui)Y − (

◦
∇Y ui)X}Uj + {(

◦
∇Xuj)Y − (

◦
∇Y uj)X}Ui
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where we again put

ϕ1 = ϕ, ϕ2 = ψ, ϕ3 = θ, U1 = U, U2 = V, U3 = W

and

(4.5) (
◦
∇Xui)Y = g(

◦
∇XUi, Y ), i = 1, 2, 3.

Then a simple computation using (4.3) implies that

S(′ϕi,
′ϕj) = (sxy)(S(ϕi, ϕj))(sxy)−1

in U ∩ ′U . Hence we have the global tensor fields Σ1 and Σ2 on M defined by

Σ1 = S(ϕ1, ϕ1) + S(ϕ2, ϕ2) + S(ϕ3, ϕ3),(4.6)

Σ2 = S(ϕ1, ϕ1)⊗ S(ϕ2, ϕ2) + S(ϕ2, ϕ2)⊗ S(ϕ3, ϕ3)(4.7)

+ S(ϕ3, ϕ3)⊗ S(ϕ1, ϕ1)− S(ϕ1, ϕ2)⊗ S(ϕ2, ϕ1)

− S(ϕ2, ϕ3)⊗ S(ϕ3, ϕ2)− S(ϕ3, ϕ1)⊗ S(ϕ1, ϕ3)

up to a sign. It is said that the induced almost contact 3-structure is normal if
Σ1 = 0 and Σ2 = 0 (for details see [13]).

Remark 4.1 ([13]). A necessary and sufficient condition in order for the almost
contact 3-structure to be normal is

S(ϕi, ϕj) = 0, i, j = 1, 2, 3.

We next consider the traceless part of δ-decomposition of the global tensor field Σ1

in the sense of Krupka ([7]). Since Σ1 is of type (1,2) and n > 2, using (3.4)–(3.6)

and (4.4)–(4.6) we can easily verify that the traceless part
◦

Σ1 of Σ1 is given by

◦
Σ1(X,Y ) = Σ1(X,Y )− 1

2(n− 1)
{u(A1ϕY )X − u(A1ϕX)Y(4.8)

+ v(A1ψY )X − v(A1ψX)Y + w(A1θY )X − w(A1θX)Y },

or equivalently

2
◦

Σ1(X,Y ) = u(Y )(A1ϕ− ϕA1)X − u(X)(A1ϕ− ϕA1)Y(4.8 ′)

+ v(Y )(A1ψ − ψA1)X − v(X)(A1ψ − ψA1)Y

+ w(Y )(A1θ − θA1)X − w(X)(A1θ − θA1)Y

− 1
n− 1

{u(A1ϕY )X − u(A1ϕX)Y + v(A1ψY )X

− v(A1ψX)Y + w(A1θY )X − w(A1θX)Y }.
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From now on we assume that
◦

Σ1 = 0 identically on M . Putting Y = U in (4.8)′

with
◦

Σ1 = 0 and using (2.13)–(2.16), we obtain

0 = (A1ϕ− ϕA1)X + u(X)ϕA1U + v(X){A1W + ψA1U}(4.9)

− w(X){A1V − θA1U}

+
1

n− 1
{u(A1ϕX) + v(A1ψX) + w(A1θX)}U,

from which, taking the inner product with U , it follows that

(4.10)
1

n− 1
(nϕA1U + ψA1V + θA1W ) = 2{u(A1W )V − u(A1V )W}.

Taking the inner product of (5.3) with V and W , respectively, and using (2.13)–
(2.16), we have

u(A1W ) = u(A1V ) = 0,

which together with (4.10) yields

nϕA1U + ψA1V + θA1W = 0.

Similarly we have

nϕA1U + ψA1V + θA1W = 0,

ϕA1U + nψA1V + θA1W = 0,

ϕA1U + ψA1V + nθA1W = 0

and, consequently,

ϕA1U = ψA1V = θA1W = 0.

Moreover, the last equations imply

A1U = u(A1U)U, A1V = v(A1V )V, A1W = w(A1W )W,

which together with (4.8) gives the following implication:

◦
Σ1 = 0 =⇒ Σ1 = 0.

Since the converse is trivial, we have
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Lemma 4.1. Let M be an n-dimensional QR-submanifold of QR-dimension

(p− 1) in a quaternionic Kähler manifold M
(n+p)/4

and let the normal vector field ξ

be parallel with respect to the normal connection. Then we have

◦
Σ1 = 0 ⇐⇒ Σ1 = 0.

