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SEMIPARALLEL ISOMETRIC IMMERSIONS OF 3-DIMENSIONAL

SEMISYMMETRIC RIEMANNIAN MANIFOLDS

� � � � � ��� � 	 

, Tartu

(Received October 26, 2000)

Abstract. A Riemannian manifold is said to be semisymmetric if R(X, Y ) · R = 0. A
submanifold of Euclidean space which satisfies R(X, Y ) · h = 0 is called semiparallel. It
is known that semiparallel submanifolds are intrinsically semisymmetric. But can every
semisymmetric manifold be immersed isometrically as a semiparallel submanifold? This
problem has been solved up to now only for the dimension 2, when the answer is affirmative
for the positive Gaussian curvature. Among semisymmetric manifolds a special role is
played by the foliated ones, which in the dimension 3 are divided by Kowalski into four
classes: elliptic, hyperbolic, parabolic and planar. It is shown now that only the planar
ones can be immersed isometrically into Euclidean spaces as 3-dimensional semiparallel
submanifolds. This result is obtained by a complete classification of such submanifolds.

Keywords: semisymmetric Riemannian manifolds, semiparallel submanifolds, isometric
immersions, planar foliated manifolds
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Introduction

1. A Riemannian manifold Mm is said to be locally symmetric if at its arbitrary

point the geodesic reflection, defined in general only locally, is local isometry. By
the famous result of É. Cartan the analytic condition expressing local symmetry is

that the Riemannian curvature tensor R be parallel with respect to the Levi-Cività
connection ∇, i.e. ∇R = 0.
In the extrinsic theory of submanifolds Mm in Euclidean spaces � n the anal-

ogous concept of locally symmetric (extrinsically) submanifold was introduced by

D. Ferus [5] and W. Strübing [24] using the normal reflection as follows.

This work was partly supported by the grant ETF 3966.
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For a submanifold Mm in � n at every its point x ∈ Mm the tangent vector

subspace TxMm is complemented by the normal vector subspace T⊥x Mm so that
TxMm ⊕ T⊥x Mm is the orthogonal decomposition of the vector space � n . Here
T⊥x Mm together with x determines the normal (n − m)-plane of Mm at x in � n .

The reflection σx of � n with respect to this (n − m)-plane, which maps a point
y ∈ � n into a point σx(y) ∈ � n , symmetric to y with respect to this plane, is called

the normal reflection σx for Mm at x.

A submanifold Mm in � n is said to be locally symmetric (extrinsically) if for all

points x ∈ Mm the normal reflection σx forMm at x induces a local isometry ofMm.

Ferus [5] and Strübing [24] showed that a submanifold Mm in � n is a locally

symmetric (extrinsically) submanifold if and only if its second fundamental form h

is parallel, i.e. ∇̃h = 0, with respect to the van der Waerden-Bortolotti connection
∇̃ = ∇⊕∇⊥, where∇ is the Levi-Cività connection and∇⊥ is the normal connection
of Mm.

This result gave rise to calling the submanifolds with parallel second fundamental
form (previously studied by J. Vilms [28]), which coincide with the locally symmetric

(extrinsically) submanifolds, the parallel submanifolds by M. Takeuchi [27]. Now this
name has become the most popular one.

The well-known Gauss equation, which expresses the curvature tensor R of a sub-
manifold Mm by means of its second fundamental form h, shows that every parallel

submanifold Mm in � n is intrinsically a Riemannian locally symmetric manifold.
By a result due to Ferus [5], it is not an arbitrary one, but in the irreducible case

is locally a symmetric R-space, and the immersion Mm → � n is locally a standard
imbedding of this symmetric R-space.

2. The condition ∇R = 0 of local symmetry of a Riemannian manifold Mm is a

differential system. The integrability condition for this system is the point-wise con-
dition R(X, Y )·R = 0, where R(X, Y ), for arbitrary tangent vector fields X and Y , is

a linear operator acting as a derivation on the curvature tensor R. This last condition
was introduced by É. Cartan [3] (independently in 1943 also by P.A. Shirokov; see

[21], p. 389). Its importance for geodesic maps was shown by N. S. Sinjukov in [22],
where the Riemannian manifolds satisfying this condition were called semisymmetric

(see also [23]). K. Nomizu conjectered in [19] that all complete, irreducible semisym-
metric Riemannian manifolds Mm, m > 3, are locally symmetric, but soon this
conjecture was refuted in [26] (for m = 3) and [20]. For m = 2 the situation is
trivial: every Riemannian M 2 is semisymmetric.

The extrinsic analogue of this is the integrability condition R(X, Y ) · h = 0 for
the differential system ∇̃h = 0, which characterizes the parallel submanifolds. Here
R(X, Y ) is the curvature operator of the van derWaerden-Bortolotti connection. The
Riemannian submanifolds Mm in � n satisfying this condition are called semisym-
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metric (extrinsically) [8]–[11], or more often semiparallel [4], [14]. Intrinsically every

semiparallel submanifold is a semisymmetric Riemannian manifold; this follows again
from the Gauss equation and the expressions for the curvature tensors of ∇⊥ (see
[4], [15]).

Geometrically, semiparallel submanifolds are characterized as the second order
envelopes of the parallel ones (see [10]). For the corresponding theorem some gener-

alizations have been given recently in [17], [18]. It has inspired also a purely intrinsic
consideration: it is established in [7] that the metric of each semisymmetric Rieman-
nian manifold is a second order envelope of a family of locally symmetric metrics

(see also [6]).

This analogy gives rise to the question what is correspondence between semisym-

metric Riemannian manifolds, on the one hand, and semiparallel submanifolds on
the other hand. More explicitly, can every semisymmetric manifold be immersed

isometrically as a semiparallel submanifold of an Euclidean space?

Recall that for the particular case of symmetric manifolds and parallel submani-
folds the answer is negative: due to Ferus’ result only symmetric R-spaces can be

immersed isometrically as parallel submanifolds. But what will be the answer like in
our more general situation?

Up to now only the two-dimensional case has been investigated in [14]. The result

can be summarized in the following way.

It is known that every two-dimensional Riemannian manifold M 2 is semisymmet-
ric.

In [4] all semiparallel surfacesM 2 in � n were divided into three classes: (i) totally

geodesic or totally umbilical surfaces (i.e. planes or spheres or their open parts),
(ii) surfaces with zero Gaussian curvature and flat normal connection, (iii) the sec-

ond order envelopes of Veronese surfaces. (Here the description of the class (iii) is
modified using the result of [10]; see also [15].)

It is shown in [9] that if n = 5 then the only semisymmetric surfaces of the class (iii)
in � 5 are the parallel ones, namely the single Veronese surfaces, every one of which
has constant positive Gaussian curvature K. In [14] there is added that into pseudo-

Euclidean space 3 � 5 (with 3 minus signs in the canonical form of ds2) also M2 of
negative constant K can be immersed isometrically as a semiparallel surface of the

class (iii), again as a parallel one.

The main result in [14] is that into s � 6 with s ∈ {0, 3, 4} also a RiemannianM 2 of
non-constant Gaussian curvature K can be immersed isometrically as a non-parallel

semiparallel surface of the class (iii), but in s � 7 with s ∈ {0, 3, 4, 5} every Rieman-
nian M2 can be isometrically realized in the class (iii).
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So it turns out that form = 2 the situation depends essentially on the dimension n

and on the number s of the negative coefficients in the canonical form of the metric
quadratic form of the ambient space s � n .

In the present paper the same problem is investigated for the dimensionm = 3 and
only for the Euclidean ambient space � n : can every semisymmetric Riemannian M 3

be immersed isometrically into some � n as a semiparallel submanifold?

An irreducible semisymmetric M3 is, by a result, due to Szabó [25], either locally

symmetric or foliated by Euclidean leaves of codimension two. The latter were further
divided by Kowalski [6] into four classes, formed by the elliptic, hyperbolic, parabolic

and planar spaces, respectively.

