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Czechoslovak Mathematical Journal, 53 (128) (2003), 841–859

ON TOTAL INCOMPARABILITY OF MIXED TSIRELSON SPACES
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 � ��
and

� ������� 	 � � ��� � ���
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Abstract. We give criteria of total incomparability for certain classes of mixed Tsirelson
spaces. We show that spaces of the form T [(Mk, θk)

l
k=1] with index i(Mk) finite are either

c0 or `p saturated for some p and we characterize when any two spaces of such a form are
totally incomparable in terms of the index i(Mk) and the parameter θk. Also, we give
sufficient conditions of total incomparability for a particular class of spaces of the form

T [(Ak, θk)
∞
k=1] in terms of the asymptotic behaviour of the sequence

���
n�

i=1
ei

��� where (ei) is

the canonical basis.

Keywords: mixed Tsirelson spaces, totally incomparable spaces

MSC 2000 : 46B03, 46B20

0. Introduction

Denote by c00 the vector space of all real valued sequences which are eventually

zero and by (ei)∞i=1 its usual unit vector basis. For E ⊂ � and x =
∞∑

i=1

aiei ∈ c00

we denote Ex =
∑
i∈E

aiei. Also, for finite subsets E, F ⊆ � , we write E < F (or

E 6 F ) if maxE < min F (maxE 6 min F ). For simplicity, we write n 6 E instead

of {n} 6 E.

Mixed Tsirelson spaces were introduced in full generality in [2]. We can define
those spaces, denoted by T [(Mk, θk)k∈I ], as the completion of c00 under a norm

which satisfies an implicit equation of the following kind:

‖x‖ = max
{
‖x‖∞, sup

k∈I

{
θk sup

n∈ �

{ n∑

i=1

‖Eix‖ | (Ei)n
i=1 Mk-admissible

}}}
, x ∈ c00
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where the Mk’s are certain (see Definition 4 below) families of finite subsets

of � , θk ∈ (0, 1] for all k ∈ I ⊆ � and (Ei)n
i=1 is Mk-admissible if there exists

{m1, . . . , mn} ∈ Mk such that m1 6 E1 < m2 6 E2 < . . . < mn 6 En.

The first remarkable space in this class is the so called Tsirelson space, introduced
by Figiel and Johnson [7] in 1974. (It is actually the dual of the space originally

constructed by Tsirelson in [12].) In our notation this space is T [S , 1/2], where S

is Schreier’s class, that is, the set of subsets of � of cardinality smaller than their first

element. Since its construction it was usually considered a “pathological space”, a
place to look for counterexamples to statements in the Banach space theory. In fact,

the reason why it was constructed was to provide a counterexample to the assertion
“every Banach space contains c0 or `p for some 1 6 p < ∞”.

The second space of the class is Tzafriri space, introduced in 1979 in [13]
(T [

(
Ak, γ/

√
k
)
k∈ � ], 0 < γ < 1 in our notation where Ak is the set of subsets

of � of at most k elements), also constructed as a counterexample to a statement
in the Banach space theory. In 1991 a third example, namely the Schlumprecht

space T [(Ak, 1/ log2(1+k))k∈ � ], was considered, see [11], and with its help a fruitful
period started when many “classical” problems in the infinite dimensional Banach

space theory were solved, such as the distortion problem or the unconditional basic
sequence problem.

A common feature of the three Banach spaces mentioned above is that they do
not contain any `p, 1 6 p < ∞ or c0. (Actually, in the case of Tzafriri spaces this has

been proved, as far as we know, only for 0 < γ < 10−6, see [6].) Moreover, since `p,
1 6 p < ∞ and c0 are minimal (recall that a Banach space X is minimal if every

subspace of X contains a further subspace isomorphic to X) it easily follows that
they are totally incomparable to any of the three examples above (recall that two

Banach spaces X and Y are totally incomparable if no subspace of X is isomorphic
to any of Y ). We use the word “subspace” here and throughout the paper for “closed

infinite dimensional subspace”.

In 1986 Bellenot [3] showed that `p, 1 6 p < ∞ and c0 are isomorphic to mixed
Tsirelson spaces of the form T [(An, θ)], θ ∈ (0, 1]. This was somewhat surprising as

it showed that `p, 1 6 p < ∞ and c0 belong to a class of spaces up to then considered
pathological.

It is well known that `p, 1 6 p < ∞ and c0 are totally incomparable to each
other. Moreover, `p and c0 and the three examples, with 0 < γ < 10−6 in the case

of Tzafriri space, are all totally incomparable to each other (see [6] for the details
and also use the minimality of the Schlumprecht space). This shows that, at least

in the examples considered, the modification of the θk’s or the Mk’s produce totally
incomparable spaces.
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In the first section we discuss in full generality the case when θk = 1 for some k.

In this case, the spaces c0 and `1 will play a crucial role.

In the second section we consider mixed Tsirelson spaces of the form T [(Mk,

θk)l
k=1], θk ∈ (0, 1), with index i(Mk), as defined in [2], finite and we characterize

when any two spaces of such a form are totally incomparable. This is done by

following the ideas in [4] and showing that every such space is either c0 or `p saturated
for some p. Recall that given a Banach space Y , a Banach space X is Y saturated

if every subspace of X contains a further subspace isomorphic to Y .

In the third section we focus on spaces of the form T [(Ak, θk)∞k=1], θk ∈ (0, 1], such

that `1 is finitely block represented in every block subspace. We give sufficient con-
ditions of total incomparability in terms of the asymptotic behaviour of the sequence∥∥∥

n∑
i=1

ei

∥∥∥ where (ei) is the canonical basis. These conditions apply to cases different

from those considered in [9].

