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Abstract. This paper recalls some properties of a cyclic semigroup and examines cyclic
subsemigroups in a finite ordered semigroup. We prove that a partially ordered cyclic semi-
group has a spiral structure which leads to a separation of three classes of such semigroups.
The cardinality of the order relation is also estimated. Some results concern semigroups
with a lattice order.
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1. Cyclic semigroups

Our investigations are inspired by Š. Schwarz’s work on the semigroup of binary
relations ([7], [8]). We want to separate pure semigroup properties used there and in

many papers on fuzzy relations (cf. [9] or [5]).
We begin with the notion of periodic semigroup (cf. [4], § I, 2).

Definition 1. A semigroup S is called periodic if every element a ∈ S has a

repetition in the sequence of powers: a, a2, a3, . . .. The index of a ∈ S is the number

(1) k = k(a) = min{n ∈ � : ∃m>n(am = an)}.

The period of a ∈ S is the number

(2) d = d(a) = min{n ∈ � : ak+n = ak}.

This definition prepares our fundamental assumption

Hypothesis 1. (S, ∗) is a periodic semigroup and a ∈ S.
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Now we recall the known results on the cyclic semigroup generated by a:

(3) 〈a〉 = {a, a2, a3, . . .}.

Theorem 1 ([4], Theorem 2.6). Under Hypothesis 1 the semigroup (3) has
exactly k + d− 1 different elements,

(4) 〈a〉 = {a, a2, . . . , ak, ak+1, . . . , ak+d−1},

and contains a cyclic subgroup

(5) Ka = {ak, ak+1, . . . , ak+d−1}

of order d, with the identity e = ar, where

(6) r = r(a), k 6 r 6 k + d− 1, d | r

and with the generator q = ar+1, i.e.

(7) Ka = {q, q2, . . . , qd}.

Moreover

(8) (am = an) ⇔ d | (m− n) for all n, m > k.

Definition 2 ([4]). The group (5) is called the kernel of the semigroup (4).

Definition 3. An element p ∈ S is idempotent if

(9) p2 = p.

Immediately from (9) we get

(10) (pn = p) for all n ∈ � .

As an example of an idempotent element we consider the group identity e. From
Theorem 1 we see that the semigroup (3) has at least one idempotent element e = ar.

Conversely, we prove that

Lemma 1. Under Hypothesis 1 the semigroup (3) has at most one idempotent
element.

�������! 
. Let p = am, q = an be idempotent. Then (10) implies

p = pn = (am)n = (an)m = qm = q.

�
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Thus we get

Theorem 2 ([7], Lemma 1.7). Under Hypothesis 1 the semigroup (3) has exactly
one idempotent element p = ar with r = r(a) from (6).

Using the Lagrange theorem (cf. e.g. [6], p. 122), as a corollary from Theorems 1,

2 we obtain

Theorem 3. Under Hypothesis 1 for every b ∈ 〈a〉 the semigroup 〈b〉 has the
same idempotent element as 〈a〉. Moreover (cf. (1)–(6))

(11) Kb ⊂ Ka, d(b) | d(a).

Observe that in the case of the index k(b) for b ∈ 〈a〉 we only have the inequality
k(b) 6 k(a). More precisely, if b = am, then

m(k(b)− 1) < k(a) 6 mk(b).

2. Partially ordered semigroups

Now we consider a semigroup with an order relation (cf. [1], Chapter XIV).

Definition 4 ([3]). A semigroup (group) (S, ∗, 6) with a partial order relation
“6” is partially ordered if

(12) a 6 b ⇒ (a ∗ c 6 b ∗ c, c ∗ a 6 c ∗ b) for all a, b, c ∈ S.

Now the additional assumption has the form

Hypothesis 2. (S, ∗, 6) is a partially ordered semigroup.