The aim of the present paper is to prove the following

Main Theorem. Let (M3, g) be a Riemannian 3-manifold which can be im-
mersed isometrically into an Euclidean space � n as a semiparallel submanifold. Then

either (M3, g) is a space of constant curvature, locally, or it is a foliated semisym-
metric space of planar type.

Note that a general Riemannian M 3 is not semisymmetric any more. Therefore

first the classification of semisymmetric Riemannian Mm is needed, especially for
m = 3. This is given, according to [25] and [6], in Section 1, where especially the
planar foliated M3 are characterized.

The classification of three-dimensional semiparallel submanifolds in Euclidean

spaces � n is given separately for submanifolds whose principal normal subspace has
dimension m1 6 3 (Section 3), and for those with 3 < m1 6 6 (Section 4). Here
our earlier publications [16] and [11] could be used with some additions concerning
the inner metric. A special attention is given to submanifolds which are intrinsically

planar foliated manifolds.

The proof of the Main Theorem in Section 5 reduces then to a comparison of

these two classifications. The submanifolds realizing the foliated semisymmetric
3-manifolds are described geometrically in Section 6. Finally, some concluding re-

marks are formulated in Section 7.

Acknowledgement. The problem investigated here (in the dimension 3) arouse
in several discussions with O. Kowalski. The author is very grateful to him for his

attention and valuable suggestions which helped to finish the final version of this
paper.
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1. Classification of semisymmetric Riemannian M 3

The general local classification of the semisymmetric Riemannian Mm was made

by Z. I. Szabó in [25]. First he proved by means of the infinitesimal or the local
holonomy group that for every semisymmetric Riemannian manifoldMm there exists

a dense open subset U such that around the points of U the manifold M 3 is locally
isometric to a direct product of semisymmetric manifolds M0 × M1 × . . . × Mr,

where M0 is an open part of a Euclidean space and the manifolds Mi, i > 0, are
infinitesimally irreducible simple semisymmetric leaves. Here a semisymmetric M is

called a simple leaf if at every its point x the primitive holonomy group determines a
simple decomposition TxM = V

(0)
x +V

(1)
x , where this group acts trivially on V

(0)
x and

there is only one subspace V
(1)
x which is invariant for this group. A simple leaf is said

to be infinitesimally irreducible if at least at one point the infinitesimal holonomy

group acts irreducibly on V
(1)
x .

The dimension ν(x) = dim V
(0)
x is called the index of nullity at x and u(x) =

dim M − ν(x) the index of non-nullity at x.
The classification theorem by Szabó asserts the following (according to the formu-

lation given in [1], [2]).

Let M be an infinitesimally irreducible simple semisymmetric leaf and x a point

of M . Then one of the following cases occurs:
(a) ν(x) = 0 and u(x) > 2: M is locally symmetric and hence locally isometric to

a symmetric space;
(b) ν(x) = 1 and u(x) > 2: M is locally isometric to an elliptic, a hyperbolic or

a Euclidean cone;
(c) ν(x) = 2 and u(x) > 2: M is locally isometric to a Kählerian cone;

(d) ν(x) = dim M − 2 and u(x) = 2: M is locally isometric to a space foliated by
Euclidean leaves of codimension two (or to a two-dimensional manifold, this in

the case whenen space dim M = 2).

If here dim M = 3, then u(x) = 3 − ν(x) and thus the cases (b) and (c) are
impossible. Therefore they do not need more detailed description in the present
paper. Hence the main attention must be turned to the case (d): to the three-

dimensional semisymmetric Riemannian manifolds M 3 foliated by one-dimensional
Euclidean leaves, which can be considered now as the geodesic lines (called in [6] the

principal geodesics of the foliated M 3).
For such foliated M3, O. Kowalski introduced in a preprint of 1991 the geometric

concept of asymptotic foliation (see [6]), generalized afterwards by E. Boeckx [1] to
a general foliated semisymmetric Riemannian manifolds.

A two-dimensional submanifold of a three-dimensional foliated Riemannian mani-
foldM3 is called an asymptotic leaf if it is generated by the principal geodesics ofM 3
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and if its tangent planes are parallel along each of these geodesics (with respect to

the Levi-Cività connection ∇ of M 3).
A two-dimensional foliation of such an M 3 is called the asymptotic foliation if its

integral manifolds are asymptotic leaves.

What follows here in the present section gives a treatment of the asymptotic
foliations according to Kowalski [6] (and Boeckx [1]).

Let the bundle of orthonormal frames (e1, e2, e3) be adapted to the consideredM 3

so that at each point x ∈ M3 the unit vector e3 is tangent to the principal geodesic.

For the bundle of dual coframes (ω1, ω2, ω3) the following structure equations hold:

dωi = ωj ∧ ωi
j , dωi

j = ωk
j ∧ ωi

k + Ωi
j ,

where ωi
j and Ωi

j are the connection 1-forms and the curvature 2-forms, correspond-
ingly, of ∇. Here orthonormality yields ωi

j + ωj
i = 0, Ωi

j + Ωj
i = 0.

A vector field X = eiX
i is parallel along the one-dimensional leaf (principal

geodesic) with respect to ∇ if and only if dX i + Xjωi
j is zero as a consequence

of ω1 = ω2 = 0. For the adapted frame bundle above and for a principal geodesic it
means that this condition must be satisfied for X i = δi

3, when dX i +Xjωi
j = ωi

3, i.e.

(1.1) ω1
3 = aω1 + bω2, ω2

3 = cω1 + eω2.

Let X = e1 cosϕ + e2 sin ϕ be a unit vector in the tangent plane span{X, e3} of
the asymptotic leaf. Then ∇e3X = ∇Xe3 + [e3, X ] must belong to this tangent
plane. Since the tangent distribution of this leaf is a foliation the same can be

said about [e3, X ]. Thus ∇Xe3 = ∇e1e3 cosϕ + ∇e2e3 sin ϕ = (ωk
3 (e1)ek) cosϕ +

(ωk
3 (e2)ek) sin ϕ = (ae1 + ce2) cosϕ + (be1 + ee2) sin ϕ must belong to span{X, e3}

and therefore must be a multiple of X = e1 cosϕ + e2 sin ϕ. This last condition is
equivalent to

b sin2 ϕ + (a− e) cosϕ sin ϕ− c cos2 ϕ = 0.

But along the asymptotic leaf ω1 sinϕ = ω2 cosϕ, so that this condition reduces to

(1.2) c(ω1)2 + (e− a)ω1ω2 − b(ω2)2 = 0.

According to [6], [2] a foliated M 3 is said to be planar if it admits infinitely many

asymptotic foliations. If it admits just two (or one, or none, respectively) asymptotic
foliations, it is said to be hyperbolic (or parabolic, or elliptic, respectively).

From (1.2) it is seen that each planar foliated M 3 is characterized by a− e = b =
c = 0, i.e. by the fact that (1.1) reduces to

(1.3) ω1
3 = aω1, ω2

3 = aω2.
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2. Three-dimensional semiparallel submanifolds

For our problem also the classification of semiparallel submanifolds M 3 in the
Euclidean space � n is important. This classification is made in [16] and [11] (some

generalizations for M3 in Riemannian space forms were made later in [15]).

A general information about semiparallel submanifolds is given e.g. in [4], [14],

[15].

Let Mm be a Riemannian submanifold in � n . Let a point x ∈ Mm and its
radius vector with respect to the origin O ∈ � n be identified. Let the bundle of

orthogonal frames {x; e1, . . . , en} be reduced to the subbundle adapted to Mm, so
that ei ∈ TxMm, eα ∈ T⊥x Mm, where the indices i, j, . . . run over the set {1, . . . , m}
and α, β, . . . run over the set {m+1, . . . , n}. There hold then the derivation formulae

(2.1) dx = eIω
I , deI = eJωJ

I

(independent of O), where

(2.2) ωI
J + ωJ

I = 0,

and the structure equations

(2.3) dωI = ωJ ∧ ωI
J , dωJ

I = ωK
I ∧ ωJ

K .