By means of Lemma 4.1 we have

Theorem 1. Let M be as in Lemma 4.1. Then the following are equivalent to
each other:

(a) The almost contact 3-structure is normal.
(b) The global tensor field Σ1 defined by (4.6) vanishes.

(c) The traceless part
◦

Σ1 of Σ1 vanishes.

(d) The relation given by (2.20) is valid.

(e) A1ϕ = ϕA1, A1ψ = ψA1, A1θ = θA1.
���������

. Substituting (3.4)–(3.9) into (4.4), we can easily obtain that

S(ϕ, ϕ)(X,Y ) = 2{u(Y )(A1ϕ− ϕA1)X − u(X)(A1ϕ− ϕA1)Y },(4.11)

S(ψ, ψ)(X,Y ) = 2{v(Y )(A1ψ − ψA1)X − v(X)(A1ψ − ψA1)Y },
S(θ, θ)(X,Y ) = 2{w(Y )(A1θ − θA1)X − w(X)(A1θ − θA1)Y },

and

S(ϕ, ψ)(X,Y ) = v(Y )(A1ϕ− ϕA1)X − v(X)(A1ϕ− ϕA1)Y(4.12)

+ u(Y )(A1ψ − ψA1)X − u(X)(A1ψ − ψA1)Y,

S(ψ, θ)(X,Y ) = w(Y )(A1ψ − ψA1)X − w(X)(A1ψ − ψA1)Y

+ v(Y )(A1θ − θA1)X − v(X)(A1θ − θA1)Y,

S(θ, ϕ)(X,Y ) = u(Y )(A1θ − θA1)X − u(X)(A1θ − θA1)Y

+ w(Y )(A1ϕ− ϕA1)X − w(X)(A1ϕ− ϕA1)Y,

which together with Lemmas 2.2, 2.3 and Remark 4.1 yields the implications

(e) =⇒ (a), (e) =⇒ (b), (e) =⇒ (d).

In order to prove that the other implications are valid, it suffices to show the impli-

cation (b) =⇒ (e). Now we assume that (b) is valid. Then (4.11) implies

u(Y )(A1ϕ− ϕA1)X − u(X)(A1ϕ− ϕA1)Y(4.13)

+ v(Y )(A1ψ − ψA1)X − v(X)(A1ψ − ψA1)Y

+ w(Y )(A1θ − θA1)X − w(X)(A1θ − θA1)Y = 0.
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Putting Y = U in (4.13) and using (2.11) and (2.16), we have

(A1ϕ− ϕA1)X − u(X)ϕA1U + v(X)(A1W + ψA1U)(4.14)

− w(X)(A1V − θA1U) = 0,

from which, taking the inner product with U , it follows that

g(ϕA1U,X) = 2u(A1W )v(X)− 2u(A1V )w(X)

and, consequently,

ϕA1U = 0, u(A1W ) = 0, u(A1V ) = 0.

Similarly we have

A1U = u(A1U)U, A1V = v(A1V )V, A1W = w(A1W )W,(4.15)

u(A1V ) = v(A1U) = u(A1W ) = w(A1U)(4.16)

= v(A1W ) = w(A1V ) = 0.

Substituting (4.15) into (4.14) and using (2.16), we have

(A1ϕ− ϕA1)X + v(X){w(A1W )− u(A1U)}W(4.17)

− w(X){v(A1V )− u(A1U)}V = 0,

from which, taking the symmetric part,

2g((A1ϕ− ϕA1)X,Y ) + {w(A1W )− v(A1V )}
× {v(X)w(Y ) + v(Y )w(X)} = 0.

Putting X = V and Y = W in the last equation and using (2.16) and (4.15), we
obtain

v(A1V ) = w(A1W ).

Similarly we have
u(A1U) = v(A1V ) = w(A1W ),

which together with (4.17) gives

A1ϕ = ϕA1.

By the quite similar method we have

A1ϕ = ϕA1, A1ψ = ψA1, A1θ = θA1,

which yields the implication (b) =⇒ (e). �

Combining Theorem 1 with Theorem K-P, we have
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Theorem 2. LetM be an n-dimensionalQR-submanifold ofQR-dimension (p−1)
in QP (n+p)/4(4) and let the normal vector field ξ be parallel with respect to the
normal connection. If one of the conditions (a)–(e) stated in Theorem 1 is valid
on M , then π−1(M) is locally a product M1 ×M2 where M1 and M2 lie on some

(4n1 + 3)- and (4n2 + 3)-dimensional spheres, respectively (π is the Hopf fibration
Sn+p+3(1) → QP (n+p)/4(4)).