Definition 5 (cf. [2]). An element b of a partially ordered semigroup is subidem-
potent if

(13) b2 6 b

and superidempotent if

(14) b2 > b.
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Using (12) we see that

b2 6 b ⇒ bn+1 6 bn 6 b, (bn)2 6 bn for all n,(15)

b2 > b ⇒ bn+1 > bn > b, (bn)2 > bn for all n.(16)

As a consequence of the inequalities on the right-hand sides we obtain

Lemma 2. Assume Hypothesis 2. If b ∈ S is subidempotent (superidempotent)

then all its powers are subidempotent (superidempotent).

We compose conditions from Definitions 1 and 4.

Theorem 4. Assume Hypotheses 1, 2. If a is subidempotent (superidempotent),
then all elements of the semigroup (3) are subidempotent (superidempotent) and

form a descending chain a > a2 > . . . > ar (an ascending chain a 6 a2 6 . . . 6 ar),
where r(a) = k(a), d(a) = 1. The kernel (5) reduces to the singleton {ar}, and ar is

the zero element of the semigroup (3).
�������! 

. By Lemma 2 all elements of the semigroup (3) are of the same kind
and the sequence of powers is monotonic by (15) or (16). But a is of finite order

and a suitable inequality ak 6 ak+1 6 . . . 6 ak+d = ak changes into the equality
ak = ak+1 = ak+2 = . . .. Therefore, d(a) = 1 and r(a) = k(a) by (6). Moreover
aiar = ar+i = ar for i ∈ � , i.e. ar is the zero element of the semigroup (3). �

Under the assumptions of the above theorem all powers in (3) are comparable.

Conversely, if all powers of a are comparable then a2 6 a or a 6 a2. Thus we have

Corollary 1. Assume Hypotheses 1, 2. The semigroup (3) is linearly ordered iff
a is subidempotent or superidempotent.

In general the comparability of elements of a cyclic semigroup is not necessary.

There exist cyclic subsemigroups of a semigroup with a partial order without pairs
of comparable elements.

Example 1. Let us consider

f =
(

1 2 3 4 5 6 7 8 9
2 3 4 4 4 5 6 9 8

)
.

We can find that all elements of 〈f〉 = {f, f 2, f3, f4} are non-comparable and f 5 =
f3, f6 = f4, k(f) = 3, d(f) = 2, r(f) = 4. Similarly for the restrictions

g = f |{1,...,7}, h = f |{8,9}
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we get

〈g〉 = {g, g2, g3}, k(g) = 3, d(g) = 1, r(g) = 3,

〈h〉 = {h, h2}, k(h) = 1, d(h) = 2, r(h) = 2,

with all elements non-comparable.

This example leads us to the question of existence of comparable elements and
their properties. By analogy to Definition 1 we put

Definition 6. Assume Hypotheses 1, 2. The comparability index of a is the
number

(17) c = c(a) = min{n ∈ � : ∃m > n : (am 6 an or am > an)}.

In virtue of (1) we see that c(a) 6 k(a). Sometimes this inequality changes into
the equality (e.g. in Example 1). The problem arises if the equality c = k charac-

terizes semigroups (4) without comparable elements. First we prove that (8) can be
generalized to the case of comparability.

Theorem 5 (cf. [7], [5]). Under Hypotheses 1, 2

(18) (am 6 an) ⇒ d | (n−m) for all m, n.

�������! 
(cf. [5], Theorem 3.3). Ifm = n, then d | (n−m). Letm < n, p = n−m.

By assumption we get
am 6 am+p 6 am+2p 6 . . .

but this increasing sequence has a finite number of different elements, and there

exists h such that am+hp = am+(h+1)p. Therefore m + hp > k, by (1) and d | p

by (8). For m > n the argument is similar. �

Using the inequalities (13) and (14) for b = an we see that m − n = 2n − n = n

and we obtain

Corollary 2 (cf. [7], Lemma 1.8). Assume Hypotheses 1, 2. If an is a subidem-

potent or superidempotent element then d | n. Therefore all subidempotent or su-

peridempotent powers of a are contained in the subsemigroup generated by b = ad.