For subbundle adapted to M3, ωα = 0. Now (2.2) yields

(2.4) ωi
j + ωj

i = 0, ωi
α = −ωα

i , ωα
β + ωβ

α = 0,

but (2.3) give ωi ∧ ωα
i = 0, thus, due to Cartan’s lemma,

(2.5) ωα
i = hα

ijω
j , hα

ij = hα
ji.

For X, Y ∈ TxMm with X = eiX
i, Y = ejY

j the map h : (X, Y ) 7−→ eαhα
ijX

iY j

is the second fundamental form of the submanifold Mm in � n . The differential
prolongation used for (2.5) showes that ∇̃hα

ij = hα
ijkωk, hα

ijk = hα
ikj , where

(2.6) ∇̃hα
ij := dhα

ij − hα
kjω

k
i − hα

ikωk
j + hβ

ijω
α
β

are the components of ∇̃h.
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Further, by exterior differentiation,

∇̃hα
ijk ∧ ωk = − hα

kjΩ
k
i − hα

ikΩk
j + hβ

ijΩ
α
β ,(2.7)

where

Ωj
i := dωj

i − ωk
i ∧ ωj

k = −
∑

α

ωα
i ∧ ωα

j ,(2.8)

Ωβ
α := dωβ

α − ωγ
α ∧ ωβ

γ = −
∑

i

ωα
i ∧ ωβ

i(2.9)

are the curvature 2-forms of ∇ and ∇⊥, respectively. Due to (2.5) they are

Ωj
i = −Rj

i,klω
k ∧ ωl, Ωβ

α = −Rβ
α,klω

k ∧ ωl,

where the coefficients, the components of the curvature tensors R and R⊥ of ∇ and
∇⊥, respectively, can be expressed algebraically by the components of the second
fundamental form:

(2.10) Rj
i,kl =

∑

α

hα
i[khα

l]j , Rβ
α,kl =

∑

i

hα
i[khβ

l]i.

Here the first equation is the famous Gauss equation, which expresses the relationship

between the intrinsic and extrinsic properties of a submanifold Mm in � n .

Submanifolds satisfying the differential system ∇̃hα
ij = 0 (equivalently, hα

ijk = 0)
are called parallel ; they are intrinsically locally symmetric Riemannian manifolds.
The submanifolds satisfying the integrability condition for this system, which by (2.7)

is

(2.11) hα
kjΩ

k
i + hα

ikΩk
j − hβ

ijΩ
α
β = 0,

are called semiparallel ; they are intrinsically semisymmetric Riemannian manifolds.
Both these assertions follow easily from the Gauss equation.

Summing in (2.11) over i = j one obtains that the so called mean curvature vector

H = Hαeα with Hα = 1
m

∑
i

hα
ii, of a semiparallel submanifold satisfies

(2.12) HβΩα
β = 0.

This is due to the fact that hα
ij and Ωj

i are symmetric and antisymmetric, respectively,
with respect to i, j and therefore their product annihilates after contraction.
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Our problem is: can every semisymmetric RiemannianMm be immersed into � n as

a semiparallel submanifold? This problem will be considered here for the dimension
m = 3.
For this purpose the classification of all semiparallel submanifolds M 3 in � n is

needed. Recall that this is done in [16], [11] (see also [15], Sect. 20).

Here the preliminary classification goes by the dimension m1 of the so called first
(or principal) normal subspace span{hα

ijeα}. This m1 will be called further the

principal codimension. If m = 3 then obviously m1 6 6.
Note that the submanifoldsM3 with m1 = 0 are totally geodesic and therefore are

some open parts of three-dimensional Euclidean planes in � n ; they are all trivially
semiparallel.

Let now m1 > 0. The orthonormal frame bundle can be adapted further so that
e4, e5, . . . , e3+m1 belong to span{hα

ijeα}. Then h%
ij = 0 (%, σ, . . . = m1 + 4, . . . , n),

thus

(2.13) Ω%
α = −Ωα

% = 0.

If all Ωβ
α = 0 then M3 is said to have flat normal connection ∇⊥. Due to (2.9)

and (2.10) the matrices ‖hα
ij‖ for every two different values of α then commute and

therefore are simultanously diagonalizable by a suitable orthogonal transformation of

{e1, e2, e3}. After that hα
ij = kα

i δij , and thus Ωj
i = −〈ki, kj〉ωi∧ωj , where ki = kα

i eα

are the so called principal curvature vectors, but the semiparallelity condition (2.11)

reduces to

(2.14) (ki − kj)〈ki, kj〉 = 0; i 6= j.

3. Classification of semiparallel M 3 of principal codimension m1 6 3

This classification is given in [16] and will be reproduced here with some additions
concerning the intrinsical metric.

3.1. The case of m1 = 1.
Here ∇⊥ is obviously flat, in the adapted frame ki = κie4 and thus 〈ki, kj〉 = κiκj .

Due to (2.14) there are the following possibilities (up to a permutation of 1, 2, 3).

Type (1): κ1κ2κ3 6= 0. Then κ1 = κ2 = κ3 = κ, where κ 6= 0 for m1 = 1. In this
subcaseM3 is totally umbilical, thus an open part of S3 ⊂ � 4 ⊂ � n , and intrinsically
is a Riemannian manifold of constant curvature.
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Type (2): κ3 = 0, κ1 = κ2 = κ 6= 0. In the adapted orthonormal frame M 3 is

then determined locally by the differential system

ωα = 0, ω4
1 = κω1, ω4

2 = κω2, ω4
3 = 0, ω%

i = 0(3.1)

(i = 1, 2, 3; % = 5, . . . , n).

Differential prolongation by means of (2.3), (2.4), and Cartan’s lemma leads to

(3.2) ω1
3 = aω1, ω2

3 = aω2, d ln κ = −aω3, ω%
4 = 0

and the next prolongation gives

(3.3) da = −a2ω3.

The system (3.1)–(3.2) is totally integrable and determines the consideredM 3 up to
arbitrary constants. From (2.1) now

dx = eiω
i, de1 = e2ω

2
1 + (−ae3 + κe4)ω1, de2 = −e1ω

2
1 + (−ae3 + κe4)ω2,

de3 = a(e1ω
1 + e2ω

2), de4 = −κ(e1ω
1 + e2ω

2), de% = eσωσ
% .

Hence this M3 lies in the plane � 4 ⊂ � n spanned by x, e1, e2, e3 and e4. As is

easily seen, the system ω1 = ω2 = 0 determines a foliation of M 3 whose leaves are
the straight lines with direction vector e3.

Let a 6= 0. Since d(x − a−1e3) = 0 along M3, this M3 is an open part of a cone
with a point-vertex whose radius vector is c = x − a−1e3. The equation ω3 = 0 is
totally integrable and determines a foliation ofM 3 whose leaves are totally umbilical,
with principal curvature vector −ae3 + κe4, orthogonal to the straight generators of

the cone. Hence M3 is an open part of a round cone.

Intrinsically this M3 is a foliated semisymmetric Riemannian manifold, which is
due to (3.2) and (1.3) of planar type (in the sense of Kowalski, see Sect. 1).

If a ≡ 0 then the vertex has moved to infinity and M 3 is a right cylinder over a

two-dimensional sphere, thus a product submanifold.

