Czechoslovak Mathematical Journal

Shoichi Funabashi; Jin Sulk Dak; Yang Jae Shin
 On the normality of an almost contact 3 -structure on $Q R$-submanifolds

Czechoslovak Mathematical Journal, Vol. 53 (2003), No. 3, 571-589
Persistent URL: http://dml.cz/dmlcz/127824

Terms of use:

© Institute of Mathematics AS CR, 2003

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz

ON THE NORMALITY OF AN ALMOST CONTACT 3-STRUCTURE ON $Q R$-SUBMANIFOLDS

S. Funabashi, Saitama, J. S. Pak, Taegu, and Y. J. Shin, Masan

(Received August 10, 2000)

Abstract. We study n-dimensional $Q R$-submanifolds of $Q R$-dimension ($p-1$) immersed in a quaternionic space form $Q P^{(n+p) / 4}(c), c \geqslant 0$, and, in particular, determine such submanifolds with the induced normal almost contact 3 -structure.

Keywords: quaternionic projective space, quaternionic number space, $Q R$-submanifold, normal almost contact 3 -structure

MSC 2000: 53C40

1. Introduction

Let M be an n-dimensional $Q R$-submanifold of $Q R$-dimension ($p-1$) isometrically immersed in a quaternionic Kähler manifold $\bar{M}^{(n+p) / 4}$. Denoting by $\{F, G, H\}$ the quaternionic Kähler structure of $\bar{M}^{(n+p) / 4}$, it follows by definition (cf. [9]) that there exists a $(p-1)$-dimensional subbundle ν of the normal bundle $T M^{\perp}$ such that

$$
\left\{\begin{array}{l}
F \nu_{x} \subset \nu_{x}, \quad G \nu_{x} \subset \nu_{x}, \quad H \nu_{x} \subset \nu_{x}, \tag{1.1}\\
F \nu_{x}^{\perp} \subset T_{x} M, \quad G \nu_{x}^{\perp} \subset T_{x} M, \quad H \nu_{x}^{\perp} \subset T_{x} M
\end{array}\right.
$$

for each $x \in M$, where ν^{\perp} denotes the complementary orthogonal subbundle to ν in $T M^{\perp}$. Thus there is a naturally distinguished unit normal vector field ξ to M such that $\nu_{x}^{\perp}=\operatorname{Span}\{\xi\}$ for each $x \in M$, and the vector fields U, V, W defined by

$$
\begin{equation*}
U=-F \xi, \quad V=-G \xi, \quad W=-H \xi \tag{1.2}
\end{equation*}
$$

The financial support of Special Research Foundation of Nippon Institute of Technology in 1999, No. 0201 (the first author).
Supported by the Research Foundation of Kyungnam University, 1998 (the third author).
are tangent to M. On the other hand, each tangent space $T_{x} M$ is decomposed as

$$
T_{x} M=D_{x} \oplus D_{x}^{\perp},
$$

where D_{x} is the maximal quaternionic invariant subspace of $T_{x} M$ defined by

$$
D_{x}=T_{x} M \cap F T_{x} M \cap G T_{x} M \cap H T_{x} M
$$

and D_{x}^{\perp} its orthogonal complement in $T_{x} M$. In our case, as already shown in [2], [9], $D_{x}^{\perp}=\operatorname{Span}\{U, V, W\}$ and so $D: x \mapsto D_{x}$ defines an $(n-3)$-dimensional distribution on M. But D cannot be a quaternionic $C R$-distribution in the sense of [1]. Further it is clear that

$$
F T_{x} M, G T_{x} M, H T_{x} M \subset T_{x} M \oplus \operatorname{Span}\{\xi\}
$$

and, consequently, for any tangent vector X to M, we have the following decomposition in tangential and normal components

$$
\left\{\begin{array}{l}
F X=\varphi X+u(X) \xi, \quad G X=\psi X+v(X) \xi \tag{1.3}\\
H X=\theta X+w(X) \xi
\end{array}\right.
$$

By means of the hermitian property of $\{F, G, H\}$ it can be easily shown that φ, ψ and θ are skew-symmetric endomorphisms acting on $T_{x} M$. Moreover it is known ([9], [10], [11]) that the aggregate $\{\varphi, \psi, \theta, u, v, w\}$ gives an almost contact 3 -structure on the $Q R$-submanifold M of $Q R$-dimension $(p-1)$ in $\bar{M}^{(n+p) / 4}$ (see also Proposition 2.1).

On the other hand the normality of an almost contact 3 -structure was defined by one of the present authors ([13]) and by Yano, Ishihara and Konishi ([14]) in a different point of view. But, in this paper, it will be shown that the normalities of the induced almost contact 3 -structure in the sense of [13] and [14] are equivalent to each other, and the submanifold with the induced normal almost contact 3 -structure will be determined when the ambient manifold \bar{M} is a quaternionic space form of constant Q-sectional curvature $c \geqslant 0$.

2. Fundamental formulas for $Q R$-submanifolds

Let $\bar{M}^{(n+p) / 4}$ be a real $(n+p)$-dimensional quaternionic Kähler manifold. Then, by definition, there is a 3 -dimensional vector bundle V consisting of tensor fields of type $(1,1)$ over \bar{M} satisfying the following conditions (a), (b) and (c):
(a) In any coordinate neighborhood $\overline{\mathscr{U}}$, there is a local basis $\{F, G, H\}$ of V such that

$$
\left\{\begin{array}{l}
F^{2}=-I, \quad G^{2}=-I, \quad H^{2}=-I, \tag{2.1}\\
F G=-G F=H, \quad G H=-H G=F, \quad H F=-F H=G .
\end{array}\right.
$$

(b) There is a Riemannian metric g which is hermitian with respect to all of F, G and H.
(c) For the Riemannian connection $\bar{\nabla}$ with respect to g

$$
\left(\begin{array}{c}
\bar{\nabla} F \tag{2.2}\\
\bar{\nabla} G \\
\bar{\nabla} H
\end{array}\right)=\left(\begin{array}{rrr}
0 & r & -q \\
-r & 0 & p \\
q & -p & 0
\end{array}\right)\left(\begin{array}{l}
F \\
G \\
H
\end{array}\right)
$$

where p, q and r are local 1-forms defined in $\overline{\mathscr{U}}$. Such a local basis $\{F, G, H\}$ is called a canonical local basis of the bundle V in $\overline{\mathscr{U}}$.
For canonical local bases $\{F, G, H\}$ and $\left\{{ }^{\prime} F,{ }^{\prime} G,{ }^{\prime} H\right\}$ of V in coordinate neighborhoods $\overline{\mathscr{U}}$ and ${ }^{\prime} \overline{\mathscr{U}}$, it follows that in $\overline{\mathscr{U}} \cap{ }^{\prime} \overline{\mathscr{U}}$

$$
\left(\begin{array}{c}
{ }^{\prime} F \tag{2.3}\\
\prime G \\
\prime \\
\prime
\end{array}\right)=\left(s_{x y}\right)\left(\begin{array}{l}
F \\
G \\
H
\end{array}\right) \quad(x, y=1,2,3)
$$

with differentiable functions $s_{x y}$, where the matrix $S=\left(s_{x y}\right)$ is contained in $S O(3)$ as a consequence of (2.1). As is well known [5], [6], every quaternionic Kähler manifold is orientable.