The same situation is in the kernel (5) and we obtain

Corollary 3. Under Hypotheses 1, 2 the unique subidempotent (superidempo-
tent) element of Ka is ar.
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Since exponents of elements of Ka differ by less than d, then by (18) we get

Corollary 4. Under Hypotheses 1, 2 if d > 1, then all elements of Ka are

non-comparable (antichain).

In order to distinguish the three possible cases in (17) we introduce (cf. [3], p. 154)

Definition 7. Assume Hypotheses 1, 2. The semigroup (4) is indifferent, if
c(a) = k(a). It is semi-positive (semi-negative) if

(19) c(a) < k(a), and ac 6 am (ac > am)

for a certain m > c.

We will explain the meaning of this definition. First, directly from equality c(a) =
k(a), none of elements a, . . . , ak−1 is comparable with other powers of a. Next, the

elements ak, . . . , ak+d−1 are non-comparable because of Corollary 4. Therefore we
have

Theorem 6. Assume Hypotheses 1, 2. The semigroup (4) is indifferent iff all its
elements are non-comparable.

Lemma 3 (cf. [7], Lemma 1.4). Assume Hypotheses 1, 2. If an is comparable

with am for some m > n > c, then there exists s > k such that an is comparable

with as ∈ Ka and both inequalities have the same direction (increasing or decreasing

with respect to exponents).
�������! 

. If an 6 am, then by (12)

an 6 an+(m−n) 6 an+2(m−n) 6 . . . 6 an+l(m−n).

Since n+l(m−n) > k for sufficiently large l, then an+l(m−n) ∈ Ka, i.e. s = n+l(m−n)
and an 6 as. For an > am the proof is similar. �

As an immediate consequence we have

Corollary 5. Assume Hypotheses 1, 2. If c(a) < k(a), then all comparable
elements are bounded by some elements of Ka.

Now we prove that the power function h(n) = an, n ∈ � , restricted to {c, . . . ,
k + d− 1} has a partial monotonicity.

Theorem 7. Assume Hypotheses 1, 2. If the semigroup (4) is semi-positive

(semi-negative) and am, an are comparable for some m > n, then am > an

(am 6 an).
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�������! 
. Let the semigroup (4) be semi-positive. Suppose that an > am for some

m > n > c. By Lemma 3 there exists s > k such that an > as ∈ Ka. Similarly,
ac 6 ac+p implies an = ac+(n−c) 6 ac+p+(n−c) and, by Lemma 3, an 6 at ∈ Ka.
According to (18) s = n + αd, t = n + βd, i.e. s − t = (α − β)d. Since s, t ∈
{k, . . . , k +d−1}, then s− t = 0 and an = as = at ∈ Ka, which proves that an = am

(because both are in Ka), contradictory to the assumption. Therefore an 6 am

(concordant with ac 6 ac+p), and for the semi-negative semigroup (4) the proof is
dual. �

All considered consequences of Theorem 5 can be summarized in the following
(cf. [7], Lemma 1.9)

Theorem 8. Assume Hypotheses 1, 2. If d > 1 and k > c, then the semigroup (4)

has a spiral structure depicted on Fig. 1. The comparable elements are situated on
the same radius and two arbitrary elements from different radii are non-comparable.

Moreover, if the semigroup (4) is semi-positive (semi-negative), then the kernel Ka

contains maximal (minimal) elements of 〈a〉.

a
a2

ad

ad+1

ad+2

ac−1

ac

ac+1

ak−d

ar−d

ak−1

ak

ak+1

as

ar

ar+1

ak+d−1

Figure 1. Structure of ordered cyclic semigroup.
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We omit here the examination of maximal chains in the semigroup (4). The next

example shows that all maximal chains can have length 2.