Type (3): κ3 = κ2 = 0. Here κ1 = κ 6= 0 form1 = 1. In the adapted orthonormal
frame

ωα = 0, ω4
1 = κω1, ω4

2 = ω4
3 = 0, ω%

i = 0,

where i and % run as in (3.1). Differential prolongation leads to

ω2
1 = λω1, ω3

1 = µω1, d ln κ = νω1 + λω2 + µω3, ω%
4 = ϕ%ω1.
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A further investigation of this system shows that the considered M 3 exists with

arbitrariness of n− 1 real analytic functions of one real argument.
The equation ω1 = 0 is totally integrable, because dω1 = 0, and determines a

foliation of M3 whose leaves are, in view of de2 = e3ω
3
2 (mod ω1), de3 = −e2ω

3
2

(mod ω1), two-dimensional planes, along every of which the unit vectors e1, e4, e%

are constant, thus the two-dimensional plane tangent to M 3 is invariant.

Here

Ω2
1 = ω4

1 ∧ ω2
4 + ω%

1 ∧ ω2
% = 0, Ω%

4 = ωi
4 ∧ ω%

i = 0, Ωσ
% = ωi

% ∧ ωσ
i = 0,

thus M3 has flat ∇̃. From the intrinsical point of view this means that M 3 is a
locally Euclidean Riemannian manifold immersed into � n .

3.2. The case of m1 = 2.
Then (2.12) reduces to H4Ω5

4 = H5Ω5
4 = 0. For the Riemannian semiparallel M 3

here H4 = H5 = 0 is impossible, because then H = 0 and M 3 is, due to Proposi-

tion 8.6 of [15], an open part of a three-dimensional plane � 3 ⊂ � n , thus m1 = 0;
this contradicts to m1 = 2. Therefore Ω5

4 = 0 and hence ∇⊥ is flat. Now (2.14) can
be reduced, after a suitable permutation of 1, 2, 3, to the following two subcases.

Type (4): 0 6= k1⊥k2 6= 0, k3 = 0. Here e4 and e5 can be taken so that they
are collinear to k1 and k2, respectively, hence k1 = κ1e4 and k2 = κ2e5. Then

ω4
1 = κ1ω

1, ω5
2 = κ2ω

2, ω5
1 = ω4

2 = ω4
3 = ω5

3 = ω%
i = 0,

where i, j, . . . = 1, 2, 3 and % = 6, . . . , n. Now according to (2.8), (2.9) Ωj
i = 0 so that

also ∇ is flat. This M3 is intrinsically locally Euclidean.
Type (5): 0 6= k1 = k2⊥k3 6= 0. Here k1 = k2 = κe4, k3 = κ3e5 by a suitable

choice of e4 and e5. Hence

ω4
1 = κω1, ω4

2 = κω2, ω4
3 = 0,

ω5
1 = ω5

2 = 0, ω5
3 = κ3ω

3, ω%
i = 0,

where dω5
3 = 0 and thus at least locally ω5

3 = du3. The first two equations of the
second row give by exterior differentiation

ω3
1 ∧ du3 + κω1 ∧ ω5

4 = 0, ω3
2 ∧ du3 + κω2 ∧ ω5

4 = 0.

Hence by Cartan’s lemma

ω1
3 = aω1 + λ1du3, ω2

3 = aω2 + λ2du3, κω5
4 = adu3.
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The third equation of the first row gives by exterior differentiation and substitution

that λ1 = λ2 = 0, so that

(3.4) ω1
3 = aω1, ω2

3 = aω2.

Hence the next differential prolongation gives da = −a2ω3.
Now ω1 = ω2 = 0 determines a foliation of M 3 whose leaves are the lines with

dx = e3ω
3, de3 = e4κ3ω

3, thus the geodesic lines of M3. The equation ω3 = 0 is
totally integrable because dω3 = 0. It determines a foliation of M 3 whose leaves are

totally umbilical because for them de1 = e2ω
2
1 + (−ae3 + κe4)ω1, de2 = −e1ω

2
1 +

(−ae3 + κe4)ω2. Hence these leaves are two-dimensional spheres. Along every such

sphere the tangent lines of M3, orthogonal to the sphere, intersect in a point with
radius vector x − a−1e3, because d(x − a−1e3) = 0 (mod ω3). (If a ≡ 0 along
the sphere then these tangent lines are parallel.) Hence these sphere-leaves are the
characteristics of a one-parametric family of three-dimensional spheres andM 3 is an

envelope of this family. It follows that M 3 is a canal submanifold. For every of its
geodesics, orthogonal to the characteristics, the principal curvature vector is κ3e4,

thus orthogonal to the three-dimensional plane containing the characteristic sphere
and therefore spanned by e1, e2, −ae3 + κe4. Such kind of canal M3 can be called

of orthogonal type (see [11]).
Intrinsically it is a foliated semisymmetric Riemannian three-dimensional mani-

fold, which is in view of (3.4) and (1.3) of planar type (in the sense of Kowalski, see
Sect. 1).

3.3. The case of m1 = 3.
Here ∇⊥ can be but need not be flat. Let us start from the first possibility.

Type (6): Let ∇⊥ be flat. Now three principal curvature vectors k1, k2, k3 must
be different, due to m1 = 3, and the semiparallelity condition (2.14) shows that they
are mutually orthogonal vectors. Therefore the frame vectors e3+i can be taken so
that ki = κie3+i. Then

ω3+j
i = κiδ

j
i ω

i, ωξ
i = 0 (ξ, η, . . . = 7, . . . , n).

It follows that

Ωj
i = ω3+k

i ∧ ωj
3+k =

∑

k

κiδ
k
i ωi ∧ (−κjδ

k
j ωj) = −κiκjδijω

i ∧ ωj = 0,

i.e. also ∇ is flat and M3 is intrinsically locally Euclidean.

Further let ∇⊥ be nonflat. Here Proposition 8.6 of [15] yields H 6= 0, as for the
case m1 = 2. The frame vectors e4, e5, e6 in the principal normal subspace can be
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taken so that e4 is collinear to H . Then H4 6= 0 but the other components of H are
zero. Now (2.12) gives that Ωα

4 = 0 in addition to (2.13). Since ∇⊥ is nonflat there
must be Ω6

5 6= 0. In particular, Ω5
4 = 0, but this yields that the matrices ‖h4

ij‖ and
‖h5

ij‖ commute and can be simultaneously diagonalized by a suitable choice of e1,

e2, e3. After that
h4

ij = κiδij , h5
ij = λiδij .

Here λ1 + λ2 + λ3 = 0 since H5 = 0, but (2.9) gives

0 6= Ω6
5 = (λ2 − λ1)h6

12ω
1 ∧ ω2 + (λ3 − λ2)h6

23ω
2 ∧ ω3 + (λ1 − λ3)h6

31ω
3 ∧ ω1.

Hence at least one of the coefficients is non-zero. After a renumeration, if needed,

one obtains (λ1 − λ2)h6
12 6= 0, λ1 6= 0.

Semiparallelity condition (2.11) for α = 5 reduces to

(λj − λi)Ω
j
i = h6

ijΩ
5
6,(3.5)

therefore

h6
ii = 0, (λ1 − λ2)Ω2

1 = h6
12Ω

6
5 6= 0,(3.6)

thus Ω2
1 6= 0.

Further, 0 = Ω6
4 =

∑
i<j

(κj − κi)h6
ijω

i ∧ ωj yields

(3.7) κ1 = κ2 = κ, (κ− κ3)h6
13 = (κ− κ3)h6

23 = 0.

There exist two possibilities.
Type (7): κ3 6= κ, h6

13 = h6
23 = 0. Here (2.11) for α = 6 and i = j = 1, or

i = j = 2 gives, respectively,

(3.8) 2h6
12Ω

2
1 − λ1Ω6

5 = 0, −2h12Ω2
1 − λ2Ω6

5 = 0,

hence (λ1 + λ2)Ω6
5 = 0 and thus λ2 = −λ, λ3 = 0, where λ1 is denoted by λ.

Now (3.6) and (3.8) reduce to

2λΩ2
1 − h6

12Ω
6
5 = 0, 2h6

12Ω
2
1 − λΩ6

5 = 0

and yield (h6
12)

2 = λ2. Replacing e6 by −e6, if needed, one can take h6
12 = λ 6= 0.