From now on we consider a real n-dimensional $Q R$-submanifold M of $Q R$ dimension $(p-1)$ immersed in $\bar{M}^{(n+p) / 4}$ and use the same notations as in Section 1. We now take a local orthonormal basis $\left\{\xi_{\alpha} ; \alpha=1, \ldots, p\right\}\left(\xi_{1}=\xi\right)$ of normal vectors to M and consider the following decompositions in tangential and normal components:

$$
\left\{\begin{array}{l}
F \xi_{\alpha}=-U_{\alpha}+P_{1} \xi_{\alpha}, \quad G \xi_{\alpha}=-V_{\alpha}+P_{2} \xi_{\alpha} \tag{2.4}\\
H \xi_{\alpha}=-W_{\alpha}+P_{3} \xi_{\alpha}
\end{array}\right.
$$

$(\alpha=1, \ldots, p)$. Then P_{1}, P_{2} and P_{3} are skew-symmetric endomorphisms acting on $T_{x} M^{\perp}$. Moreover, by means of (1.3), the hermitian property of $\{F, G, H\}$ and (2.4) imply

$$
\begin{align*}
& \left\{\begin{array}{l}
g\left(X, \varphi U_{\alpha}\right)=-u(X) g\left(\xi_{1}, P_{1} \xi_{\alpha}\right), \\
g\left(X, \psi V_{\alpha}\right)=-v(X) g\left(\xi_{1}, P_{2} \xi_{\alpha}\right), \\
g\left(X, \theta W_{\alpha}\right)=-w(X) g\left(\xi_{1}, P_{3} \xi_{\alpha}\right), \quad \alpha=1, \ldots, p
\end{array}\right. \tag{2.5}\\
& \left\{\begin{array}{l}
g\left(U_{\alpha}, U_{\beta}\right)=\delta_{\alpha \beta}-g\left(P_{1} \xi_{\alpha}, P_{1} \xi_{\beta}\right), \\
g\left(V_{\alpha}, V_{\beta}\right)=\delta_{\alpha \beta}-g\left(P_{2} \xi_{\alpha}, P_{2} \xi_{\beta}\right), \\
g\left(W_{\alpha}, W_{\beta}\right)=\delta_{\alpha \beta}-g\left(P_{3} \xi_{\alpha}, P_{3} \xi_{\beta}\right), \quad \alpha, \beta=1, \ldots, p
\end{array}\right. \tag{2.6}
\end{align*}
$$

Also, from $g\left(F X, \xi_{\alpha}\right)=-g\left(X, F \xi_{\alpha}\right), g\left(G X, \xi_{\alpha}\right)=-g\left(X, G \xi_{\alpha}\right)$ and $g\left(H X, \xi_{\alpha}\right)=$ $-g\left(X, H \xi_{\alpha}\right)$, it follows that

$$
g\left(X, U_{\alpha}\right)=u(X) \delta_{1 \alpha}, \quad g\left(X, V_{\alpha}\right)=v(X) \delta_{1 \alpha}, \quad g\left(X, W_{\alpha}\right)=w(X) \delta_{1 \alpha}
$$

and hence

$$
\begin{gather*}
g\left(U_{1}, X\right)=u(X), \quad g\left(V_{1}, X\right)=v(X), \quad g\left(W_{1}, X\right)=w(X), \tag{2.7}\\
U_{\alpha}=0, \quad V_{\alpha}=0, \quad W_{\alpha}=0, \quad \alpha=2, \ldots, p
\end{gather*}
$$

On the other hand, comparing (1.2) and (2.4) with $\alpha=1$, we have $U_{1}=U, V_{1}=V$, $W_{1}=W$, which together with (2.7) imply

$$
\begin{equation*}
g(U, X)=u(X), \quad g(V, X)=v(X), \quad g(W, X)=w(X) \tag{2.8}
\end{equation*}
$$

In the sequel we shall use the notations U, V, W instead of U_{1}, V_{1}, W_{1}.
Next, applying F to the first equation of (1.3) and using (2.4), (2.7) and (2.8), we have

$$
\varphi^{2} X=-X+u(X) U, \quad u(X) P_{1} \xi=-u(\varphi X) \xi
$$

Similarly we have

$$
\begin{align*}
& \left\{\begin{array}{l}
\varphi^{2} X=-X+u(X) U, \quad \psi^{2} X=-X+v(X) V \\
\theta^{2} X=-X+w(X) W,
\end{array}\right. \tag{2.9}\\
& \left\{\begin{array}{l}
u(X) P_{1} \xi=-u(\varphi X) \xi, \quad v(X) P_{2} \xi=-v(\psi X) \xi \\
w(X) P_{3} \xi=-w(\theta X) \xi,
\end{array}\right. \tag{2.10}
\end{align*}
$$

from which, taking account of the skew-symmetry of P_{1}, P_{2} and P_{3} and using (2.5), we also have

$$
\left\{\begin{array}{l}
u(\varphi X)=0, \quad v(\psi X)=0, \quad w(\theta X)=0 \tag{2.11}\\
\varphi U=0, \quad \psi V=0, \quad \theta W=0 \\
P_{1} \xi=0, \quad P_{2} \xi=0, \quad P_{3} \xi=0
\end{array}\right.
$$

So (2.4) can be rewritten in the form

$$
\left\{\begin{array}{l}
F \xi=-U, \quad G \xi=-V, \quad H \xi=-W \tag{2.12}\\
F \xi_{\alpha}=P_{1} \xi_{\alpha}, \quad G \xi_{\alpha}=P_{2} \xi_{\alpha}, \quad H \xi_{\alpha}=P_{3} \xi_{\alpha}
\end{array}\right.
$$

where $\alpha=2, \ldots, p$.

Applying G and H to the first equation of (1.3) and using (1.3), (2.1) and (2.12), we have

$$
\begin{aligned}
& \theta X+w(X) \xi=-\psi(\varphi X)-v(\varphi X) \xi+u(X) V \\
& \psi X+v(X) \xi=\theta(\varphi X)+w(\varphi X) \xi-u(X) W
\end{aligned}
$$

and consequently

$$
\left\{\begin{array}{l}
\psi(\varphi X)=-\theta X+u(X) V, \quad v(\varphi X)=-w(X) \tag{2.13}\\
\theta(\varphi X)=\psi X+u(X) W, \quad w(\varphi X)=v(X)
\end{array}\right.
$$

From the other equations of (1.3) we have by a quite similar method

$$
\begin{align*}
& \left\{\begin{array}{l}
\varphi(\psi X)=\theta X+v(X) U, \quad u(\psi X)=w(X) \\
\theta(\psi X)=-\varphi X+v(X) W, \quad w(\psi X)=-u(X)
\end{array}\right. \tag{2.14}\\
& \left\{\begin{array}{l}
\varphi(\theta X)=-\psi X+w(X) U, \quad u(\theta X)=-v(X) \\
\psi(\theta X)=\varphi X+w(X) V, \quad v(\theta X)=u(X)
\end{array}\right. \tag{2.15}
\end{align*}
$$

From the first three equations of (2.12), we also have

$$
\left\{\begin{array}{l}
\psi U=-W, \quad v(U)=0, \quad \theta U=V, \quad w(U)=0 \tag{2.16}\\
\varphi V=W, \quad u(V)=0, \quad \theta V=-U, \quad w(V)=0 \\
\varphi W=-V, \quad u(W)=0, \quad \psi W=U, \quad v(W)=0
\end{array}\right.
$$

On the other hand, we may put

$$
\begin{cases}P_{1} \xi_{\alpha}=\sum_{\beta=2}^{p} P_{1 \alpha \beta} \xi_{\beta}, & P_{2} \xi_{\alpha}=\sum_{\beta=2}^{p} P_{2 \alpha \beta} \xi_{\beta} \tag{2.17}\\ P_{3} \xi_{\alpha}=\sum_{\beta=2}^{p} P_{3 \alpha \beta} \xi_{\beta}, & \alpha=2, \ldots, p\end{cases}
$$

from which, substituting into the last three equations of (2.12) and using the hermitian property of $\{F, G, H\}$, we have

$$
\left\{\begin{array}{l}
\sum_{\gamma} P_{1 \alpha \gamma} P_{1 \gamma \beta}=-\delta_{\alpha \beta}, \quad \sum_{\gamma} P_{2 \alpha \gamma} P_{2 \gamma \beta}=-\delta_{\alpha \beta}, \tag{2.18}\\
\sum_{\gamma} P_{3 \alpha \gamma} P_{3 \gamma \beta}=-\delta_{\alpha \beta} .
\end{array}\right.
$$