Notation. If K is a subset of a Banach space X , Span{K} denotes the closure

of the algebraic linear span of K. If x =
∞∑

i=1

aiei ∈ c00, the support of x is the set

supp(x) = {i ∈ � | ai 6= 0}. For x, y ∈ c00 we write x < y if supp(x) < supp(y).
We say that E1, . . . , En ⊂ � are successive if E1 < E2 < . . . < En. The vectors

x1, . . . , xn are successive if their supports are. A block sequence (xi) is a sequence of
successive vectors. The cardinality of a set E is denoted by |E|. The standard norm

of `p, 1 6 p 6 ∞ is denoted by ‖ · ‖p. Other unexplained notation is standard and
can be found for instance in [8].

Definition 1. Let M be a family of finite subsets of � . We say that M is
compact if the set {ℵE | E ∈ M } is a compact subset of the Cantor set {0, 1} � with

the product topology.

Remark 1. In Definition 1, {0, 1} � is identified with the space of all mappings
f : � −→ {0, 1} and ℵE is the characteristic function of E. In {0, 1} � , the conver-

gence under the product topology is the pointwise convergence. Therefore if E ⊆ �
is a finite set and ℵEk

converges to ℵE pointwise, there exists N ∈ � such that

E ⊆ Ek for all k > N .

Definition 2. Let M be a family of finite subsets of � . We say that M is

hereditary if E ∈ M and F ⊆ E implies that F ∈ M .

Definition 3. Let M be a compact family of finite subsets of � . We define a
transfinite sequence (M (λ)) of subsets of M as follows:

1. M (0) = M .

2. M (λ+1) = {E ∈ M | ℵE is a limit point of the set {ℵE | E ∈ M (λ)}}.
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3. If λ is a limit ordinal then M (λ) =
⋂

µ<λ

M (µ).

We call the least λ for which M (λ) ⊆ {∅} the index of M and denote it by i(M ).

Definition 4. Let I ⊆ � . Let (Mk)k∈I be a sequence of compact hereditary
families of finite subsets of � and let (θk)k∈I ⊂ (0, 1]. We denote by T [(Mk, θk)k∈I ]
the completion of c00 with respect to the norm defined by

‖x‖ = max
{
‖x‖∞, sup

k∈I

{
θk sup

n∈ �

{ n∑

i=1

‖Eix‖ | (Ei)n
i=1 Mk-admissible

}}}

and we call it the mixed Tsirelson space defined by the sequence (Mk, θk)k∈I .

Remark 2. The existence of such a norm is shown, for instance, in [10]. It

follows from the definition of the norm that the sequence (ei)∞i=1 is a normalized
1-unconditional basis for T [(Mk, θk)k∈I ].

Remark 3. There are two useful alternative ways to define the norm. Given

x =
∞∑

n=1
anen ∈ c00,

(i) define a non decreasing sequence of norms on c00:

|x|0 = max
n∈ � |an|,

|x|s+1 = max
{
|x|s, sup

k∈I

{
θk sup

n∈ �

{ n∑

i=1

|Eix|s | (Ei)n
i=1 Mk-admissible

}}}
.

Then ‖x‖ = sup
s∈ � ∪{0}

|x|s.

(ii) Let K0 = {±en | n ∈ � }. Given Ks, s ∈ � ∪ {0}, let

Ks+1 = Ks ∪ {θk · (f1 + . . . + fd) | k ∈ I, d ∈ � , fi ∈ Ks, i = 1, . . . , d

are successive and (supp(f1), . . . , supp(fd)) Mk-admissible}.

Let K =
∞⋃

s=0
Ks. Then ‖x‖ = sup{f(x) | f ∈ K}.

The latter definition of the norm provides information about the dual space. Look-

ing at the set K as a set of functionals it is not difficult to see that BX∗ is the closed
convex hull of K, where the closure is taken either in the weak-∗ topology or in the

pointwise convergence topology.
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1. The case θk = 1

Let J = {k ∈ I | θk = 1}. If J is not empty, we give information about the

structure of T [(Mk, θk)k∈I ] depending on the index i(Mk), k ∈ J . It is known that
if i(Mk) > 2 for some k ∈ J , then T [(Mk, θk)k∈I ] contains an isomorphic copy of `1.

Actually it is possible to say much more as our next proposition shows.

Proposition 1. If i(Mk0) > 2 for some k0 ∈ J , then T [(Mk, θk)k∈I ] is
`1-saturated.

�������� 
. By the Bessaga-Pe lczyński principle (see e.g. [6], p. 10), it suffices to

show that every block subspace contains a further subspace isomorphic to `1. Recall
that a block subspace is a space of the form Span{ui, i ∈ � }, with (ui)∞i=1 a block

sequence.
Let (ui)∞i=1 be a block sequence. We are going to construct a subsequence (uik

)∞k=1

of (ui)∞i=1 equivalent to the `1 basis.

Let {p} ∈ M
(1)
k0

. We can choose ui1 such that p < ui1 . Now, since {p} ∈ M
(1)
k0

,
there exists n1 ∈ � such that n1 > ui1 and {p, n1} ∈ Mk0 , so we can take ui2 such

that n1 < ui2 . Continuing in this manner, we can construct a subsequence (uik
)∞k=1

of (ui)∞i=1 such that for every k ∈ � there exists nk ∈ � such that uik
< nk < uik+1

and {p, nk} ∈ Mk0 . It is now easy to see that (uik
)∞k=1 is equivalent to the `1 basis.

�

The following example shows a Tsirelson type space `1-saturated but not isomor-
phic to `1. It was shown to us by I. Deliyanni.

Example 1. Let M = {F ⊆ � | ∃ i ∈ � such that F ⊆ {1, 2i}} and θ = 1.

It is clear that i(M ) = 2. If T [M , θ] were isomorphic to `1 then since `1 has

a unique—up to equivalence—normalized unconditional basis, there would exist a
constant C > 0 such that for all n ∈ � ,

1
C

n∑

i=1

|ai| 6
∥∥∥∥

n∑

i=1

aiei

∥∥∥∥ 6 C

n∑

i=1

|ai|.