Due to (2.8) and (2.9)

Ω2
1 = (2λ2 − κ2)ω1 ∧ ω2, Ω3

2 = −κκ3ω
2 ∧ ω3, Ω6

5 = −2λ2ω1 ∧ ω2.
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Substitution into (3.5) gives κ2 = 3λ2 6= 0, and replacing e4 by −e4, if needed, one

gets κ = λ
√

3. Finally (2.11) for α = 6 and i = 1, j = 3 yields λκκ3 = 0, thus
κ3 = 0.
All this can be summarized with

ω4
1 = λ

√
3ω1, ω4

2 = λ
√

3ω2, ω4
3 = 0,(3.9)

ω5
1 = λω1, ω5

2 = −λω2, ω5
3 = 0,(3.10)

ω6
1 = λω2, ω6

2 = λω1, ω6
3 = 0,(3.11)

ω%
1 = ω%

2 = ω%
3 = 0,(3.12)

where % = 7, . . . , n. This differential system together with

ω4 = ω5 = ω6 = ω% = 0

determines the considered M3.
By exterior differentiation from ω4

3 = ω5
3 = ω6

3 = 0 it follows that

ω3
1 ∧ ω1 + ω3

2 ∧ ω2 = ω3
1 ∧ ω1 − ω3

2 ∧ ω2 = ω3
1 ∧ ω2 + ω3

2 ∧ ω1 = 0,

therefore

(3.13) ω3
1 = −aω1, ω3

2 = −aω2.

Due to (3.13) the system ω1 = ω2 = 0 determines a foliation of M 3 whose leaves

are the straight lines because for them de3 = 0.
Thus intrinsically this M3 is a foliated semisymmetric Riemannian three-dimen-

sional manifold, which is due to (3.13) and (1.3) of planar type (in the sense of
Kowalski).

Geometric characterization of this semiparallel submanifold will be given below in
Section 6.

The other possibility in (3.7) is

Type (8): κ3 = κ. Here (2.11) for α = 6 and i = 1, j = 3, or i = 2, j = 3 gives,
respectively,

(3.14) h6
23Ω

2
1 + h6

12Ω
2
3 = 0, h6

13Ω
1
2 + h6

21Ω
1
3 = 0,

but (3.5) leads to

(λ3 − λ1)Ω3
1 = h6

13Ω
5
6, (λ3 − λ2)Ω3

2 = h6
23Ω

5
6.
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After multiplying by h6
12 6= 0, using (3.6) and λ1 + λ2 + λ3 = 0 one obtains

h6
13λ1 = h6

23λ2 = 0.

Consequently, h6
13 = 0. The possibilty h6

23 = 0 leads to a contradiction, because, as
in the subcase of type (7), then κ3 = 0 and κ2 = 3λ2 6= 0, but this contradicts to
κ3 = κ. Therefore h6

23 6= 0, λ2 = 0 and thus λ3 = −λ1 = λ 6= 0. From (3.14) now
Ω3

1 = 0, Ω3
2 6= 0.

The semiparallelity condition (2.11) for α = 6 and i = j = 1, and for α = 5 and
i = 1, j = 2 yields, respectively,

2h6
12Ω

2
1 − λΩ6

5 = 0, λΩ2
1 − h6

12Ω
6
5 = 0.

Hence 2(h6
12)

2 = λ2. But the same (2.11) for α = 6 and i = j = 2, or i = 1, j = 3
gives, respectively,

h6
12Ω

2
1 − h6

23Ω
3
2 = 0, h6

23Ω
2
1 − h6

12Ω
3
2 = 0,

hence (h6
23)

2 = (h6
12)

2. Replacing e6 by −e6 and e2 by −e2, if needed, one obtains
h6

23 = h6
12 = 1√

2
λ.

Now

0 = Ω3
1 = (λ2 − κ2)ω2 ∧ ω3

and taking −e4 instead of e4, if needed, one gets finally κ = λ. It remains to rotate e2

and e3 in their plane on the angle � /4 to obtain the differential system determining
the considered M3 in the form:

ω4 = ω5 = ω6 = ω% = 0,

ω4
1 = λω1, ω4

2 = λω2, ω4
3 = λω3,

ω5
1 = λω2, ω5

2 = λω1, ω5
3 = 0,

ω6
1 = λω3, ω6

2 = 0, ω6
3 = λω1,

ω%
1 = ω%

2 = ω%
3 = 0,

where % = 7, . . . , n. The differential prolongation (exterior differentiation and Car-
tan’s lemma) of this system gives

ω2
1 = aω2, ω3

1 = aω3,(3.15)

d ln λ = −aω1, ω3
2 − ω6

5 = 0, ω5
4 = aω2, ω6

4 = aω3,

ω%
4 = ϕ%ω1, ω%

5 = ϕω2, ω%
6 = ϕ%ω3
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and from here in the same manner

da = −a2ω1, ω%
4 = ω%

5 = ω%
6 = 0.

This prolonged system is now totally integrable and determines the considered M 3

up to constants. This M3 lies obviously in a � 6 ⊂ � n .

Due to (3.15) the system ω2 = ω3 = 0 determines a foliation of M 3. For its
leaves de1 = e4λω1, de4 = −e1λω1, therefore each of them is a plane curve, which

is geodesic for M3. Hence M3 is intrinsically a foliated semisymmetric Riemannian
three-dimensional manifold. If we exchange in (3.15) the roles of the indices 1 and

3 and compare the result with (1.3), it is seen that this M 3 is intrinsically of planar
type (in the sense of Kowalski).

Geometric characterization of this semiparallel submanifold will be given below in
Section 6.

4. Classification for the remaining cases

This classification is given in [11] and will be reproduced here with some additions
concerning the intrinsical metric.

4.1. The case of m1 = 4.
Here between six vectors hij = eαhα

ij there must be two independent linear
relations hijξ

ij = 0 and hijη
ij = 0, which determine a one-parametric family

%(hijξ
ij) + σ(hijη

ij) = 0 of such relations. In this family the singular case cor-
responds to a root of the cubic equation det |%ξij + σηij | = 0 with respect to %/σ or

σ/%. There is at least one real root and thus one basic relation can be presented in
the form hijξ

(i
1 ξ

j)
2 = 0, where ξ1 = ξi

1ei and ξ2 = ξj
2ej determine some directions in

TxM3.
A. Let these directions be distinct. After normalization of ξ1 and ξ2 the frame

vector e2 can be taken orthogonal to them and e1 and e3 collinear, respectively, to
ξ1 + ξ2 and ξ1 − ξ2. Then the special basic relation above is h11(ξ1

1)2 −h33(ξ3
1)2 = 0.

Here ξ1
1ξ3

1 6= 0; the roles of e1 and e3 can be interchanged taking −ξ2 instead of ξ2.
Hence the following subcases occur.

(A1) (η12)2 + (η23)2 6= 0. Here it can be supposed that η23 6= 0 and the basic
relations are

h33 = µh11, h23 = ν1h11 + ν2h22 + ν3h12 + ν4h13.

(A2) η12 = η23 = 0, η13 6= 0. Then

h33 = µh11, h13 = ν1h11 + νh22.
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(A3) η12 = η23 = η13 = 0. Here either
(A′3) η22 6= 0 and h33 = µh11, h22 = νh11 or
(A′′3 ) η22 = 0, then η11 6= 0 and h33 = h11 = 0.
B. Let ξ1 and ξ2 have the same direction, in which e3 can be taken. Then the

special basic relation above is h33 = 0 and the roles of e1 and e2 can be interchanged
taking −e3 instead of e3. Here the following subcases occur.

(B1) (η13)2 +(η23)2 6= 0. It can be supposed that η23 6= 0, but this leads to the limit
case of (A1), when µ = 0.