Example 2. Let Bn denote the set of all n×n Boolean matrices. For R, S ∈ Bn

we use the max-min product R ◦ S and the partial order relation R 6 S

(R ◦ S)ij =
n∨

k=1

rik ∧ skj ,(20)

R 6 S ⇔ rik 6 sik for all 1 6 i 6 n, 1 6 k 6 n.(21)

For R, S, T ∈ Bn it is known that (cf. [10])

R ◦ (S ◦ T ) = (R ◦ S) ◦ T,

R 6 S ⇒ R ◦ T 6 S ◦ T, T ◦R 6 T ◦ S.

So (Bn, ◦, 6) is a partially ordered semigroup. Let S ∈ B4. If we put

S =




0 0 1 0
1 0 0 0
0 1 0 1
1 1 1 1


 ,

then we obtain the following list of maximal chains in 〈S〉 = {S, . . . , S4} : S 6
S4, S2 6 S4, S3 6 S4. Thus elements S, S2, S3 are minimal and element S4 is
maximal. Moreover k = r = 4, d = 1, c = 1.

A similar discussion can be lead in the case of subidempotent and superidempotent
elements. By Corollary 2 all such elements lie on radius from ad to ar. But their

existence depends on a position of c. Directly from Theorem 8 (cf. Fig. 1) we obtain

Theorem 9. Assume Hypotheses 1, 2. If c > r − d, then 〈a〉 \ Ka does not

contain subidempotent or superidempotent elements. If c 6 r − d, then ar−d is

comparable with a2(r−d) = ar, i.e. ar−d is subidempotent in the semi-negative case

(superidempotent in the semi-positive case). Moreover if c 6 1
2r, then the number

of such elements is greater than 1
2r/d.

The case c > r − d appeared in Example 1. In Example 2 we have k = r = 4,
d = 1, c = 1. Thus c = 1 < 2 = 1

2r and we find at least
[

1
2r/d

]
= 1 superidempotent

element in 〈S〉 \ KS. Actually S2, S4 and S3, S9 = S4 are comparable, i.e. S2, S3

are superidempotent (simultaneously S2 = Sr−d).
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We see that exponents of subidempotent (superidempotent) powers are divisible

by d. Since the successive multiples r and r + d have this property, then d is the
greatest common divisor of the exponents (cf. [7], Theorem 1.2):

gcd{s > 0: as is sub-(super-)idempotent} = d.

Now we return to the general case described in Theorems 6–8. For indifferent

semigroups it suffices to consider the two parameter model as in Theorem 1 (cyclic
semigroups are represented by pairs (k, d) ∈ � × � ). Semi-positive and semi-negative
semigroups have dual properties with parameters k, d, c ∈ � , c < k. However, these
parameters do not suffice in order to describe the family of partially ordered cyclic
semigroups.

Example 3. Let S ∈ B4 (cf. Example 2). Putting

S =




1 0 1 0
1 0 0 0
1 0 1 1
1 1 1 1


 ,

we get 〈S〉 = {S, . . . , S4} with parameters k = r = 4, d = 1, c = 1 as in Exam-
ple 2. But here we have one maximal chain: S 6 S2 6 S3 6 S4 (and S2, S3 are

superidempotent elements from 〈S〉 \KS).

We look for the next parameter characterizing ordered cyclic semigroups.

Definition 8. Assume Hypotheses 1, 2. The comparability number of a is the
number

(22) p = p(a) = card(“ < ” ∩ (〈a〉 × 〈a〉)),

where “ < ”⇔ “ 6 ” and “ 6= ”.

We have p = 0 in Example 1, p = 3 in Example 2 and p = 6 in Example 3. The
values of comparability numbers are not arbitrary and depend on the parameters k,
d and c.