Now taking x =
2k+1∑

i=2k+1

ei we would obtain 2k − 1 6 C for all k ∈ � .

We now examine T [(Mk, θk)k∈I ] with i(Mk) = 1, k ∈ J . We will find different

subspaces depending on whether the set
⋃

k∈J

Mk contains only a finite number of non

singleton sets or not.
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Proposition 2. Let I ′ ⊆ I be such that
⋃

k∈I′
Mk contains only a finite number of

non singleton sets.

(1) If I ′ 6= I , then T [(Mk, θk)k∈I ] is isomorphic to T [(Mk, θk)k∈I\I′ ].
(2) If I ′ = I , then T [(Mk, θk)k∈I ] is isomorphic to c0.
�������� 

. (1) Let ‖ · ‖ and ‖ · ‖′ be the norms of the spaces T [(Mk, θk)k∈I ]
and T [(Mk, θk)k∈I\I′ ], respectively. We will see that they are equivalent. Clearly,
‖ · ‖′ 6 ‖ · ‖.

For the other inequality let M = max
{

maxE
∣∣∣ E ∈ ⋃

k∈I′
Mk, non singleton

}
and

write x =
∞∑

i=1

aiei =
M∑
i=1

aiei +
∞∑

i=M+1

aiei := x1 + x2.

We have ‖x1‖ 6 M‖x‖′ since ‖x1‖ =
∥∥∥

M∑
i=1

aiei

∥∥∥ 6
M∑
i=1

|ai| 6
M∑
i=1

‖x‖∞ 6 M‖x‖′.
On the other hand, we show first by induction over s that |x2|s 6 |x2|′s. For s = 0

it is clear. Suppose now that it is true for s and let E1, . . . , En be a sequence of finite
subsets of � , Mk-admissible for some k. There are two possibilities, either k ∈ I \ I ′

and then θk

n∑
i=1

|Eix2|s 6 θk

n∑
i=1

|Eix2|′s 6 |x2|′s+1, or k ∈ I ′ and then, by hypothesis,

n = 1, E1 is Mk-admissible and θk|E1x2|s 6 θk|x2|s 6 |x2|′s 6 |x2|′s+1.

Therefore, ‖x2‖ 6 |x2‖′ and by 1-unconditionality, ‖x2‖′ 6 ‖x‖′. Thus, ‖x‖′ 6
‖x‖ 6 (M + 1)‖x‖′. �

For (2), it is easy to see that T (M0, θ0) is isomorphic to c0, where M0 = {{i} |
i ∈ � }, and θ0 = 1. Now use (1) to get that T [(Mk, θk)k∈I ] is isomorphic to

T [(Mk, θk)k∈I∪{0}] and once again to see that the latter is isomorphic to T (M0, θ0).
Proposition 2 for I ′ = J yields

Proposition 3. Let J = {k ∈ I | θk = 1}.
(1) Let

⋃
k∈J

Mk contain only a finite number of non singleton sets.

1.1. If J = I , then T [(Mk, θk)k∈I ] is isomorphic to c0.

1.2. If J 6= I , then T [(Mk, θk)k∈I ] is isomorphic to T [(Mk, θk)k∈I\J ].
(2) Let

⋃
k∈J

Mk contain an infinite number of non singleton sets.

Then T [(Mk, θk)k∈I ] contains a subspace isomorphic to `1.
�������� 

. (1) follows from Proposition 2. For (2), we will construct a subsequence
(eni)∞i=1 of (ei)∞i=1 equivalent to the `1 basis.

Let M1 ∈
⋃

k∈J

Mk be a non singleton. Let n1 = min M1. Having chosen ni, we

can take Mi+1 ∈
⋃

k∈J

Mk a non singleton such that min Mi+1 > maxMi, and take

ni+1 = min Mi+1.
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Consider the sequence (eni)∞i=1 and let’s show that it is equivalent to the `1 basis.

Let x =
∞∑

i=1

aieni . By the definition of the norm and the fact that for every N ∈ �
and i < N , ({ni}, [ni+1, nN ] ∩ � }) is Mk-admissible for some k ∈ J we have

‖x‖ > |a1|+
∥∥∥∥

N∑

i=2

aieni

∥∥∥∥ > . . . > |a1|+ |a2|+ . . . + |aN |.

The proof is complete since always ‖x‖ 6 ‖x‖1. �

Observe that in statement (2) of Proposition 3 we do not ensure `1 saturation.

Actually, in some cases we can also find c0 as a subspace. This is a consequence of
the following general result.

Proposition 4. Let Mk be compact and hereditary for all k ∈ I ⊆ � , θk ∈ (0, 1]
for all k ∈ I . If for all N ∈ � there exists n > N such that for allM ∈ ⋃

k∈I

Mk either

n < min M or n > maxM , then T [(Mk, θk)k∈I ] contains a subspace isomorphic
to c0. Moreover, if θk = 1 for all k ∈ I , the converse is true.

�������� 
. We will construct a subsequence (eni)∞i=1 of the basis (ei)∞i=1 equivalent

to the basis of c0.

Let N1 = 1. By hypothesis there exists n1 > N1 such that for all M ∈ ⋃
k∈I

Mk,

n1 < min M or n1 > maxM .

Suppose that ni is chosen and write Ni+1 = ni +1. Then there exists ni+1 > Ni+1

verifying the hypothesis. Now, consider the sequence (eni)∞i=1.

Let x =
∞∑

i=1

aieni ∈ c00 and write |x|0 = ‖x‖∞ as in Remark 3.

Let (Ei)n
i=1 be a sequence of finite subsets of � , Mk-admissible for some k ∈ I .