Also, from (2.1), (2.12) and (2.17), we have

$$
\begin{cases}\sum_{\beta} P_{1 \alpha \beta} P_{2 \beta \gamma}=-P_{3 \alpha \gamma}, & \sum_{\beta} P_{1 \alpha \beta} P_{3 \beta \gamma}=P_{2 \alpha \gamma} \tag{2.19}\\ \sum_{\beta} P_{2 \alpha \beta} P_{3 \beta \gamma}=-P_{1 \alpha \gamma}, & \sum_{\beta} P_{2 \alpha \beta} P_{1 \beta \gamma}=P_{3 \alpha \gamma} \\ \sum_{\beta} P_{3 \alpha \beta} P_{1 \beta \gamma}=-P_{2 \alpha \gamma}, & \sum_{\beta} P_{3 \alpha \beta} P_{2 \beta \gamma}=P_{1 \alpha \gamma}\end{cases}
$$

The equations (2.6)-(2.11) and (2.13)-(2.16) tell us

Proposition 2.1 ([9], [10], [11]). An n-dimensional $Q R$-submanifold of $Q R$ dimension $(p-1)$ in a quaternionic Kähler manifold $\bar{M}^{(n+p) / 4}$ admits an almost contact 3 -structure.

In general if the condition

$$
\left[\varphi_{i}, \varphi_{i}\right]+d u_{i} \otimes U_{i}=0
$$

is satisfied for some $1 \leqslant i \leqslant 3$, then the almost contact structure $\left(\varphi_{i}, U_{i}, u_{i}\right)$ is said to be normal, where we put

$$
\begin{gathered}
\varphi_{1}=\varphi, \quad \varphi_{2}=\psi, \quad \varphi_{3}=\theta \\
U_{1}=U, \quad U_{2}=V, \quad U_{3}=W ; \quad u_{1}=u, \quad u_{2}=v, \quad u_{3}=w
\end{gathered}
$$

and $\left[\varphi_{i}, \varphi_{i}\right]$ denotes the Nijenhuis tensor of φ_{i}. In their papers [8] and [14], Ishihara, Konishi, Kuo and Yano have proved

Lemma 2.2. If, for an almost contact 3-structure $\left\{\left(\varphi_{i}, U_{i}, u_{i}\right) ; i=1,2,3\right\}$, any two of the almost contact structures $\left(\varphi_{i}, U_{i}, u_{i}\right)$ are normal, then so is the third.

Moreoreover, in [14] the following lemma was proved.

Lemma 2.3. For an almost contact 3 -structure $\left\{\left(\varphi_{i}, U_{i}, u_{i}\right) ; i=1,2,3\right\}$, a necessary and sufficient condition in order that the almost contact structures $\left(\varphi_{i}, U_{i}, u_{i}\right)$ are all normal is that the condition

$$
\left\{\begin{array}{l}
2\left[\varphi_{1}, \varphi_{2}\right]+d u_{1} \otimes U_{2}+d u_{2} \otimes U_{1}=0 \tag{2.20}\\
\mathscr{L}_{U_{1}} \varphi_{2}+\mathscr{L}_{U_{2}} \varphi_{1}=0, \quad d u_{1} \bar{\wedge} \varphi_{2}+d u_{2} \bar{\wedge} \varphi_{1}=0
\end{array}\right.
$$

be valid, where $\left[\varphi_{1}, \varphi_{2}\right]$ denotes the Nijenhuis tensor of φ_{1} and $\varphi_{2}, d u_{i} \bar{\wedge} \varphi_{j}$ the 2 -form defined by

$$
\left(d u_{i} \bar{\wedge} \varphi_{j}\right)(X, Y)=d u_{i}\left(\varphi_{j} X, Y\right)+d u_{i}\left(X, \varphi_{j} Y\right)
$$

and $\mathscr{L}_{U_{i}}$ the Lie derivative with respect to U_{i}.

3. Further properties of the induced almost contact 3-structure

In this section we shall use the same notations and terminology as in the previous section.

Now let ∇ be the Levi-Cività connection on M and ∇^{\perp} the normal connection induced from $\bar{\nabla}$ in the normal bundle $T M^{\perp}$ of M. Then Gauss and Weingarten formulae are given by

$$
\begin{align*}
\bar{\nabla}_{X} Y & =\nabla_{X} Y+h(X, Y) \tag{3.1}\\
\bar{\nabla}_{X} \xi_{\alpha} & =-A_{\alpha} X+\nabla_{X}^{\perp} \xi_{\alpha}, \quad \alpha=1, \ldots, p \tag{3.2}
\end{align*}
$$

for X, Y tangent to M. Here h denotes the second fundamental form and A_{α} the shape operator corresponding to ξ_{α}. They are related by $h(X, Y)=$ $\sum_{\alpha=1}^{p} g\left(A_{\alpha} X, Y\right) \xi_{\alpha}$. Furthermore, put

$$
\begin{equation*}
\nabla \stackrel{\perp}{X} \xi_{\alpha}=\sum_{\beta=1}^{p} s_{\alpha \beta}(X) \xi_{\beta} \tag{3.3}
\end{equation*}
$$

where $\left(s_{\alpha \beta}\right)$ is the skew-symmetric matrix of connection forms of ∇^{\perp}.
Differentiating the first equation of (1.3) covariantly and using (1.3), (2.2), (2.4), (2.7), (3.1) and (3.2), we have

$$
\begin{align*}
& \left(\nabla_{Y} \varphi\right) X=r(Y) \psi X-q(Y) \theta X+u(X) A_{1} Y-g\left(A_{1} Y, X\right) U \tag{3.4}\\
& \left(\nabla_{Y} u\right) X=r(Y) v(X)-q(Y) w(X)+g\left(\varphi A_{1} Y, X\right)
\end{align*}
$$

From the other equations of (1.3) we also have

$$
\begin{align*}
\left(\nabla_{Y} \psi\right) X & =-r(Y) \varphi X+p(Y) \theta X+v(X) A_{1} Y-g\left(A_{1} Y, X\right) V \tag{3.5}\\
\left(\nabla_{Y} v\right) X & =-r(Y) u(X)+p(Y) w(X)+g\left(\psi A_{1} Y, X\right) \\
\left(\nabla_{Y} \theta\right) X & =q(Y) \varphi X-p(Y) \psi X+w(X) A_{1} Y-g\left(A_{1} Y, X\right) W \tag{3.6}\\
\left(\nabla_{Y} w\right) X & =q(Y) u(X)-p(Y) v(X)+g\left(\theta A_{1} Y, X\right)
\end{align*}
$$

Next, differentiating the first equation of (2.12) covariantly and comparing the tangential and normal parts, we have

$$
\left\{\begin{array}{l}
\nabla_{Y} U=r(Y) V-q(Y) W+\varphi A_{1} Y, \tag{3.7}\\
g\left(A_{\alpha} U, Y\right)=-\sum_{\beta=2}^{p} s_{1 \beta}(Y) P_{1 \beta \alpha}, \quad \alpha=2, \ldots, p
\end{array}\right.
$$