(B2) η13 = η23 = 0, η12 6= 0. Then

h33 = 0, h12 = λ1h11 + λ2h22.

(B3) η13 = η23 = η12 = 0. This leads either to the limit case of (A′3), when µ = 0,
or to the case (A′′3 ).

So we must consider three subcases (A2), (A′′3 ), (B2), and two subcases (A1), (A′3)
with their limit cases when µ = 0.
In each of them the semiparallelity condition (2.11) must be satisfied. By means

of (2.5), (2.8) and (2.9) this condition can be represented as a purely algebraic system

of cubic homogeneous equations

(4.1)
∑

k

{hkjHi[p,q]k + hikHj[p,q]k −Hij,k[phq]k} = 0,

where Hij,kl = 〈hij , hkl〉 =
∑
α

hα
ijh

α
kl. Every equation of this system is a linear

dependence between the vectors hij with different pairs {ij}. In the considered
case m1 = 4 there must always be four linearly independent vectors among them,
therefore the coefficient of every of the latter must be zero.

In the sequel the equation (4.1) will be referred to as [ij, pq], and if the coefficient
at a vector hrs vanishes, then this condition will be referred to as [ij, pq|rs].
Let us start with the subcase (B2); here the vectors h11, h22, h13, h23 are linearly

independent. Now

[11, 13|13] : 2H13,13 + H11,11 = 0

gives a contradiction. Hence (B2) is impossible for a semiparallel M 3 in � n . The
same argument shows that (A′′3 ) is impossible, too.

Next let us consider the subcase (A′3); here the vectors h11, h12, h13, h23 are
linearly independent. Then

[11, 12|12] : 3H11,22 − 2H12,12 −H11,11 = 0,(4.2)

[22, 12|12] : 3H11,22 − 2H12,12 −H22,22 = 0,(4.3)
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thus H22,22 = H11,11 and for (A′3) ν2 = 1. The case ν = −1 is impossible because
(4.2) gives then a contradiction 2H11,11 + H12,12 = 0. Hence ν = 1 and H11,22 =
H12,12. Now

[13, 12|23] : H11,22 −H12,12 −H13,13 = 0

gives a contradiction H13,13 = 0 and so (A′3) is impossible for a semiparallel M 3

in � n .
The same can be shown for (A2), where the vectors h11, h22, h12, h23 are linearly

independent. Here as before (4.2), (4.3) hold and thus H11,11 = H22,22. On the other
hand, [33, 12|12] gives µ(H11,22 −H11,11) = 0, hence H11,11 = H22,22 = H11,22. This

is impossible because h11, h22 are linearly independent.
It follows that the semiparallelity condition (4.1) can be satisfied only in the sub-

case (A1), when the vectors h11, h22, h12, h13 are linearly independent and, recall,

(4.4) h33 = µh11, h23 = ν1h11 + ν2h22 + ν3h12 + ν4h13.

Type (9): Here the following conditions are to be used.

[11, 12|11]: H11,12 − ν1H11,13 = 0,

[11, 12|22]: −H11,12 − ν2H11,13 = 0,

[22, 12|11]: H12,22 + ν1(2H12,23 − 3H22,13) = 0,

[22, 12|22]: −H12,22 + ν2(2H12,23 − 3H22,13) = 0,

[12, 12|11]: 2H12,12 −H11,22 + ν1(H11,23 −H12,13) = 0,

[12, 12|22]: −2H12,12 + H11,22 + ν2(H11,23 −H12,13) = 0,

[33, 12|11]: H33,12 + ν1(2H22,13 − 2H12,23 −H13,33) = 0,

[33, 12|22]: −H33,12 + ν2(2H22,13 − 2H12,23 −H13,33) = 0.

Suppose ν1 + ν2 6= 0. From the first three pairs of these conditions

H11,12 = H11,13 = 0,

H12,22 = 2H12,23 − 3H22,13 = 0,

2H12,12 −H11,22 = H11,23 −H12,13 = 0.

Therefore, due to (4.4), H33,12 = µH11,12 = 0, H33,13 = µH11,13 = 0. Now
the third pair of these conditions reduces to H22,13 = H12,23 and together with the

relation above givesH22,13 = H12,23 = 0. Thus, due to (4.4), ν3H12,12+ν4H12,13 = 0.
Further,

[13, 12|11] : ν1(H11,22 −H12,12 −H13,13) + H12,13 = 0,

[13, 12|22] : ν2(H11,22 −H12,12 −H13,13)−H12,13 = 0,
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hence H12,13 = H11,22 − H12,12 − H13,13 = 0, thus H11,23 = 0, H12,12 = H13,13 =
χ2 6= 0, ν3 = 0, H11,22 = 2χ2. Now from

[11, 12|12] : 3H11,22 − 2H12,12 −H11,11 = 0,

[22, 12|12] : 3H11,22 − 2H12,12 −H22,22 = 0

one obtains H11,11 = H22,22 = 4χ2.
On the other hand [13, 12|13] : ν4(H11,22−H12,12) = 0 gives ν4χ

2 = 0, thus ν4 = 0
and now [22, 12|13] yields H22,23 = 0. But H11,23 = 0 and H22,23 = 0 give together
a contradiction:

4χ2ν1 + 2χ2ν2 = 0, 2χ2ν1 + 4χ2ν2 = 0, ν1 + ν2 6= 0.

Consequently ν1 = −ν2 = ν and

H11,12 = νH11,13, H22,12 = ν(3H22,13 − 2H12,23),(4.5)

2H12,12 −H11,22 = ν(H12,13 −H11,23),(4.6)

µH11,12 = ν(2H12,23 − 2H22,13 + µH11,13).(4.7)

Next the following relations are to be used.

[11, 13|11] : (1− µ)H11,13 − νH11,12 = 0,

[11, 13|22] : νH11,12 = 0,

[22, 13|11] : (1− µ)H22,13 + ν(2µH11,12 − 2H22,13 −H22,12) = 0,

[22, 13|22] : ν(2µH11,12 − 2H22,13 −H22,12) = 0,

[12, 13|11] : 2H12,13 −H11,23 − µH12,13 + ν(µH11,11 −H12,12 −H13,13) = 0,

[12, 13|22] : H11,23 −H12,13 − ν(µH11,11 −H12,12 −H13,13) = 0,

[13, 12|11] : ν(H11,22 −H12,12 −H13,13) + H12,13

+ (1− µ)(H12,13 −H11,23) = 0,

[13, 12|22] : ν(H11,22 −H12,12 −H13,13) + H12,13 = 0,

[23, 12|11] : H12,23 + µ(H12,23 −H13,22)− νH13.23 = 0,

[23, 12|22] : H13,22 − 2H12,23 + νH13,23 = 0,

[23, 13|11] : H13,23 + µ(µH11,12 − 2H13,23)− νH12,23 = 0,

[23, 13|22] : H13,23 − µH11,12 + νH12,23 = 0.

Suppose that µ 6= 1. Then from the first three pairs of relations H11,13 = H22,13 =
H12,13 = 0 and (4.5) gives H11,12 = 0. Due to the next three pairs of relations
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H11,23 = H12,23 = H13,23 = 0 and from (4.5)–(4.7) H22,12 = 2H12,12 − H11,22 =
0. Now H12,23 = H13,23 = 0 and (4.4) gives ν3H12,12 = 0, ν4H13,13 = 0, thus
ν3 = ν4 = 0. Adding

[22, 23|11]: −µH22,23 + ν(3µH11,22 − 2H23,23 −H22,22) = 0,

[22, 23|22]: H22,23 − ν(3µH11,22 − 2H22,23 −H22,22) = 0

one obtains (1−µ)H22,23 = 0 and thereforeH22,23 = 0. This together withH11,23 = 0
gives

ν(H11,11 −H11,22) = 0, ν(H11,22 −H22,22) = 0.