Then we have θk

n∑
i=1

|Eix|0 = θk|Ei0x|0 6 |x|0 and so |x|1 6 |x|0. Indeed, the first

equality is true since by the construction of (ni), there exists at most one Ei such
that supp(x) ∩ Ei 6= ∅ and the inequality is straightforward by 1-unconditionality.

So we have proved that |x|1 = |x|0 and therefore |x|n = |x|n+1 and ‖x‖ = ‖x‖∞. �

The converse is a consequence of the following

Claim. If there is an N0 such that for all n > N0, there exists M ∈ ⋃
k∈I

Mk such

that min M 6 n < maxM , then every normalized block sequence in T [(Mk, 1)k∈I ]
has a subsequence equivalent to the canonical basis of `1 and in particular,

T [(Mk, 1)k∈I ] is `1-saturated.
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�������� 
of Claim. Let (xi)∞i=1 be a normalized block sequence. Let i1 be such

that N0 6 min xi1 . We split xi1 =
p2∑

k=p1+1

akek in the following manner:

Let A(1)(xi1 ) =
{

j > min xi1

∣∣∣ {t, j} ∈
⋃

k∈I

Mk, t 6 min xi1

}
. By hypothesis

A(1)(xi1 ) is not empty and j(1)(xi1 ) := min A(1)(xi1 ) > min xi1 .

Therefore,

xi1 =
p2∑

k=p1+1

akek =
j(1)(xi1 )−1∑

k=p1+1

akek +
p2∑

k=j(1)(xi1 )

akek := x
(1)
i1

+ u(1).

Let y
(1)
i1

= x
(1)
i1

/
∥∥x

(1)
i1

∥∥. Suppose y
(l)
i1

is defined and we have xi1 = x
(1)
i1

+ . . . +

x
(l)
i1

+u(l). If u(l) 6= 0, define x
(l+1)
i1

= (u(l))(1) and y
(l+1)
i1

= x
(l+1)
i1

/
∥∥x

(l+1)
i1

∥∥ and keep

going until we have u(d1) = 0 for some d1 ∈ � . Then we have xi1 =
d1∑
l=1

∥∥x
(l)
i1

∥∥y
(l)
i1

.

Now, take i2 such that supp(xi2) > j(d1)(xi1 ) and split it as before. Continuing in

this manner, we obtain a sequence

(y(1)
i1

, y
(2)
i1

, . . . , y
(d1)
i1

, y
(1)
i2

, . . . , y
(d2)
i2

, . . . , y
(1)
in

, . . . , y
(dn)
in

, . . .) := (uk)∞k=1.

For this sequence we have

∥∥∥∥
n∑

k=1

akuk

∥∥∥∥ = |a1|+
∥∥∥∥

n∑

i=2

akuk

∥∥∥∥ = . . . =
n∑

k=1

|ak|,

that is, (uk)∞k=1 is equivalent to the canonical basis of `1. But (xik
)∞k=1 is a block

sequence of (uk)∞k=1 and therefore it is also equivalent to the canonical basis of `1. �

Remark 4.
1. Observe that, in particular, the hypothesis of Proposition 4 implies that

i(Mk) = 1 for all k ∈ I .
2. The proof of the converse of Proposition 4 states that either T [(Mk, 1)k∈I ]

contains a subspace isomorphic to c0 or T [(Mk, 1)k∈I ] is `1-saturated.

We now give an example of a Tsirelson type space which contains `1 and c0.

Example 2. Let M = {F ⊆ � | ∃ i ∈ � such that F ⊆ {2i − 1, 2i}}. T (M , 1)
contains `1 by Proposition 3 and c0 by Proposition 4. Moreover, it is easy to see
that the space is isomorphic to `1 ⊕ c0.
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2. The case (Mk, θk)l
k=1

In view of the previous results, in this section we will consider Tsirelson type
spaces defined by finite sequences (Mk, θk)l

k=1, with θk ∈ (0, 1) for all k = 1, . . . , l.

The main result of the section is

Theorem 1. Let i(Mk) = nk ∈ � and θk ∈ (0, 1) for all k = 1, . . . , l.

1. If θk 6 1/nk for all k then T [(Mk, θk)l
k=1] is c0-saturated.

2. If θk > 1/nk for some k then T [(Mk, θk)l
k=1] is `p-saturated for some p ∈

(1, +∞).

Our proof of this theorem is based on Theorem 2 below, proved in [4]. In order to
state it we first need some definitions.

Definition 5. Let m ∈ � and ϕ ∈ Km \Km−1. An analysis of ϕ is any sequence

{Ks(ϕ)}m
s=0 of subsets of K such that for every s,

1. Ks(ϕ) consists of successive elements of Ks and
⋃

f∈Ks(ϕ)

supp(f) = supp(ϕ).

2. If f ∈ Ks+1(ϕ) then either f ∈ Ks(ϕ) or there exists k and successive

f1, . . . , fd ∈ Ks(ϕ) with (supp(f1), . . . , supp(fd)) Mk-admissible and f =
θk(f1 + . . . + fd).

3. Km(ϕ) = {ϕ}.

Definition 6.
1. Let ϕ ∈ Km \Km−1 and let {Ks(ϕ)}m

s=0 be a fixed analysis of ϕ. Then for a

given finite block sequence (xk)l
k=1 we set for every k ∈ {1, . . . , l}

sk =





max{s | 0 6 s < m, and there are at least two f1, f2 ∈ Ks(ϕ)

such that |supp(fi) ∩ supp(xk)| > 0, i = 1, 2},
when this set is non-empty

0 if |supp(xk) ∩ supp(ϕ)| 6 1.

2. For k = 1, . . . , l we define the initial part and the final part of xk with respect
to {Ks(ϕ)}m

s=0, and denote them respectively by x′k and x′′k , as follows: If

{f ∈ Ksk(ϕ) | supp(f) ∩ supp(xk) 6= ∅} := {f1, . . . , fd} with f1 < . . . < fd, we

set x′k = (supp(f1))xk and x′′k =
( d⋃

i=2

supp(fi)
)
xk.