5. The special case of an ambient quaternionic Kähler manifold

In this section we specify the ambient manifold M as a quaternionic space form

M
(n+p)/4

(c) with c = 0 and assume that one of the conditions (a)–(e) stated in
Theorem 1 is valid on M . Then Theorem 1 implies

(5.1) A1ϕ = ϕA1, A1ψ = ψA1, A1θ = θA1,

from which, taking account of (2.9) and (2.11), we have

A1U = λU, A1V = µV, A1W = νW,

where λ = u(A1U), µ = v(A1V ), ν = w(A1W ). But, applying ψ to the first equation
of (5.1) and using (2.13) and (5.1) itself, we have

u(X)A1V = u(A1X)V,

from which, putting X = U , it follows that

A1V = λV

and, consequently, λ = µ. Similarly we λ = µ = ν which yields

(5.2) A1U = λU, A1V = λV, A1W = λW.

Differentiating the first equation of (5.2) covariantly and using (3.7), (5.1) and (5.2)
itself, we have

g((∇XA1)Y, U) + g(ϕA2
1X,Y ) = (Xλ)u(Y ) + λg(ϕA1X,Y ),

from which, taking the skew-symmetric part and making use of (3.10) with c = 0
and (5.1), it follows that

(5.3) 2g(ϕA2
1X,Y ) = (Xλ)u(Y )− (Y λ)u(X) + 2λg(ϕA1X,Y ).
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Now we put Y = U in (5.3). Then the skew-symmetry of ϕ and (2.11) imply

Xλ = (Uλ)u(X). Similary we have

Xλ = (Uλ)u(X) = (V λ)v(X) = (Wλ)w(X)

and consequently Uλ = V λ = Wλ = 0 which yield that λ is constant. Combining
this fact with (5.3) gives ϕ(A2

1X−λA1X) = 0, from which, applying ϕ and using (2.9)
and (5.2), we obtain A2

1 = λA1. Thus we have

Lemma 5.1. Let M be an n-dimensional QR-submanifold of QR-dimension

(p− 1) in a quaternionic space form M
(n+p)/4

(c) with c = 0 such that the dis-
tinguished normal vector field ξ is parallel with respect to the normal connection. If

one of the conditions (a)–(e) stated in Theorem 1 is valid on M , then

(5.4) A2
1 = λA1

and λ is constant.

In particular, we can prove

Lemma 5.2. Let M be as in Lemma 5.1. Then

(5.5) ∇A1 = 0,

provided λ 6= 0.
���������

. Differentiating (5.4) covariantly and using the fact that λ is constant,
we have

(5.6) (∇Y A1)A1X +A1(∇YA1)X = λ(∇Y A1)X,

from which, taking the skew-symmetric part and using (3.10) with c = 0, we find

(∇Y A1)A1X = (∇XA1)A1Y

and, consequently,

g((∇Y A1)A1X,Z) = g((∇XA1)A1Y, Z) = g(A1(∇XA1)Z, Y ).

On the other hand

g((∇YA1)A1X,Z) = g((∇ZA1)A1X,Y ),
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which together with the last equation gives

g((∇Y A1)A1X,Z) = g(A1(∇XA1)Y, Z),

that is, (∇Y A1)A1X = A1(∇Y A1)X . Hence (5.6) reduces to

2A1(∇Y A1)X = λ(∇Y A1)X,

from which, applying A1 and using (5.4), it is clear that

λA1(∇Y A1)X = 0

and therefore λ(∇Y A1)X = 0. Thus we complete the proof. �

Remark 5.1. When the ambient space is a quaternionic projective space
QP (n+p)/4, the assumptions stated in Lemma 5.1 yield that the shape operator A1

is cyclic-parallel, that is,

g(∇XA1)Y, Z) + g(∇Y A1)Z,X) + g(∇ZA1)X,Y ) = 0.

But, in this case we don’t need the hypothesis λ 6= 0. (For details, see [9].)

6. The main results when M = Q(n+p)/4

In this section we specialize to the case of an ambient quaternionic number space
Q(n+p)/4. In this case, as already shown in Lemma 5.1, the eigenvalues κ of the

shape operator A1 satisfy

κ(κ− λ) = 0.

Moreover it is clear from (5.1) and (5.2) that the multiplicity of λ must be 4m+3 for
some integer m at each point in M . Since λ is constant and traceA1 is continuous,

the multiplicity r of λ is constant. Hence it suffices to consider the following three
cases

(i) r = 0, (ii) r = n, (iii) 3 6 r < n.