From the other equations of (2.12), we have similarly

$$
\begin{align*}
& \left\{\begin{array}{l}
\nabla_{Y} V=-r(Y) U+p(Y) W+\psi A_{1} Y, \\
g\left(A_{\alpha} V, Y\right)=-\sum_{\beta=2}^{p} s_{1 \beta}(Y) P_{2 \beta \alpha}, \quad \alpha=2, \ldots, p
\end{array}\right. \tag{3.8}\\
& \left\{\begin{array}{l}
\nabla_{Y} W=q(Y) U-p(Y) V+\theta A_{1} Y, \\
g\left(A_{\alpha} W, Y\right)=-\sum_{\beta=2}^{p} s_{1 \beta}(Y) P_{3 \beta \alpha}, \quad \alpha=2, \ldots, p
\end{array}\right. \tag{3.9}
\end{align*}
$$

In what follows we assume that the distinguished normal vector field ξ is parallel with respect to the normal connection, that is, $\nabla \frac{\perp}{X} \xi=0$. Hence it follows from (3.3) that $s_{\beta 1}=0, \beta=2, \ldots, p$, and, consequently,

$$
A_{\alpha} U=0, \quad A_{\alpha} V=0, \quad A_{\alpha} W=0, \quad \alpha=2, \ldots, p
$$

because of (3.7)-(3.9).
In particular when the ambient manifold is a quaternionic space form $\bar{M}^{(n+p) / 4}(c)$, that is, a quaternionic Kähler manifold of constant Q-sectional curvature c, the curvature tensor \bar{R} of $\bar{M}^{(n+p) / 4}(c)$ has the form

$$
\begin{aligned}
\bar{R}_{\overline{X Y}} \bar{Z}= & \frac{c}{4}\{g(\bar{Y}, \bar{Z}) \bar{X}-g(\bar{X}, \bar{Z}) \bar{Y} \\
& +g(F \bar{Y}, \bar{Z}) F \bar{X}-g(F \bar{X}, \bar{Z}) F \bar{Y}-2 g(F \bar{X}, \bar{Y}) F \bar{Z} \\
& +g(G \bar{Y}, \bar{Z}) G \bar{X}-g(G \bar{X}, \bar{Z}) G \bar{Y}-2 g(G \bar{X}, \bar{Y}) G \bar{Z} \\
& +g(H \bar{Y}, \bar{Z}) H \bar{X}-g(H \bar{X}, \bar{Z}) H \bar{Y}-2 g(H \bar{X}, \bar{Y}) H \bar{Z}\}
\end{aligned}
$$

for $\bar{X}, \bar{Y}, \bar{Z}$ tangent to $\bar{M}^{(n+p) / 4}(c)$ (cf. [5], [6]). So the above assumption implies that the equation of Codazzi and Ricci is of the form

$$
\begin{align*}
g\left(\left(\nabla_{X} A_{1}\right) Y\right. & \left.-\left(\nabla_{Y} A_{1}\right) X, Z\right) \tag{3.10}\\
= & \frac{c}{4}\{g(\varphi Y, Z) u(X)-g(\varphi X, Z) u(Y)-2 g(\varphi X, Y) u(Z) \\
& +g(\psi Y, Z) v(X)-g(\psi X, Z) v(Y)-2 g(\psi X, Y) v(Z) \\
& +g(\theta Y, Z) w(X)-g(\theta X, Z) w(Y)-2 g(\theta X, Y) w(Z)\},
\end{align*}
$$

$$
\begin{equation*}
g\left(\bar{R}(X, Y) \xi_{\alpha}, \xi_{\beta}\right)=g\left(R^{\perp}(X, Y) \xi_{\alpha}, \xi_{\beta}\right)+g\left(\left[A_{\beta}, A_{\alpha}\right] X, Y\right) \tag{3.11}
\end{equation*}
$$

for any X, Y, Z tangent to M, where R and R^{\perp} denote the curvature tensor of ∇ and ∇^{\perp}, respectively (cf. [3], [9], [10], [11]).

Finally we introduce a theorem due to Kwon and one of the present authors ([9]) for later use.

Theorem K-P. Let M be an n-dimensional $Q R$-submanifold of $Q R$-dimension $(p-1)$ in a quaternionic projective space $Q P^{(n+p) / 4}(4)$ and let the normal vector field ξ be parallel with respect to the normal connection. If

$$
A_{1} \varphi=\varphi A_{1}, \quad A_{1} \psi=\psi A_{1}, \quad A_{1} \theta=\theta A_{1}
$$

on M, then $\pi^{-1}(M)$ is locally a product of $M_{1} \times M_{2}$ where M_{1} and M_{2} lie on some $\left(4 n_{1}+3\right)$ - and $\left(4 n_{2}+3\right)$-spheres, respectively, and A_{1} denotes the shape operator corresponding to ξ (π is the Hopf fibration $S^{n+p+3}(1) \rightarrow Q P^{(n+p) / 4}(4)$).

4. The submanifolds with the induced normal ALMOST CONTACT 3-STRUCTURE

In this section we introduce the notion of the normality of almost contact 3-structure in the sense of [13].

From now on we put in each coordinate neighborhood \mathscr{U} of M

$$
\begin{align*}
& \left(\begin{array}{c}
\stackrel{\circ}{\nabla} \varphi \\
\stackrel{\circ}{\nabla} \psi \\
\stackrel{\circ}{\nabla} \theta
\end{array}\right)=\left(\begin{array}{c}
\nabla \varphi \\
\nabla \psi \\
\nabla \theta
\end{array}\right)+\left(\begin{array}{rrr}
0 & r & -q \\
-r & 0 & p \\
q & -p & 0
\end{array}\right)\left(\begin{array}{l}
\varphi \\
\psi \\
\theta
\end{array}\right), \tag{4.1}\\
& \left(\begin{array}{c}
\stackrel{\circ}{\nabla} U \\
\stackrel{\circ}{\nabla} V \\
\stackrel{\circ}{\nabla} W
\end{array}\right)=\left(\begin{array}{c}
\nabla U \\
\nabla V \\
\nabla W
\end{array}\right)+\left(\begin{array}{rrr}
0 & r & -q \\
-r & 0 & p \\
q & -p & 0
\end{array}\right)\left(\begin{array}{c}
U \\
V \\
W
\end{array}\right) . \tag{4.2}
\end{align*}
$$

Then it follows from (2.3) that

$$
\left(\begin{array}{c}
\stackrel{\circ}{\nabla^{\prime}} \varphi \tag{4.3}\\
\stackrel{\circ}{\nabla^{\prime}} \psi \\
\stackrel{\circ}{\nabla^{\prime}} \theta
\end{array}\right)=\left(s_{x y}\right)\left(\begin{array}{c}
\stackrel{\circ}{\nabla} \varphi \\
\stackrel{\circ}{\nabla} \psi \\
\stackrel{\circ}{\nabla} \theta
\end{array}\right), \quad\left(\begin{array}{c}
\stackrel{\circ}{\nabla^{\prime}} U \\
\stackrel{\circ}{\nabla^{\prime}} V \\
\stackrel{\circ}{\nabla}^{\prime} W
\end{array}\right)=\left(s_{x y}\right)\left(\begin{array}{c}
\stackrel{\circ}{\nabla} U \\
\stackrel{\circ}{\nabla} V \\
\stackrel{\circ}{\nabla} W
\end{array}\right)
$$

in $\mathscr{U} \cap^{\prime} \mathscr{U}$. Now, in each coordinate neighborhood \mathscr{U}, we consider local tensor fields $S\left(\varphi_{i}, \varphi_{j}\right)(i, j=1,2,3)$ of type $(1,2)$ such that