Notation. Let m ∈ � , ϕ ∈ Km \ Km−1, let {Ks(ϕ)}m
s=0 be an analysis of ϕ,

(vi)∞i=1 a block sequence and (xj)∞j=1 a block sequence with xj ∈ Span{vi | i ∈ � }.
Suppose that there exists nϕ such that supp(ϕ) ⊆

nϕ⋃
j=1

supp(xj) and denote by x′j and
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x′′j the initial and the final part of xj , j 6 nϕ. For all f = θk(f1 + . . . + fd) ∈ Ks(ϕ)
and J ⊆ {1, . . . , nϕ} we define the following sets for (x′j):

I ′ = {i | 1 6 i 6 d and supp(fi) ∩ supp(x′j) 6= ∅ for at least two different j ∈ J}

and for every i ∈ I ,

D′
fi

= {j ∈ J | supp(fi) ∩ supp(x′j) 6= ∅
and (supp(f) ∩ supp(x′j)) \ supp(fi) ⊆ supp(vt) for some t}

and

T ′ =
{

j ∈ J | j /∈
⋃

i∈I′

D′
fi

and ∃ t1 6= t2

such that supp(x′j) ∩
( ⋃

i/∈I′

supp(fi)
)
∩ supp(vti) 6= ∅, i = 1, 2

}
.

In the same manner we define sets I ′′, D′′
fi

, T ′′ exchanging x′j for x′′j .

Theorem 2 ([4]). Given T [(Mk, θk)l
k=1] with l ∈ � , θk ∈ (0, 1) and i(Mk) =

nk ∈ � , for all k = 1, . . . , l, let (vi)∞i=1 be a normalized block sequence. If there

exists a sequence xj =
∑

i∈Ij

aivi with (ai)∞i=1 ⊂ ! and (Ij)∞j=1 ⊂ � successive such
that

(a) 1/2j+1 6 |aj | < 1/2j and

(b) for all m ∈ � , ϕ ∈ Km \ Km−1, each analysis {Ks(ϕ)}m
s=1 of ϕ, all f =

θk(f1+. . .+fd) ∈ Ks(ϕ), and all J ⊆ {1, . . . , nϕ}, the inequalities |I ′|+|T ′| 6 nk

and |I ′′|+ |T ′′| 6 nk hold,

then (xj)∞j=1 is equivalent to the canonical basis of T [(Ank
, θk)l

k=1].

Recall, see [4], that the space T [(Ank
, θk)l

k=1] is either isometrically isomorphic

to c0, when nk · θk 6 1 for all k, or isomorphic to `p, where p = min
{

1
1−lognk

1
θk

∣∣∣

nk · θk > 1
}

. So, to prove Theorem 1 we need to find the sequence (xj)∞j=1 and the

next lemma will be useful for constructing it.

Lemma 1. Let l ∈ � , θk ∈ (0, 1) and Mk be such that i(Mk) = nk ∈ � for all
k = 1, . . . l. Then for every block sequence (ui)∞i=1 in T [(Mk, θk)l

k=1] there exists an
infinite subset P = {pi}∞i=1 of � and a subsequence (vi)∞i=1 of (ui)∞i=1 having the

following properties:

(a) p1 6 supp(v1) < p2 6 supp(v2) < . . . < pi 6 supp(vi) < pi+1 6 . . .
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(b) For every sequence E1 < E2 . . . < Enk
of finite subsets of P , where Ei =

{pli1
, . . . , pliti

}, i = 1, . . . , nk, the family

( l1t1⋃

j=l11

supp(vj), . . . ,

l
nk
tnk⋃

j=l
nk
1

supp(vj)
)

is Mk-admissible.

(c) If r > nk + 1, S = {s1, . . . sr} ⊆ � is such that

|{j ∈ � | [si, si+1] ∩ supp(vj) 6= ∅}| > 2

for all i = 1, . . . , r − 1, then S /∈ Mk.

�������� 
. The proof is based on the following result from [4]:

Lemma 2. Let l, n1, . . . , nl ∈ � . Let Mk, k = 1, . . . , l be such that i(Mk) = nk.

Then there exists an infinite subset Q of � having the following properties:
1. Let k ∈ {1, . . . , l}. Every sequence E1 < E2 . . . < Enk

of length nk of finite

subsets of Q is Mk-admissible.

2. Let k ∈ {1, . . . , l}. If r > nk + 1, then no sequence E1 < E2 . . . < Er of finite

subsets of Q with |Ei| > 2 for all i = 1, . . . , r, is Mk-admissible.

Now, let Q = {ki}∞i=1 be the sequence in Lemma 2. Take p1 = k1, and v1 = ul

such that p1 6 supp(ul). Having chosen pi and vi with pi 6 supp(vi), since {ki}∞i=1

is increasing, let kji be such that pi 6 supp(vi) < kji , and take pi+1 = kji+1 and
vi+1 = ul such that pi+1 6 supp(ul).

The sequences {pi}∞i=1 and (vi)∞i=1 satisfy the assertions of Lemma 1:

(a) By construction.

(b) It is sufficient to see that
liti⋃

j=li1

supp(vj) ⊆ [pli1
, pliti

] and, since the family

{{pli1
, pliti

}}nk

i=1 is Mk-admissible by Lemma 2,

( liti⋃
j=li1

supp(vj)
)nk

i=1

is also Mk-

admissible.