Theorem 10. Assume Hypotheses 1, 2. If

(23) k − c = αd + β, 0 6 β < d,

then

(24) k − c 6 p 6 k − c +
α(α − 1)

2
d + αβ.
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�������! 
. The left inequality in (24) is a direct consequence of Lemma 3. Addi-

tional pairs of comparable elements can be found on radii of Fig. 1. In view of (23)
we have β radii with at most α+1 comparable elements and d−β radii with at most
α comparable elements in 〈a〉 \Ka. Therefore we must add

β
(α + 1)α

2
+ (d− β)

α(α − 1)
2

d =
α(α − 1)

2
d + αβ

pairs of comparable elements, which proves the right inequality in (24). �

We see that the lower bound p = 3 was obtained in Example 2 and the upper
bound p = 6 was obtained in Example 3. Thus the inequalities (24) give a sharp
estimation of the comparability number. However we do not know if this parameter

admits gaps in the sequence of values.

Conjecture 1. For every c, d, k, p ∈ � , c 6 k, satisfying (24) there exists an
ordered cyclic semigroup (〈a〉 , 6), such that

(25) c = c(a), d = d(a), k = k(a), p = p(a).

Example 4. The parameters above considered do not suffice to distinguish order
relations on cyclic semigroups. If we consider

S =




0 1 0 0
0 0 1 0
1 0 0 1
1 1 1 1


 ,

then the resulting cyclic semigroup 〈S〉 = {S, . . . S4} has all the parameters:

c = 1, k = 4, d = 1, p = 3

as in Example 2. We also see (cf. Theorem 9) that outside of the kernel group there
exist superidempotent elements: S2, S3.
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3. Semigroups with a lattice order

Now we consider stronger assumptions on order relations in (S, ∗, 6) (cf. [1]).

Hypothesis 3. (S, ∗,∨,∧) is a partially ordered semigroup with a lattice order.

For a ∈ S, k = k(a), d = d(a), we use the following notations (cf. (4)–(7)):

u = u(a) = sup Ka =
d−1∨

l=0

ak+l, v = v(a) = inf Ka =
d−1∧

l=0

ak+l,(26)

a =
∨

n>1

an =
k+d−1∨

n=1

an, a =
∧

n>1

an =
k+d−1∧

n=1

an.(27)

More exactly, the first is a notation (cf. [7]), and the last equality is a simple conse-
quence of Theorem 1. All the above elements exist in S as finite meets and joins of

powers and we have

(28) a 6 v(a) 6 u(a) 6 a.

In general these elements do not belong to the semigroup (3) (except under the
conditions of Theorem 4).

Since the Hypothesis 3 is a generalization of Hypothesis 2, then for arbitrary n ∈ �
we get

Lemma 4. Assume Hypothesis 3. For every c, bl ∈ S, l = 1, . . . , n, we have

c ∗
( n∧

l=1

bl

)
6

n∧

l=1

(c ∗ bl),
( n∧

l=1

bl

)
∗ c 6

n∧

l=1

(bl ∗ c),(29)

c ∗
( n∨

l=1

bl

)
>

n∨

l=1

(c ∗ bl),
( n∨

l=1

bl

)
∗ c >

n∨

l=1

(bl ∗ c).(30)

These inequalities can be applied to elements from (26)–(27) and we get

Lemma 5. Under Hypotheses 1, 3 we have

(31) u ∗ al > u, al ∗ u > u, v ∗ al 6 v, al ∗ v 6 v for all l > 1.

Directly from Lemmas 4, 5 we obtain (cf. [7], Lemma 1.11)
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Theorem 11. Under Hypotheses 1, 3 we have

(32) v2 6 v, u2 > u

i.e. v(a) is subidempotent and u(a) is superidempotent.

In view of Theorem 4 we get

Corollary 6. Under Hypotheses 1, 3 there exists a sequence of elements

(33) vk(v) 6 . . . 6 v2 6 v 6 u 6 u2 6 . . . 6 uk(u).

Powers of a and a can be placed inside or outside of this sequence.