Here ν 6= 0 yields a contradiction: H11,11 = H11,22 = H22,22 and h11, h22 could
not be linearly independent. But ν = 0 leads to a contradiction, too. Indeed, then
h23 = 0 and [23, 12|13] : H12,12 − H11,22 = 0 contradicts to 2H12,12 − H11,22 = 0
obtained above.

So, we must have µ = 1, and thus

h33 = h11, h23 = ν(h11 − h22) + ν3h12 + νh13.

Suppose ν 6= 0. Then H11,12 = H11,13 = 0 due to (4.5) and the above relation
[11, 13|11]. The relations [33, 13|22] and [33, 13|12] yield H13,23 = H11,23 = 0, but
[11, 13|12] and [11, 13|13] give H12,13 = H11,11 − H13,13 = 0. Substitution into the
above relation [12, 13|22] leads to a contradiction νH12,12 = 0.
Hence ν = 0 and thus h33 = h11, h23 = ν3h12 + ν4h13. From (4.5) and other

relations above it follows that

H11,12 = H22,12 = H11,22 − 2H12,12 = H12,13 = H13,22 − 2H12,23 = 0,

H11,23 = H13,23 = 0.

Thus ν4H13,13 = 0, so ν4 = 0 and h23 = ν3h12. Now

[12, 23|13] : H11,22 −H12,12 − ν2
3H12,12 = 0

gives (1 − ν2
3)H12,12 = 0, hence ν3 = ±1. Here the case ν3 = 1, when h33 = h11,

h23 = h12, can be reduced to the case ν3 = −1 taking −e1 instead of e1.

Now the case ν3 = −1, when h33 = h11, h23 = −h12, turns after the transformation
e′3 = 1√

2
(e1 + e3), e′2 = 1√

2
(−e1 + e3), e′1 = e2 into

h′13 = h′23 = 0.
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A straightforward check shows that all semiparallelity conditions (4.1) for h13 =
h23 = 0 and linearly independent h11, h22, h12, h33 reduce to

H11,12 = H11,33 = H22,12 = H22,33 = H12,33 = 0,

H11,11 = H22,22 = 2H11,22 = 4H12,12.

Denoting nowH12,12 = λ2, H33,33 = κ2 and taking e4, e5, e6, e7 collinear to h11−h22,
h11 + h22, h12 and h33, respectively, one obtains for M 3 the differential system

consisting of (3.9)–(3.12),

ω7
1 = 0, ω7

2 = 0, ω7
3 = κω3(4.8)

and

ω4 = ω5 = ω6 = ω7 = ω% = 0,(4.9)

where now % = 8, . . . , n and λ > 0, κ > 0.
By exterior differentiation the equations ω4

3 = ω5
3 = ω6

3 = ω7
3 − κω3 = 0 of this

system lead to

λ
√

3ω1
3 ∧ ω1 + λ

√
3ω2

3 ∧ ω2 + κω7
4 ∧ ω3 = 0,

λω1
3 ∧ ω1 − λω2

3 ∧ ω2 + κω7
5 ∧ ω3 = 0,

λω2
3 ∧ ω1 + λω1

3 ∧ ω2 + κω7
6 ∧ ω3,

ω1
3 ∧ ω1 + ω2

3 ∧ ω2 + d ln κ ∧ ω3 = 0.

Therefore

λ
√

3ω1
3 = Aω1 + Fω3, λ

√
3ω2

3 = Aω2 + Gω3,

κω7
4 = Fω1 + Hω2 + Iω3,

κ
√

3ω7
5 = −Fω1 + Hω2 + Jω3, κ

√
3ω7

6 = −Hω1 − Fω2 + Kω3,

λ
√

3d ln κ = Fω1 + Hω2 + Lω3.

The other equations (4.8) give

κω3
1 ∧ ω3 + λ

√
3ω1 ∧ ω7

4 + λω2 ∧ ω7
5 + λω2 ∧ ω7

6 = 0,

κω3
2 ∧ ω3 + λ

√
3ω2 ∧ ω7

4 − λω2 ∧ ω7
5 + λω1 ∧ ω7

6 = 0,

and thus F = H = J = K = 0, 3λ2I = κ2A. Denoting A/(κ
√

3) = a, L/(κ
√

3) = ϕ

one obtains

ω1
3 = aω1, ω2

3 = aω2(4.10)

λ
√

3ω7
4 = aκω3, ω7

5 = ω7
6 = 0, d ln κ = ϕω3.(4.11)
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Due to (4.10) the system ω1 = ω2 = 0 determines a foliation of M 3. Intrinsically

this M3 is a foliated semisymmetric Riemannian three-dimensional manifold, which
is due to (4.10) and (1.3) of planar type (in the sense of Kowalski). Geometric
characterization of this semiparallel submanifold will be given below in Section 6.

4.2. The case of m1 = 5
is impossible for a semiparallel M 3 in � n . Indeed, there is then a linear dependence
hijξ

ij = 0 with
∑

(ξij)2 6= 0. Here hij determine a vector valued symmetric tensor

field, hence ξij give a symmetric tensor field determined up to a multiplier. The
tangent frame vectors e1, e2, e3 can be taken at each point of M 3 so that this

dependence is h11ξ
11 + h22ξ

22 + h33ξ
33 = 0, which after reordering, if needed, leads

to

(4.12) h33 = µ1h11 + µ2h22.

The five vectors h11, h22, h12, h13, h23 are linearly independent.

The expression (4.12) is to be substituted into (4.1); the coefficients of the above

five vectors in the resulting equation must be zero. So

[aa, ab|ab] : 3Haa,bb − 2Hab,ab −Haa,aa = 0,

where a and b are 1 or 2, a 6= b. In particular this gives

(4.13) H11,11 = H22,22 = σ2 > 0.

Further,

(4.14) [aa, a3|a3] : 3Haa,33 − 2Ha3,a3 −Haa,aa = 0.

This together with (4.12) and (4.13) leads to

(4.15) (3µa − 1)σ2 + 3µbHaa,bb − 2Ha3,a3 = 0.

Adding

(4.16) [aa, b3|b3] : µaσ2 + (µb − 1)Haa,bb = 0

one obtains a homogeneous linear system with non-trivial solution (σ2, H11,22), thus

(µ1 − µ2)(µ+µ2 − 1) = 0.
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Here µ1 + µ2 = 1 is impossible: (4.16) gives H11,22 = σ2, but this contradicts

to (4.13), because h11 and h22 are linearly independent.

However, µ1 = µ2 leads to a contradiction, too. Due to (4.16) and (4.13) then
µ1 = µ2 = µ 6= 1, thus H11,22 = µσ2(1− µ)−1. Now

[33, 3a|a3] : 3Haa,33 − 2Ha3,a3 −H33,33 = 0

together with (4.13) and (4.14) gives H33,33 = σ2. After substitution from (4.12) the
result is 2µ2 + µ− 1 = 0. The root µ = 1

2 leads to a particular case of µ1 + µ2 = 1
and thus is impossible. For the root µ = −1 there is Haa,bb = − 1

2σ2, but this is

impossible, too: (4.15) gives −4σ2 + 3
2σ2 − 2Ha3,a3 = 0 or − 5

2σ2 = Ha3,a3 > 0.

4.3. The case of m1 = 6.
Then all six vectors hij , where i, j, . . . run over {1, 2, 3}, are linearly independent,

therefore (4.1) leads to

H12,12 = H23,23 = H13,13 = λ2,

H11,22 = H22,33 = H11,33 = 2λ2,

H11,11 = H22,22 = H33,33 = 4λ2,

Haa,ab = Haa,bc = Hab,ac = 0

for every three different values a, b, c from {1, 2, 3}. In short,

Hij,kl = λ2(2δijδkl + δikδjl + δilδjk)

(see [9], [11]). Now due to (2.8)

Ωj
i = −Hi[k,l]jω

k ∧ ωl = −λ2ωi ∧ ωj

and according to the Schur theorem λ = const. This shows that intrinsically such
an M3 is a Riemannian space of constant curvature.