(c) Let S = {s1, . . . , sr} be such that |{j ∈ � | [si, si+1] ∩ supp(vj) 6= ∅}| > 2 for
all i = 1, . . . , r − 1, let di = min{j ∈ � | [si, si+1] ∩ supp(vj) 6= ∅}. Then kjdi

and pdi+1 ∈ [si, si+1] ∩ Q for all i = 1, . . . , r − 1, and by the property (2) of
Lemma 2, S /∈ Mk. �
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�������� 
of Theorem 1. It suffices to show that c0 or lp is included in every block

subspace of T [(Mk, θk)l
k=1].

Let (ui)∞i=1 be a normalized block sequence. Let P = {pi}∞i=1 and (vi)∞i=1 be the
sequences associated to (ui)∞i=1 from Lemma 1.

If sup
m∈ �

∥∥∥
m∑

i=1

vi

∥∥∥ is finite, then (vi)∞i=1 is equivalent to the canonical basis of c0, and

from Corollary 1 of [4] we have nk · θk 6 1.

Suppose now that lim
m→∞

∥∥∥
m∑

i=1

vi

∥∥∥ = ∞. Then we can construct a sequence (yi)∞i=1

supported by the subsequence (vi)∞i=1 with the following properties: For every j,
yj = 1

2j+1

∑
i∈Ij

vi, where

(i) Ij are successive intervals of � , and
(ii) 1− 1

2j+1 6 ‖yj‖ 6 1.

If xj = yj/‖yj‖, the sequence xj satisfies condition (a) of Theorem 2.
We prove condition (b) of Theorem 2 for the initial parts of (xj) since for the

final parts the proof is analogous. Suppose that ϕ, f and J are fixed. Let m1 6
supp(f1) < m2 6 supp(f2) < . . . < md 6 supp(fd). We define B ⊆ {m1, . . . , md} as

follows:

mis ∈ B ↔
{

is ∈ I ′,

is = min{i /∈ I ′ | supp(x′j) ∩ supp(fi) 6= ∅} for some j ∈ T ′.

Let mi1 < . . . < mir be the elements of B. Observing that

|{t ∈ � | [mis , mis+1 ] ∩ supp(vt)}| > 2, ∀ 1 6 s 6 r − 1

and using property (c) of Lemma 1 we get that r = |B| 6 nk. So |I ′|+ |T ′| 6 nk. �

The proof of the next two corollaries easily follows from Theorem 1 from this paper

and Corollaries 1 and 2 from [4].

Corollary 1. Let T [(Mk, θk)l
k=1], 1 < p < ∞, nk = i(Mk) and θk ∈ (0, 1). The

following conditions are equivalent:

i) T [(Mk, θk)l
k=1] contains a subspace isomorphic to `p.

ii) T [(Mk, θk)l
k=1] is `p-saturated.

iii) i(Mk) is finite, θk > 1/nk for some k = 1, . . . , l and

p = min
{ 1

1− lognk

1
θk

| nk · θk > 1
}
.
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Corollary 2. Let T [(Mk, θk)l
k=1], θk ∈ (0, 1). The following conditions are equiv-

alent:

i) T [(Mk, θk)l
k=1] contains a subspace isomorphic to c0.

ii) T [(Mk, θk)l
k=1] is c0-saturated.

iii) i(Mk) is finite and θk 6 1/i(Mk) for all k = 1, . . . , l.

In view of Proposition 1 and the previous corollaries we can include the case `1 in

the discussion.

Corollary 3. Let T [(Mk, θk)l
k=1], 2 6 i(Mk) ∈ � and θk ∈ (0, 1]. The following

conditions are equivalent:

i) T [(Mk, θk)l
k=1] contains a subspace isomorphic to `1.

ii) T [(Mk, θk)l
k=1] is `1-saturated.

iii) θk = 1 for some k = 1, . . . , l.

So in particular we have proved the following criterion, which is useful to show

when two Tsirelson type Banach spaces are totally incomparable.

Theorem 3. Let l, l′ ∈ � , θk ∈ (0, 1) and i(Mk) = nk ∈ � for all k = 1, . . . , l

and θ′k ∈ (0, 1) and i(M ′
k) = n′k ∈ � for all k = 1, . . . , l′. Then T [(Mk, θk)l

k=1] and
T [(M ′

k, θ′k)l′
k=1] are totally incomparable if and only if one of the following situations

occurs:

1. θk 6 1/nk for all k = 1, . . . , l and θ′k > 1/n′k for some k ∈ {1, . . . , l′}, or
2. θ′k 6 1/n′k for all k = 1, . . . , l′ and θk > 1/nk for some k ∈ {1, . . . , l}, or
3. θk > 1/nk for some k ∈ {1, . . . , l} and θ′k > 1/n′k for some k ∈ {1, . . . , l′} and

min
{ 1

1− lognk

1
θk

∣∣∣ nk · θk > 1
}
6= min

{ 1
1− logn′

k

1
θ′k

∣∣∣ n′k · θ′k > 1
}
.

Also we obtain a characterization of the reflexivity of this kind of spaces as in [1].

Proposition 5. Let l ∈ � . Let θk ∈ (0, 1) and i(Mk) = nk ∈ � for all k = 1, . . . , l.

Then the following conditions are equivalent:

1. T [(Mk, θk)l
k=1] is reflexive.

2. θk > 1/i(Mk) for some k ∈ {1, . . . , l}.
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3. A criterion of total incomparability for spaces

of the form T [(Ak, θk)∞k=1]

We will suppose throughout the section that (θk)∞k=1 ⊂ (0, 1] is a non increasing

null sequence since T [(Ak, θk)∞k=1] is easily seen to be isometric to T [(Ak, θ′k)∞k=1]
where θ′k = sup{θj | j > k} and inf{θk} > 0 implies that T [(Ak, θk)∞k=1] is isomorphic

to `1.

The following properties of such spaces, stated as lemmas, are known.

Lemma 3. Let (ui)n
i=1 be a normalized block sequence in T [(Ak, θk)∞k=1]. Then

for all a1, . . . , an ∈ ! , ∥∥∥∥
n∑

i=1

aiei

∥∥∥∥ 6
∥∥∥∥

n∑

i=i

aiui

∥∥∥∥.