$$
\begin{align*}
S\left(\varphi_{i}, \varphi_{j}\right) & (X, Y) \tag{4.4}\\
= & \left(\stackrel{\circ}{\nabla}_{\varphi_{i} X} \varphi_{j}\right) Y-\left(\stackrel{\circ}{\nabla}_{\varphi_{i} Y} \varphi_{j}\right) X+\left(\stackrel{\circ}{\nabla}_{\varphi_{j} X} \varphi_{i}\right) Y-\left(\stackrel{\circ}{\nabla}_{\varphi_{j} Y} \varphi_{i}\right) X \\
& +\varphi_{i}\left\{\left(\stackrel{\circ}{\nabla}_{Y} \varphi_{j}\right) X-\left(\stackrel{\circ}{\nabla}_{X} \varphi_{j}\right) Y\right\}+\varphi_{j}\left\{\left(\stackrel{\circ}{\nabla}_{Y}\right) X-\left(\stackrel{\circ}{\nabla}_{X} \varphi_{i}\right) Y\right\} \\
& +\left\{\left(\stackrel{\circ}{\nabla}_{X} u_{i}\right) Y-\left(\stackrel{\circ}{\nabla}_{Y} u_{i}\right) X\right\} U_{j}+\left\{\left(\stackrel{\circ}{\nabla}_{X} u_{j}\right) Y-\left(\stackrel{\circ}{\nabla}_{Y} u_{j}\right) X\right\} U_{i}
\end{align*}
$$

where we again put

$$
\varphi_{1}=\varphi, \quad \varphi_{2}=\psi, \quad \varphi_{3}=\theta, \quad U_{1}=U, \quad U_{2}=V, \quad U_{3}=W
$$

and

$$
\begin{equation*}
\left(\stackrel{\circ}{\nabla}_{X} u_{i}\right) Y=g\left(\stackrel{\circ}{\nabla}_{X} U_{i}, Y\right), \quad i=1,2,3 . \tag{4.5}
\end{equation*}
$$

Then a simple computation using (4.3) implies that

$$
S\left({ }^{\prime} \varphi_{i},{ }^{\prime} \varphi_{j}\right)=\left(s_{x y}\right)\left(S\left(\varphi_{i}, \varphi_{j}\right)\right)\left(s_{x y}\right)^{-1}
$$

in $\mathscr{U} \cap^{\prime} \mathscr{U}$. Hence we have the global tensor fields Σ_{1} and Σ_{2} on M defined by

$$
\begin{align*}
\Sigma_{1}= & S\left(\varphi_{1}, \varphi_{1}\right)+S\left(\varphi_{2}, \varphi_{2}\right)+S\left(\varphi_{3}, \varphi_{3}\right) \tag{4.6}\\
\Sigma_{2}= & S\left(\varphi_{1}, \varphi_{1}\right) \otimes S\left(\varphi_{2}, \varphi_{2}\right)+S\left(\varphi_{2}, \varphi_{2}\right) \otimes S\left(\varphi_{3}, \varphi_{3}\right) \tag{4.7}\\
& +S\left(\varphi_{3}, \varphi_{3}\right) \otimes S\left(\varphi_{1}, \varphi_{1}\right)-S\left(\varphi_{1}, \varphi_{2}\right) \otimes S\left(\varphi_{2}, \varphi_{1}\right) \\
& -S\left(\varphi_{2}, \varphi_{3}\right) \otimes S\left(\varphi_{3}, \varphi_{2}\right)-S\left(\varphi_{3}, \varphi_{1}\right) \otimes S\left(\varphi_{1}, \varphi_{3}\right)
\end{align*}
$$

up to a sign. It is said that the induced almost contact 3-structure is normal if $\Sigma_{1}=0$ and $\Sigma_{2}=0$ (for details see [13]).

Remark 4.1 ([13]). A necessary and sufficient condition in order for the almost contact 3 -structure to be normal is

$$
S\left(\varphi_{i}, \varphi_{j}\right)=0, \quad i, j=1,2,3
$$

We next consider the traceless part of δ-decomposition of the global tensor field Σ_{1} in the sense of Krupka ([7]). Since Σ_{1} is of type (1,2) and $n \geqslant 2$, using (3.4)-(3.6) and (4.4)-(4.6) we can easily verify that the traceless part Σ_{1}° of Σ_{1} is given by

$$
\begin{align*}
\stackrel{\circ}{\Sigma}_{1}(X, Y)= & \Sigma_{1}(X, Y)-\frac{1}{2(n-1)}\left\{u\left(A_{1} \varphi Y\right) X-u\left(A_{1} \varphi X\right) Y\right. \tag{4.8}\\
& \left.+v\left(A_{1} \psi Y\right) X-v\left(A_{1} \psi X\right) Y+w\left(A_{1} \theta Y\right) X-w\left(A_{1} \theta X\right) Y\right\}
\end{align*}
$$

or equivalently

$$
\begin{align*}
2 \stackrel{\circ}{\Sigma}_{1}(X, Y)= & u(Y)\left(A_{1} \varphi-\varphi A_{1}\right) X-u(X)\left(A_{1} \varphi-\varphi A_{1}\right) Y \tag{4.8}\\
& +v(Y)\left(A_{1} \psi-\psi A_{1}\right) X-v(X)\left(A_{1} \psi-\psi A_{1}\right) Y \\
& +w(Y)\left(A_{1} \theta-\theta A_{1}\right) X-w(X)\left(A_{1} \theta-\theta A_{1}\right) Y \\
& -\frac{1}{n-1}\left\{u\left(A_{1} \varphi Y\right) X-u\left(A_{1} \varphi X\right) Y+v\left(A_{1} \psi Y\right) X\right. \\
& \left.-v\left(A_{1} \psi X\right) Y+w\left(A_{1} \theta Y\right) X-w\left(A_{1} \theta X\right) Y\right\} .
\end{align*}
$$

From now on we assume that $\Sigma_{1}=0$ identically on M. Putting $Y=U$ in (4.8) ${ }^{\prime}$ with $\Sigma_{1}^{\circ}=0$ and using (2.13)-(2.16), we obtain

$$
\begin{align*}
0= & \left(A_{1} \varphi-\varphi A_{1}\right) X+u(X) \varphi A_{1} U+v(X)\left\{A_{1} W+\psi A_{1} U\right\} \tag{4.9}\\
& -w(X)\left\{A_{1} V-\theta A_{1} U\right\} \\
& +\frac{1}{n-1}\left\{u\left(A_{1} \varphi X\right)+v\left(A_{1} \psi X\right)+w\left(A_{1} \theta X\right)\right\} U,
\end{align*}
$$

from which, taking the inner product with U, it follows that

$$
\begin{equation*}
\frac{1}{n-1}\left(n \varphi A_{1} U+\psi A_{1} V+\theta A_{1} W\right)=2\left\{u\left(A_{1} W\right) V-u\left(A_{1} V\right) W\right\} \tag{4.10}
\end{equation*}
$$

Taking the inner product of (5.3) with V and W, respectively, and using (2.13)(2.16), we have

$$
u\left(A_{1} W\right)=u\left(A_{1} V\right)=0
$$

which together with (4.10) yields

$$
n \varphi A_{1} U+\psi A_{1} V+\theta A_{1} W=0
$$

Similarly we have

$$
\begin{aligned}
& n \varphi A_{1} U+\psi A_{1} V+\theta A_{1} W=0 \\
& \varphi A_{1} U+n \psi A_{1} V+\theta A_{1} W=0 \\
& \varphi A_{1} U+\psi A_{1} V+n \theta A_{1} W=0
\end{aligned}
$$

and, consequently,

$$
\varphi A_{1} U=\psi A_{1} V=\theta A_{1} W=0
$$

Moreover, the last equations imply

$$
A_{1} U=u\left(A_{1} U\right) U, \quad A_{1} V=v\left(A_{1} V\right) V, \quad A_{1} W=w\left(A_{1} W\right) W
$$

which together with (4.8) gives the following implication:

$$
\stackrel{\circ}{\Sigma}_{1}=0 \Longrightarrow \Sigma_{1}=0
$$

Since the converse is trivial, we have

Lemma 4.1. Let M be an n-dimensional $Q R$-submanifold of $Q R$-dimension $(p-1)$ in a quaternionic Kähler manifold $\bar{M}^{(n+p) / 4}$ and let the normal vector field ξ be parallel with respect to the normal connection. Then we have

$$
\stackrel{\circ}{\Sigma}_{1}=0 \Longleftrightarrow \Sigma_{1}=0
$$

By means of Lemma 4.1 we have
Theorem 1. Let M be as in Lemma 4.1. Then the following are equivalent to each other:
(a) The almost contact 3-structure is normal.
(b) The global tensor field Σ_{1} defined by (4.6) vanishes.
(c) The traceless part Σ_{1} of Σ_{1} vanishes.
(d) The relation given by (2.20) is valid.
(e) $A_{1} \varphi=\varphi A_{1}, \quad A_{1} \psi=\psi A_{1}, \quad A_{1} \theta=\theta A_{1}$.