Example 5. Using a = f from Example 1 we get

a 6 a2 6 a3 = v(a) 6 u(a) = a3 6 a2 6 a.

Similar situation occurs in Examples 2–4, but we can also obtain another inequality.
If

S =




0 0 1
1 0 1
1 1 0


 ,

then

v(S) =




1 1 1
1 1 1
1 1 1


 , S =




0 0 0
1 0 1
1 0 0


 ,

S2 =




0 0 0
1 0 0
0 0 0


 , S3 =




0 0 0
0 0 0
0 0 0


 , S4 = S3.

We see that k(S) = 3, and S3 6 S2 6 S 6 v(S). Dual properties of powers of a
can be seen for min-max product of square matrices.
From Lemmas 4, 5 we only get

Corollary 7. Under Hypotheses 1, 3 we have

(34)

(
an >

∨

l>n

al > u

)
,

(
an 6

∧

l>n

al 6 v

)
for all n > 1.

In order to obtain more information about these powers we use the following
generalizations of Hypothesis 3 (cf. [1]):
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Hypothesis 4. Operation ∗ is meet-distributive in lattice (S,∨,∧), i.e.

(35) a ∗ (b ∧ c) = (a ∗ b) ∧ (a ∗ c), (b ∧ c) ∗ a = (b ∗ a) ∧ (c ∗ a) for all a, b, c ∈ S.

Hypothesis 5. Operation ∗ is join-distributive in lattice (S,∨,∧), i.e.

(36) a ∗ (b ∨ c) = (a ∗ b) ∨ (a ∗ c), (b ∨ c) ∗ a = (b ∗ a) ∨ (c ∗ a) for all a, b, c ∈ S.

As a simple modification of Lemma 4 we get

Lemma 6. Let n ∈ � , c, bl ∈ S, l = 1, . . . , n. Under Hypothesis 4 we have

(37) c ∗
( n∧

l=1

bl

)
=

n∧

l=1

(c ∗ bl),
( n∧

l=1

bl

)
∗ c =

n∧

l=1

(bl ∗ c).

Under Hypothesis 5 we have

(38) c ∗
( n∨

l=1

bl

)
=

n∨

l=1

(c ∗ bl),
( n∨

l=1

bl

)
∗ c =

n∨

l=1

(bl ∗ c).

Now we obtain

Lemma 7. Under Hypotheses 1, 4 we have

v ∗ al = alv = v, a ∗ al = al ∗ a > a for all l > 1,(39)

u ∗ v > u, v ∗ u > u,(40)

a ∗ v = v ∗ a = v, a ∗ v > u, v ∗ a > u.(41)

�������! 
. This is a simple consequence of Lemmas 5, 6. As an example we verify

the right hand parts of (40) and (41). Using Lemmas 5, 6 we have

v ∗ a > v ∗ u =
(d−1∧

l=0

ak+l

)
∗ u =

d−1∧

l=0

(ak+l ∗ u) > u.

�
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Similarly we get

Lemma 8. Under Hypotheses 1, 5 we have

u ∗ al = al ∗ u = u, a ∗ al = al ∗ a 6 a for all l > 1,(42)

u ∗ v 6 v, v ∗ u 6 v,(43)

a ∗ u 6 v, u ∗ a 6 v, a ∗ u = u ∗ a = u.(44)

As a consequence of the above lemmas we obtain

Theorem 12. Under Hypotheses 1, 4 we have

(45) v2 = v, a2 > a.

Under Hypotheses 1, 5 we have

(46) u2 = u, a2 6 a.

Under Hypotheses 1, 4, 5 we have u = v, i.e. the kernel group is a singleton Ka =
{ar}.

Using Theorem 4 for the powers (34) we get

Corollary 8. Under Hypotheses 1, 4 we have

a 6 a2 6 . . . 6 ak(a) = v.

Under Hypotheses 1, 5 we have

u = (a)k(a) 6 . . . 6 a2 6 a.
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