�������� 
. It is easy to prove by induction on s that

∣∣∣∣
n∑

i=1

aiei

∣∣∣∣
s

6
∥∥∥∥

n∑
i=i

aiui

∥∥∥∥. �

The following lemma was proved in [11] with θk = (log2(1 + k))−1, but the same
proof works for any θk converging to zero.

Lemma 4 ([11]). Let T [(Ak, θk)∞k=1], let θk converge to 0. Let (yn)∞n=1 be a

block sequence, let a strictly decreasing null sequence (εn)∞n=1 ⊂ ! + and a strictly

increasing sequence (kn)∞n=1 ⊂ � be such that for each n there is a normalized block

sequence (y(n, i))kn

i=1, (1 + εn)-equivalent to the lkn
1 basis and yn = 1

kn

kn∑
i=1

y(n, i).

Then for all l ∈ � ,

lim
n1→∞

lim
n2→∞

. . . lim
nl→∞

∥∥∥∥
l∑

i=1

yni

∥∥∥∥ =
∥∥∥∥

l∑

i=1

ei

∥∥∥∥.

We will consider spaces such that `1 is finitely block represented in every block
subspace of the space but not containing `1. The role of `1 in this context, as well

as that of c0, can be easily described:

Proposition 6. The following conditions are equivalent:
i) The identity is an isometric isomorphism from T [(Ak, θk)∞k=1] onto c0.

ii) T [(Ak, θk)∞k=1] contains a subspace isomorphic to c0.

iii) For all n ∈ � ,
∥∥∥

n∑
i=1

ei

∥∥∥ = 1.

iv) θk 6 1/k for all k ∈ � .
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�������� 
. ii) ⇒ iii): By the Bessaga-Pe lczyński Principle and a theorem of

R. C. James (see e.g. [8], p. 97), for every ε > 0 there exists a normalized block
sequence (ui)∞i=1 such that for all l ∈ � ,

max |ai| 6
∥∥∥∥

l∑

i=1

aiui

∥∥∥∥ 6 (1 + ε) max |ai|, a1 . . . al ∈ !

and so by Lemma 3,
∥∥∥

l∑
i=1

ei

∥∥∥ 6 (1 + ε) and iii) follows.

iii) ⇒ iv): This is clear since θ · l 6
∥∥∥

l∑
i=1

ei

∥∥∥.

iv) ⇒ i): By induction on m ∈ � it easily follows that | · |m = | · |0 on c00. �

Proposition 7. Let T [(Ak, θk)∞k=1], let θk converge to 0. The following conditions
are equivalent:

i) The identity is an isometric isomorphism from T [(Ak, θk)∞k=1] onto `1.

ii) T [(Ak, θk)∞k=1] contains a subspace isomorphic to `1.

iii) For all n ∈ � ,
∥∥∥

n∑
i=1

ei

∥∥∥ = n.

iv) θ2 = 1.
�������� 

. ii) ⇒ iii). Choose a strictly decreasing sequence (εn))∞n=1 ⊂ ! +

converging to 0 and kn = n. We will construct a block sequence (yn)∞n=1 as in
Lemma 4 above.

By James’ Theorem let (ui))∞i=1 be a normalized block sequence (1+ε1)-equivalent

to the unit vector basis of `1. Let y1 = u1. Again by James’ theorem there exist a
normalized block sequence (u′i))

∞
i=1 with u′i ∈ Span{ui | i ∈ � } and y1 < u′1, (1+ε2)-

equivalent to the unit vector basis of `1. Let y2 = 1
2 (u′1 + u′2). We continue in the

same way.

Let l ∈ � . Since any block sequence (yni)l
i=1 is (1 + ε1)-equivalent to the unit

vector basis of `l
1, by Lemma 4 we have

(1− ε1)l 6
∥∥∥∥

l∑

i=1

ei

∥∥∥∥ 6 l

and the result follows.

iii) ⇒ iv): Just notice that 2 = ‖e1 + e2‖ = 2θ2.
iv) ⇒ i): This follows by induction on |supp(x)|. �

We now give sufficient conditions, in terms of the behaviour of λn :=
∥∥∥

n∑
i=1

ei

∥∥∥,

guaranteeing that in a space of this kind `1 is finitely block represented in every
block subspace.
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Proposition 8 ([5]). Let n, l ∈ � , 0 < ε < 1. Let (X, ‖ · ‖) be a normed space
with a normalized 1-unconditional normalized basis (ei)nl

i=1 such that

(n− ε)l 6
∥∥∥∥

nl∑

i=1

ei

∥∥∥∥ 6 nl.

Then there exists a normalized block sequence (yi)n
i=1 of (ei)nl

i=1 such that

n− ε 6
∥∥∥∥

n∑

i=1

yi

∥∥∥∥ 6 n.

Moreover, (yi)n
i=1 is

1
1−ε -equivalent to the canonical basis of `

n
1 .

Proposition 9. Let T [(Ak, θk)∞k=1], let θk converge to 0. If there exists (nk)∞k=1 ⊆
� unbounded and (lk)∞k=1 such that

lim
k→∞

[
nk −

(
λ

n
lk
k

)1/lk]
= 0,

then `1 is finitely block represented in every block subspace of T [(Ak, θk)∞k=1].
�������� 

. Given n ∈ � and 0 < ε < 1, take k ∈ � such that nk > n and

nk −
(
λ

n
lk
k

)1/lk
< ε. Let (ui)∞i=1 be a normalized block sequence. Then

nlk
k >

∥∥∥∥
n

lk
k∑

i=1

ui >
∥∥∥∥

n
lk
k∑

i=1

ei

∥∥∥∥ = λ
n

lk
k

> (nk − ε)lk

and, by Proposition 8, lnk
1 is finitely block represented in blocks of (ui)∞i=1. �

Remark 5. By similar arguments it is easy to prove that the following condition
is also sufficient:

1. There exits m > 2 such that lim
l→∞

(λml)1/l = m.