Proof. Substituting (3.4)-(3.9) into (4.4), we can easily obtain that

$$
\begin{align*}
S(\varphi, \varphi)(X, Y) & =2\left\{u(Y)\left(A_{1} \varphi-\varphi A_{1}\right) X-u(X)\left(A_{1} \varphi-\varphi A_{1}\right) Y\right\} \tag{4.11}\\
S(\psi, \psi)(X, Y) & =2\left\{v(Y)\left(A_{1} \psi-\psi A_{1}\right) X-v(X)\left(A_{1} \psi-\psi A_{1}\right) Y\right\} \\
S(\theta, \theta)(X, Y) & =2\left\{w(Y)\left(A_{1} \theta-\theta A_{1}\right) X-w(X)\left(A_{1} \theta-\theta A_{1}\right) Y\right\}
\end{align*}
$$

and

$$
\begin{align*}
S(\varphi, \psi)(X, Y)= & v(Y)\left(A_{1} \varphi-\varphi A_{1}\right) X-v(X)\left(A_{1} \varphi-\varphi A_{1}\right) Y \tag{4.12}\\
& +u(Y)\left(A_{1} \psi-\psi A_{1}\right) X-u(X)\left(A_{1} \psi-\psi A_{1}\right) Y \\
S(\psi, \theta)(X, Y)= & w(Y)\left(A_{1} \psi-\psi A_{1}\right) X-w(X)\left(A_{1} \psi-\psi A_{1}\right) Y \\
& +v(Y)\left(A_{1} \theta-\theta A_{1}\right) X-v(X)\left(A_{1} \theta-\theta A_{1}\right) Y \\
S(\theta, \varphi)(X, Y)= & u(Y)\left(A_{1} \theta-\theta A_{1}\right) X-u(X)\left(A_{1} \theta-\theta A_{1}\right) Y \\
& +w(Y)\left(A_{1} \varphi-\varphi A_{1}\right) X-w(X)\left(A_{1} \varphi-\varphi A_{1}\right) Y
\end{align*}
$$

which together with Lemmas 2.2, 2.3 and Remark 4.1 yields the implications

$$
(\mathrm{e}) \Longrightarrow(\mathrm{a}), \quad(\mathrm{e}) \Longrightarrow(\mathrm{b}), \quad(\mathrm{e}) \Longrightarrow(\mathrm{d})
$$

In order to prove that the other implications are valid, it suffices to show the implication $(\mathrm{b}) \Longrightarrow(\mathrm{e})$. Now we assume that (b) is valid. Then (4.11) implies

$$
\begin{align*}
u(Y)\left(A_{1} \varphi\right. & \left.-\varphi A_{1}\right) X-u(X)\left(A_{1} \varphi-\varphi A_{1}\right) Y \tag{4.13}\\
& +v(Y)\left(A_{1} \psi-\psi A_{1}\right) X-v(X)\left(A_{1} \psi-\psi A_{1}\right) Y \\
& +w(Y)\left(A_{1} \theta-\theta A_{1}\right) X-w(X)\left(A_{1} \theta-\theta A_{1}\right) Y=0
\end{align*}
$$

Putting $Y=U$ in (4.13) and using (2.11) and (2.16), we have

$$
\begin{align*}
\left(A_{1} \varphi-\varphi A_{1}\right) X & -u(X) \varphi A_{1} U+v(X)\left(A_{1} W+\psi A_{1} U\right) \tag{4.14}\\
& -w(X)\left(A_{1} V-\theta A_{1} U\right)=0
\end{align*}
$$

from which, taking the inner product with U, it follows that

$$
g\left(\varphi A_{1} U, X\right)=2 u\left(A_{1} W\right) v(X)-2 u\left(A_{1} V\right) w(X)
$$

and, consequently,

$$
\varphi A_{1} U=0, \quad u\left(A_{1} W\right)=0, \quad u\left(A_{1} V\right)=0
$$

Similarly we have

$$
\begin{gather*}
A_{1} U=u\left(A_{1} U\right) U, \quad A_{1} V=v\left(A_{1} V\right) V, \quad A_{1} W=w\left(A_{1} W\right) W \tag{4.15}\\
u\left(A_{1} V\right)=v\left(A_{1} U\right)=u\left(A_{1} W\right)=w\left(A_{1} U\right) \tag{4.16}\\
=v\left(A_{1} W\right)=w\left(A_{1} V\right)=0
\end{gather*}
$$

Substituting (4.15) into (4.14) and using (2.16), we have

$$
\begin{align*}
\left(A_{1} \varphi-\varphi A_{1}\right) X & +v(X)\left\{w\left(A_{1} W\right)-u\left(A_{1} U\right)\right\} W \tag{4.17}\\
& -w(X)\left\{v\left(A_{1} V\right)-u\left(A_{1} U\right)\right\} V=0
\end{align*}
$$

from which, taking the symmetric part,

$$
\begin{aligned}
2 g\left(\left(A_{1} \varphi-\varphi A_{1}\right) X, Y\right) & +\left\{w\left(A_{1} W\right)-v\left(A_{1} V\right)\right\} \\
& \times\{v(X) w(Y)+v(Y) w(X)\}=0
\end{aligned}
$$

Putting $X=V$ and $Y=W$ in the last equation and using (2.16) and (4.15), we obtain

$$
v\left(A_{1} V\right)=w\left(A_{1} W\right)
$$

Similarly we have

$$
u\left(A_{1} U\right)=v\left(A_{1} V\right)=w\left(A_{1} W\right)
$$

which together with (4.17) gives

$$
A_{1} \varphi=\varphi A_{1}
$$

By the quite similar method we have

$$
A_{1} \varphi=\varphi A_{1}, \quad A_{1} \psi=\psi A_{1}, \quad A_{1} \theta=\theta A_{1}
$$

which yields the implication $(\mathrm{b}) \Longrightarrow(\mathrm{e})$.
Combining Theorem 1 with Theorem K-P, we have

Theorem 2. Let M be an n-dimensional $Q R$-submanifold of $Q R$-dimension ($p-1$) in $Q P^{(n+p) / 4}(4)$ and let the normal vector field ξ be parallel with respect to the normal connection. If one of the conditions (a)-(e) stated in Theorem 1 is valid on M, then $\pi^{-1}(M)$ is locally a product $M_{1} \times M_{2}$ where M_{1} and M_{2} lie on some $\left(4 n_{1}+3\right)$ - and $\left(4 n_{2}+3\right)$-dimensional spheres, respectively (π is the Hopf fibration $\left.S^{n+p+3}(1) \rightarrow Q P^{(n+p) / 4}(4)\right)$.