We will start with the first case (i). In this case A1 = 0. Since, by assumption, the
normal vector field ξ is parallel with respect to the normal connection, Erbacher’s re-

duction theorem ([4]) yields that there exists a totally geodesic hypersurface Rn+p−1

in Q(n+p)/4 which contains M .
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Next, we consider the case (ii). In this case A1 = λI . Let x be the position vector

of M and put p := x+ λ−1ξ. Then

∇Xp = ∇X(x+ λ−1ξ) = X − λ−1(A1X −∇⊥
Xξ) = 0,

which means that p is a fixed point in Q(n+p)/4. Moreover, it is clear that ‖x −
p‖ = |λ|−1 and consequently M is contained in the hypersphere Sn+p−1(|λ|−1) of
radius |λ|−1 centered at p.

Finally we consider the case (iii). Since the multiplicity r of λ is constant, the
eigenspaces corresponding to λ and 0 determine distributions of dimension r and
n− r, which will be denoted by Dλ and D0, respectively. Furthermore, by means of
Lemma 5.2, ∇A1 = 0 and consequently it is easily verified that Dλ and D0 are both

involutive and that Dλ is parallel along D0 and vice versa. Denoting byMλ andM0

the integral submanifolds of Dλ and D0, respectively, we can see that M is locally

the Riemannian product Mλ ×M0.
From now on we shall study Mλ and M0 in more detail and start with Mλ. Let

Z1, . . . , Zn−r be orthonormal vector fields belonging to D0. Since Mλ is totally
geodesic in M , the shape operators A′

1, . . . , A
′
n−r corresponding to those normal

vectors vanish. On the other hand we may considerMλ as a submanifold of Q(n+p)/4.
Then the vector fields Z1, . . . , Zn−r, ξ1, . . . , ξp form an orthonormal set of local vector

fields normal to Mλ. In this case the shape operators corresponding to Z1, . . . , Zn−r

also vanish. Hence it is clear from (3.11) that

(6.1) ′R⊥
X,Y Zi = 0, i = 1, . . . , n− r

and moreover [A1, Aα] = 0, where ′R⊥ denotes the curvature tensor of the normal

connection ′∇⊥ of Mλ in Q(n+p)/4. On the other hand, we can easily see that for
any X ∈ Dλ

g(′∇⊥
XZi, ξβ) = g(Zi, AβX), β = 1, . . . , p.

But, since [A1, Aβ] = 0, β = 1, . . . , p, which is a direct consequence of (3.11) and
∇⊥ξ1 = 0, we have AβX ∈ Dλ and, consequently,

g(′∇⊥
XZi, ξβ) = 0, β = 1, . . . , p,

that is, ′∇⊥
XZi ∈ D0. Thus, by the same method as in the proof of Proposition 1.1

in [3, p. 99], we may prove that (6.1) yields the existence of the normal vector fields
Z1, . . . , Zn−r such that

(6.2) ′∇⊥
XZi = 0, i = 1, . . . , n− r

for any tangent vector field X to Mλ.
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Now let x be the position vector of Mλ in Q(n+p)/4 and X ∈ Dλ. Then, by

using (6.2) and A′i = 0, i = 1, . . . , n− r, we have

Xg(x, Zi) = g(X,Zi) = 0, i = 1, . . . , n− r,

that is,

(6.3) g(x, Zi) = ci, i = 1, . . . , n− r,

where ci is constant. Moreover, putting p := x+ λ−1ξ, we can see that

∇Xp = X − λ−1A1X = 0

and ‖x − p‖ = |λ|−1. Therefore Mλ belongs to the intersection of the hypersphere

of radius |λ|−1 centered at p and the n− r hyperplanes defined by (6.3). We notice
that p is contained in the n− r hyperplanes.

In a similar way it can be shown that M0 belongs to the intersection of the r + 1
hyperplanes given by

g(x, ξ) = c, g(x, Zs) = cs, s = n− r + 1, . . . , n.

Summing up, we may conclude

Theorem 2. Let M be an n-dimensional QR-submanifold of QR-dimension

(p− 1) in Q(n+p)/4 which satisfies one of the conditions stated in Theorem 1. If

the distinguished normal vector field ξ is parallel with respect to the normal connec-

tion, then we have one of the following cases:

(a) M is contained in a hyperplane orthogonal to ξ.

(b) M is contained in a hypersphere orthogonal to ξ.

(c) M is locally a Riemannian product Mλ × M0, where Mλ is contained in a

(p+r−1)-dimensional sphere S(p+r−1) andM0 is contained in an (n+p−r−1)-
dimensional subspace R(n+p−r−1).
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