In [11] it is shown that this M3 is a second order envelope of three-dimensional
Veronese orbits V 3(R) (see also [9]).
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5. Proof of the Main Theorem

It is sufficient to look at the types (1), . . . ,(9), and 4.3 which were analyzed in the
Sections 3 and 4. The types (1), (3), (4), (6), and 4.3 lead to Riemannian manifolds

of constant curvature. The remaining types (2), (5), (7), (8), and (9) have been
shown to produce foliated semisymmetric spaces M 3 of planar type. This concludes

the proof.

6. Geometric descriptions of foliated semiparallel M 3

It remains to describe geometrically the foliated semiparallel M 3 of the cases
(7)–(9) above.

Let start with (7), where M3 in � n is determined by the differential sys-
tem (3.9)–(3.13). The next differential prolongation gives

da = −a2ω3.

If here a 6= 0, then d(x − a−1e3) = 0 and thus the straight lines, by which this
M3 is foliated, are going through a fixed point. Hence this M 3 is then a cone. An

orthogonal surface of the generators of this cone is determined by the differential
system which is obtained after removing from (3.9)–(3.12) the equations of the last

column. This system is investigated in [10], where κ is used instead of λ. The
geometrical construction of such a surface depends essentially on the dimension of

the ambient space.
If the M3 under consideration lies in � 6 , then a = 0, as is shown in [12] (where

λ is used instead of a), and M3 is the cylinder V 2(R) × � 1 over a Veronese orbit
V 2(R) ∈ � 5 , or an open part of such a cylinder.
If this M3 lies essentially in � n , n > 6, then M3 is a second order envelope of

these Veronese cylinders (see [10], [12]). A more thorough investigation of such an

envelope is rather complicated (see [12]).
Next let us consider the case (8). The differential system here shows that for the

orthogonal surface of the family of principal geodesics, determined by ω2 = ω3 = 0,
it holds that ω1 = 0,

de2 = e3ω
3
2 + (−ae1 + λe4)ω2,

de3 = −e2ω
3
2 + (−ae1 + λe4)ω3,

where a and λ are constants for this surface. It follows that this surface consists of
totally umbilical points and therefore is a sphere (or its open part). The centre of
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this sphere has the radius vector

c = x + (a2 + λ2)−1(−ae1 + λe4)

and since dc = 0, as is easy to check (cf. [13]), all these spheres have a common
centre, i.e. they are concentric.

The principal geodesics are plane curves, as is shown before, whose curvature is λ.
Moreover, from (3.15) it follows that dω1 = 0, thus ω1 = ds. Now da = −a2ds

gives for the case a 6= 0 that a = s−1. Therefore ln λ = −aω1 yields λ = ks−1 with
k = const. Hence all these principal geodesics are congruent logarithmic spirals. It
can be shown (see [13]) that the pole of every of these logarithmic spirals coincides
with the common centre of the concentric spheres above. In the limit case when

a = 0 these logarithmic spirals reduce to circles and then M 3 is a parallel orbit,
namely the Segre orbit (see [13], [15]), or its open part. In the general case M 3 is a

second order envelope of Segre orbits.

Finally, it remains to analyse the case (9), when M 3 in � n is determined by the

differential system (3.9)–(3.12), (4.7) together with (4.8), where % = 8, . . . , n.

Recall that partial differential prolongation of this system leads to the equa-
tions (4.9) and (4.10), but by the further prolongation the following consequences

can be obtained (see [11]):

−1
2
d ln λ = Aω1 + Bω2 − 1

2
ϕω3,

1
5
(2ω2

1 − ω6
5) = −Bω1 + Aω2,(6.1)

1√
3
ω5

4 = Aω1 −Bω2,
1√
3
ω6

4 = Bω1 + Aω2.(6.2)

Let here n = 7. Then the equations in which % appears as an upper index

disappear. Now the two middle equations (4.10) give by exterior differentiation
ω4

5 ∧ ω7
4 = 0, ω4

6 ∧ ω7
4 = 0, thus Aa = Ba = 0.

If here a = 0 then ω1
3 = ω2

3 = 0 and this together with (3.9)–(3.12) and (4.7)–
(4.10) shows that M3 is a product submanifold M2 ×M1. Here (6.1) and (6.2) give

by differential prolongation (see [9], [11], [14])

dA = Bω2
1 +

1
5
(14B2 − 11A2)ω1 − 5ABω2,

dB = −Aω2
1 − 5ABω1 +

1
5
(14A2 − 11B2)ω2

and now the exterior differentiation leads to

A
[
λ2 +

42
25

(A2 + B2)
]

= B
[
λ2 +

42
25

(A2 + B2)
]

= 0,
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thus A = B = 0 and λ = const. Hence M 2 is a Veronese orbit V 2(R) (or its open
part) in an � 5 ⊂ � n . The principal geodesics of M3 = V 2(R) × M1 are plane
lines M1 of curvature κ. Altogether this M 3 is a second order envelope of products
V 2(R)× S1(r) with R = const.
If A = B = 0 then 2ω2

1 = ω6
5 . Here an exterior differentiation leads to a = 0 and

we return to the previous case.

Finally if n > 7 then the same system as above shows that M 3 is a general second
order envelope of products V 2(R)× S1(r).

7. Concluding remarks

In connection with the Main Theorem it is essential to remark that the foliated
semisymmetricM3 of the other types, i.e. hyperbolic, parabolic and elliptic, can not

be immersed isometrically into � n as semiparallel submanifolds, although they form
much broader families as is seen from [6], where the exact forms of their metrics are

given. Here the problem arises what happens if we replace � n by another ambient
space.

Also another question arises: can every foliated semisymmetric Riemannian mani-

fold of planar type be immersed isometrically into � n as a semiparallel submanifold?

If we try to answer this question the following result by Kowalski is important (see
Theorem 7.10 in [6]).

On every planar foliated M 3 the local coordinates can be taken so that the or-

thonormal coframe is given by

ω1 = f(x1, x2)x3dx1, ω2 = x3dx2, ω3 = dx3.

The local isometry classes of such M 3 are parametrized by the function f(x1, x2)
modulo 2 arbitrary functions of 1 variable.

Let now check up what are the parametrizations of the foliated semiparallel sub-
manifolds M3 of the planar type in Euclidean spaces, i.e. in the cases (2), (5), (8),

(7) and (9).

In the case (2) M3 is an open part of a round cone in � 4 , which depends only

on some constants and therefore can not be intrinsically a general planar foliated
Riemannian M3.

In the case (5) M3 is determined by a one-parametric family of three-dimensional

spheres, thus depends only on some real analytic functions of one real argument and
therefore can not be intrinsically a general planar foliated Riemannian M 3 either.
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The same can be said about the case (8), where M 3 is determined by a totally

integrable differential system, as shown in Section 3, and thus depends on some
constants.

Let now take the case (7), where M 3 is a second order envelope of the products

V 2(R) × � 1 of Veronese surfaces and straight lines. Let consider first the subcase
when the principal geodesics are the parallel straight lines. True enough, in this

subcase M3 is not an infinitesimally irreducible simple leaf, but a product M 2 × � 1 ,
which nevertheless can be considered as a limit case of the generalM 3 of the case (7),

namely when a is tending to zero in (3.13). Here M 2 is a second order envelope of
the Veronese surfaces V 2(R).
In [14] it is shown that in � n , n > 7, the last envelope depends on one real analytic

function of two real arguments. Of course at least the same arbitrariness must prevail
also for the general M3 of the case (7).

This makes plausible the following conjecture:

Into � n , n > 8, every planar foliated Riemannian M 3 can be immersed isometri-

cally as a semiparallel submanifold.
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