5. The special case of an ambient quaternionic Kähler manifold

In this section we specify the ambient manifold \bar{M} as a quaternionic space form $\bar{M}^{(n+p) / 4}(c)$ with $c=0$ and assume that one of the conditions (a)-(e) stated in Theorem 1 is valid on M. Then Theorem 1 implies

$$
\begin{equation*}
A_{1} \varphi=\varphi A_{1}, \quad A_{1} \psi=\psi A_{1}, \quad A_{1} \theta=\theta A_{1} \tag{5.1}
\end{equation*}
$$

from which, taking account of (2.9) and (2.11), we have

$$
A_{1} U=\lambda U, \quad A_{1} V=\mu V, \quad A_{1} W=\nu W
$$

where $\lambda=u\left(A_{1} U\right), \mu=v\left(A_{1} V\right), \nu=w\left(A_{1} W\right)$. But, applying ψ to the first equation of (5.1) and using (2.13) and (5.1) itself, we have

$$
u(X) A_{1} V=u\left(A_{1} X\right) V
$$

from which, putting $X=U$, it follows that

$$
A_{1} V=\lambda V
$$

and, consequently, $\lambda=\mu$. Similarly we $\lambda=\mu=\nu$ which yields

$$
\begin{equation*}
A_{1} U=\lambda U, \quad A_{1} V=\lambda V, \quad A_{1} W=\lambda W \tag{5.2}
\end{equation*}
$$

Differentiating the first equation of (5.2) covariantly and using (3.7), (5.1) and (5.2) itself, we have

$$
g\left(\left(\nabla_{X} A_{1}\right) Y, U\right)+g\left(\varphi A_{1}^{2} X, Y\right)=(X \lambda) u(Y)+\lambda g\left(\varphi A_{1} X, Y\right)
$$

from which, taking the skew-symmetric part and making use of (3.10) with $c=0$ and (5.1), it follows that

$$
\begin{equation*}
2 g\left(\varphi A_{1}^{2} X, Y\right)=(X \lambda) u(Y)-(Y \lambda) u(X)+2 \lambda g\left(\varphi A_{1} X, Y\right) \tag{5.3}
\end{equation*}
$$

Now we put $Y=U$ in (5.3). Then the skew-symmetry of φ and (2.11) imply $X \lambda=(U \lambda) u(X)$. Similary we have

$$
X \lambda=(U \lambda) u(X)=(V \lambda) v(X)=(W \lambda) w(X)
$$

and consequently $U \lambda=V \lambda=W \lambda=0$ which yield that λ is constant. Combining this fact with (5.3) gives $\varphi\left(A_{1}^{2} X-\lambda A_{1} X\right)=0$, from which, applying φ and using (2.9) and (5.2), we obtain $A_{1}^{2}=\lambda A_{1}$. Thus we have

Lemma 5.1. Let M be an n-dimensional $Q R$-submanifold of $Q R$-dimension $(p-1)$ in a quaternionic space form $\bar{M}^{(n+p) / 4}(c)$ with $c=0$ such that the distinguished normal vector field ξ is parallel with respect to the normal connection. If one of the conditions (a)-(e) stated in Theorem 1 is valid on M, then

$$
\begin{equation*}
A_{1}^{2}=\lambda A_{1} \tag{5.4}
\end{equation*}
$$

and λ is constant.
In particular, we can prove

Lemma 5.2. Let M be as in Lemma 5.1. Then

$$
\begin{equation*}
\nabla A_{1}=0 \tag{5.5}
\end{equation*}
$$

provided $\lambda \neq 0$.
Proof. Differentiating (5.4) covariantly and using the fact that λ is constant, we have

$$
\begin{equation*}
\left(\nabla_{Y} A_{1}\right) A_{1} X+A_{1}\left(\nabla_{Y} A_{1}\right) X=\lambda\left(\nabla_{Y} A_{1}\right) X \tag{5.6}
\end{equation*}
$$

from which, taking the skew-symmetric part and using (3.10) with $c=0$, we find

$$
\left(\nabla_{Y} A_{1}\right) A_{1} X=\left(\nabla_{X} A_{1}\right) A_{1} Y
$$

and, consequently,

$$
g\left(\left(\nabla_{Y} A_{1}\right) A_{1} X, Z\right)=g\left(\left(\nabla_{X} A_{1}\right) A_{1} Y, Z\right)=g\left(A_{1}\left(\nabla_{X} A_{1}\right) Z, Y\right)
$$

On the other hand

$$
g\left(\left(\nabla_{Y} A_{1}\right) A_{1} X, Z\right)=g\left(\left(\nabla_{Z} A_{1}\right) A_{1} X, Y\right)
$$

which together with the last equation gives

$$
g\left(\left(\nabla_{Y} A_{1}\right) A_{1} X, Z\right)=g\left(A_{1}\left(\nabla_{X} A_{1}\right) Y, Z\right)
$$

that is, $\left(\nabla_{Y} A_{1}\right) A_{1} X=A_{1}\left(\nabla_{Y} A_{1}\right) X$. Hence (5.6) reduces to

$$
2 A_{1}\left(\nabla_{Y} A_{1}\right) X=\lambda\left(\nabla_{Y} A_{1}\right) X
$$

from which, applying A_{1} and using (5.4), it is clear that

$$
\lambda A_{1}\left(\nabla_{Y} A_{1}\right) X=0
$$

and therefore $\lambda\left(\nabla_{Y} A_{1}\right) X=0$. Thus we complete the proof.
Remark 5.1. When the ambient space is a quaternionic projective space $Q P^{(n+p) / 4}$, the assumptions stated in Lemma 5.1 yield that the shape operator A_{1} is cyclic-parallel, that is,

$$
\left.\left.\left.g\left(\nabla_{X} A_{1}\right) Y, Z\right)+g\left(\nabla_{Y} A_{1}\right) Z, X\right)+g\left(\nabla_{Z} A_{1}\right) X, Y\right)=0
$$

But, in this case we don't need the hypothesis $\lambda \neq 0$. (For details, see [9].)

6. The main results when $\bar{M}=Q^{(n+p) / 4}$

In this section we specialize to the case of an ambient quaternionic number space $Q^{(n+p) / 4}$. In this case, as already shown in Lemma 5.1, the eigenvalues κ of the shape operator A_{1} satisfy

$$
\kappa(\kappa-\lambda)=0 .
$$

Moreover it is clear from (5.1) and (5.2) that the multiplicity of λ must be $4 m+3$ for some integer m at each point in M. Since λ is constant and trace A_{1} is continuous, the multiplicity r of λ is constant. Hence it suffices to consider the following three cases

$$
\text { (i) } r=0, \quad \text { (ii) } r=n, \quad \text { (iii) } 3 \leqslant r<n \text {. }
$$

We will start with the first case (i). In this case $A_{1}=0$. Since, by assumption, the normal vector field ξ is parallel with respect to the normal connection, Erbacher's reduction theorem ([4]) yields that there exists a totally geodesic hypersurface R^{n+p-1} in $Q^{(n+p) / 4}$ which contains M.

Next, we consider the case (ii). In this case $A_{1}=\lambda I$. Let \bar{x} be the position vector of M and put $\bar{p}:=\bar{x}+\lambda^{-1} \xi$. Then

$$
\bar{\nabla}_{X} \bar{p}=\bar{\nabla}_{X}\left(\bar{x}+\lambda^{-1} \xi\right)=X-\lambda^{-1}\left(A_{1} X-\nabla_{X}^{\perp} \xi\right)=0,
$$

which means that \bar{p} is a fixed point in $Q^{(n+p) / 4}$. Moreover, it is clear that $\| \bar{x}-$ $\bar{p} \|=|\lambda|^{-1}$ and consequently M is contained in the hypersphere $S^{n+p-1}\left(|\lambda|^{-1}\right)$ of radius $|\lambda|^{-1}$ centered at \bar{p}.

Finally we consider the case (iii). Since the multiplicity r of λ is constant, the eigenspaces corresponding to λ and 0 determine distributions of dimension r and $n-r$, which will be denoted by D_{λ} and D_{0}, respectively. Furthermore, by means of Lemma 5.2, $\nabla A_{1}=0$ and consequently it is easily verified that D_{λ} and D_{0} are both involutive and that D_{λ} is parallel along D_{0} and vice versa. Denoting by M_{λ} and M_{0} the integral submanifolds of D_{λ} and D_{0}, respectively, we can see that M is locally the Riemannian product $M_{\lambda} \times M_{0}$.

From now on we shall study M_{λ} and M_{0} in more detail and start with M_{λ}. Let Z_{1}, \ldots, Z_{n-r} be orthonormal vector fields belonging to D_{0}. Since M_{λ} is totally geodesic in M, the shape operators $A_{1}^{\prime}, \ldots, A_{n-r}^{\prime}$ corresponding to those normal vectors vanish. On the other hand we may consider M_{λ} as a submanifold of $Q^{(n+p) / 4}$. Then the vector fields $Z_{1}, \ldots, Z_{n-r}, \xi_{1}, \ldots, \xi_{p}$ form an orthonormal set of local vector fields normal to M_{λ}. In this case the shape operators corresponding to Z_{1}, \ldots, Z_{n-r} also vanish. Hence it is clear from (3.11) that

$$
\begin{equation*}
{ }^{\prime} R_{X, Y}^{\perp} Z_{i}=0, \quad i=1, \ldots, n-r \tag{6.1}
\end{equation*}
$$

and moreover $\left[A_{1}, A_{\alpha}\right]=0$, where ' R^{\perp} denotes the curvature tensor of the normal connection ${ }^{\prime} \nabla^{\perp}$ of M_{λ} in $Q^{(n+p) / 4}$. On the other hand, we can easily see that for any $X \in D_{\lambda}$

$$
g\left(\nabla_{X}^{\perp} Z_{i}, \xi_{\beta}\right)=g\left(Z_{i}, A_{\beta} X\right), \quad \beta=1, \ldots, p .
$$

But, since $\left[A_{1}, A_{\beta}\right]=0, \beta=1, \ldots, p$, which is a direct consequence of (3.11) and $\nabla^{\perp} \xi_{1}=0$, we have $A_{\beta} X \in D_{\lambda}$ and, consequently,

$$
g\left({ }^{\prime} \nabla_{X}^{\perp} Z_{i}, \xi_{\beta}\right)=0, \quad \beta=1, \ldots, p
$$

that is, ${ }^{\prime} \nabla \frac{1}{X} Z_{i} \in D_{0}$. Thus, by the same method as in the proof of Proposition 1.1 in [3, p. 99], we may prove that (6.1) yields the existence of the normal vector fields Z_{1}, \ldots, Z_{n-r} such that

$$
\begin{equation*}
{ }^{\prime} \nabla_{X}^{\perp} Z_{i}=0, \quad i=1, \ldots, n-r \tag{6.2}
\end{equation*}
$$

for any tangent vector field X to M_{λ}.

Now let \bar{x} be the position vector of M_{λ} in $Q^{(n+p) / 4}$ and $X \in D_{\lambda}$. Then, by using (6.2) and $A_{i}^{\prime}=0, i=1, \ldots, n-r$, we have

$$
X g\left(\bar{x}, Z_{i}\right)=g\left(X, Z_{i}\right)=0, \quad i=1, \ldots, n-r
$$

that is,

$$
\begin{equation*}
g\left(\bar{x}, Z_{i}\right)=c_{i}, \quad i=1, \ldots, n-r \tag{6.3}
\end{equation*}
$$

where c_{i} is constant. Moreover, putting $\bar{p}:=\bar{x}+\lambda^{-1} \xi$, we can see that

$$
\bar{\nabla}_{X} \bar{p}=X-\lambda^{-1} A_{1} X=0
$$

and $\|\bar{x}-\bar{p}\|=|\lambda|^{-1}$. Therefore M_{λ} belongs to the intersection of the hypersphere of radius $|\lambda|^{-1}$ centered at \bar{p} and the $n-r$ hyperplanes defined by (6.3). We notice that \bar{p} is contained in the $n-r$ hyperplanes.

In a similar way it can be shown that M_{0} belongs to the intersection of the $r+1$ hyperplanes given by

$$
g(\bar{x}, \xi)=c, \quad g\left(\bar{x}, Z_{s}\right)=c_{s}, \quad s=n-r+1, \ldots, n
$$

Summing up, we may conclude

Theorem 2. Let M be an n-dimensional $Q R$-submanifold of $Q R$-dimension $(p-1)$ in $Q^{(n+p) / 4}$ which satisfies one of the conditions stated in Theorem 1. If the distinguished normal vector field ξ is parallel with respect to the normal connection, then we have one of the following cases:
(a) M is contained in a hyperplane orthogonal to ξ.
(b) M is contained in a hypersphere orthogonal to ξ.
(c) M is locally a Riemannian product $M_{\lambda} \times M_{0}$, where M_{λ} is contained in a $(p+r-1)$-dimensional sphere $S^{(p+r-1)}$ and M_{0} is contained in an $(n+p-r-1)$ dimensional subspace $R^{(n+p-r-1)}$.

References

[1] M. Barros, B. Y. Chen and F. Urbano: Quaternion $C R$-submanifolds of a quaternion manifold. Kodai Math. J. 4 (1981), 399-418.
[2] A. Bejancu: Geometry of $C R$-submanifolds. D. Reidel Publishing Company, Dordrecht, Boston, Lancaster, Tokyo, 1986.
[3] B. Y. Chen: Geometry of Submanifolds. Marcel Dekker Inc., New York, 1973.
[4] J. Erbacher: Reduction of the codimension of anisometric immersion. J. Differential Geom. 5 (1971), 333-340.
[5] S. Ishihara: Quaternion Kaehlerian manifolds. J. Differential Geom. 9 (1974), 483-500.
[6] S. Ishihara and M. Konishi: Differential geometry of fibred spaces. Publication of the Study Group of Geometry, Vol. 8. Institute of Mathematics, Yoshida College, Tokyo, 1973.
[7] D. Krupka: The trace decomposition problem. Beiträge Algebra Geom.; Contrib. Alg. Geom. 36 (1995), 303-315.
[8] Y. Y. Kuo: On almost contact 3-structure. Tohoku Math. J. 22 (1970), 235-332.
[9] J.-H. Kwon and J.S. Pak: $Q R$-submanifolds of $(p-1) Q R$-dimension in a quaternionic projective space $Q P^{(n+p) / 4}$. Acta Math. Hungar. 86 (2000), 89-116.
[10] J.-H. Kwon and J.S. Pak: Scalar curvature of $Q R$-submanifolds immersed in a quaternionic projective space. Saitama Math. J 17 (1999), 47-57.
[11] J.-H. Kwon and J.S. Pak: On n-dimensional $Q R$-submanifolds of $(p-1) Q R$-dimension in a quaternionic space form. Preprint.
[12] M. Okumura and L. Vanhecke: A class of normal almost contact $C R$-submanifolds in C^{q}. Rend. Sem. Mat. Univ. Pol. Torino 52 (1994), 359-369.
[13] J.S. Pak: Real hypersurfaces in quaternionic Kaehlerian manifolds with constant Q-sectional curvature. Kodai Math. Sem. Rep. 29 (1977), 22-61.
[14] K. Yano, S. Ishihara and M. Konishi: Normality of almost contact 3-structure. Tohoku Math. J. 25 (1973), 167-175.

Authors' addresses: S. Funabashi, Dept. of Mathematics, Nippon Institute of Technology, Minami-Saitama Gun, Saitama 345-8501, Japan, e-mail: funa@leo.nit.ac.jp; J. S. Pak, Department of Mathematics, Kyungpook National University, Taegu 702-701, Korea, e-mail: jspak@bh.kyungpook.ac.kr; Y. J. Shin, Kyungnam University, Masan 705-714, Korea, e-mail: yjshin@hanma.kyungnam.ac.kr.