We can also give sufficient conditions for the sequence (θk)∞k=1:

2. There exists (nk)∞k=1 ⊆ � unbounded and (lk)∞k=1 such that lim
k→∞

nk

[
1 −

(
θ

n
lk
k

)1/lk]
= 0 or

3. There exists m > 2 such that lim
l→∞

(θml)1/l = 1 or, equivalently, lim
l→∞

(θml)
1
l = 1

for all m > 2.
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Lemma 5. Let (X, ‖ · ‖) and (X ′, ‖ · ‖′) be Banach spaces not totally incom-
parable with Schauder bases (ei)∞i=1 and (e′i)

∞
i=1. If (ei)∞i=1 is shrinking, there exist

block sequences (ui)∞i=1 and (u′i)
∞
i=1 of (ei)∞i=1 and (e′i)

∞
i=1 respectively such that the

application T : Span{ui | i ∈ � } → Span{u′i | i ∈ � }, given by T (ui) = u′i for all

i ∈ � is an isomorphism.
�������� 

. There exist subspaces Y ⊆ X and Y ′ ⊆ X ′ and an isomorphism
S : Y −→ Y ′. We will see that for all ε > 0 we can find block sequences (ui)∞i=1 and

(u′i)
∞
i=1 such that (1− ε)‖S‖ ‖S−1‖ 6 ‖T‖ ‖T−1‖ 6 (1 + ε)‖S‖ ‖S−1‖.

Let ε > 0. There exists a normalized block sequence (xi)∞i=1 of (ei)∞i=1 and

Span{yi | i ∈ � } ⊆ Y such that the linear isomorphism defined by U(xi) = yi

verifies ‖U‖ ‖U−1‖ 6 1 + ε. Let y′i := S(yi) for all i ∈ � .

Since inf
i∈ � ‖y

′
i‖ > 0 and (ei)∞i=1 is a shrinking basis, y′i tends to 0 weakly. So,

by the Bessaga-Pe lczyński principle, there is a subsequence (y′ik
)∞k=1 and a block

sequence (u′k)∞k=1 of (e′i)
∞
i=1 such that the isomorphism defined by V (y′ik

) = u′k verifies

‖V ‖ ‖V −1‖ 6 1 + ε. Take uk = xik
and T = V ◦ S ◦ U . �

Remark 6. Let X = T [(Ak, θk)∞k=1], θk ∈ (0, 1). Since its canonical basis (ei)∞i=1

is unconditional, hence being shrinking is equivalent to `1 not being isomorphic to

any subspace of X and this is the case by Proposition 7.

Theorem 4. LetX = T [(Ak, θk)∞k=1] andX ′ = T [(Ak, θ′k)∞k=1] with θk, θ′k ∈ (0, 1)
be such that `1 is finitely block represented in every block subspace of X and X ′.

If X and X ′ are not totally incomparable, then there exists C > 0 such that for all
n ∈ � ,

(∗) 1
C

6 λl

λ′l
6 C.

�������� 
. Denote by ‖ · ‖ and ‖ · ‖′ the norms of X and X ′, respectively. By

Lemma 5, there exist block sequences (ui)∞i=1 ⊆ X and (u′i)
∞
i=1 ⊆ X ′ of their re-

spective bases denoted by (ei)∞i=1 and (e′i)
∞
i=1, such that T : Span{ui | i ∈ � } −→

Span{u′i | i ∈ � }, given by T (ui) = u′i for all i ∈ � is an isomorphism. Therefore,
for all (ai)∞i=1 ⊆ ! and n ∈ � ,

1
‖T‖

∥∥∥∥
n∑

i=1

aiu
′
i

∥∥∥∥
′
6

∥∥∥∥
n∑

i=1

aiui

∥∥∥∥ 6 ‖T−1‖
∥∥∥∥

n∑

i=1

aiu
′
i

∥∥∥∥
′
.

By Lemma 4, given ε > 0 and l ∈ � , there exists a normalized block sequence
y1, . . . , yl of (ui)∞i=1, such that

λl − ε 6
∥∥∥∥

l∑

i=1

yi

∥∥∥∥ 6 λl + ε.
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Let y′i := T (yi) for all i = 1, . . . , l. Then we have

λl + ε >
∥∥∥∥

l∑

i=1

yi

∥∥∥∥ > 1
‖T‖

∥∥∥∥
l∑

i=1

y′i

∥∥∥∥
′

=
1
‖T‖

∥∥∥∥
l∑

i=1

‖y′i‖′
y′i
‖y′i‖′

∥∥∥∥
′
> 1
‖T‖ min

16i6l
‖y′i‖′

∥∥∥∥
l∑

i=1

y′i
‖y′i‖′

∥∥∥∥
′

> 1
‖T‖ ‖T−1‖

∥∥∥∥
l∑

i=1

e′i

∥∥∥∥
′
=

1
‖T‖ ‖T−1‖ λ′l

(note that in the last inequality we use Lemma 3). Since the inequality is true for

all ε > 0, we have proved that λl > (‖T‖ ‖T−1‖)−1λ′l.
Now we reverse the roles of X and X ′ to obtain (‖T‖ ‖T−1‖)−1λ′l 6 λl 6

‖T‖ ‖T−1‖λ′l. �

Remark 7. If X and X ′ contain isometric subspaces Y and Y ′, then λl = λ′l for
all l ∈ � . Actually, the same equality holds if for every ε > 0, X and X ′ contain

(1 + ε)-isomorphic subspaces.

Remark 8. There are special cases when the calculus of λl is easy. For instance

when (θk), (θ′k) belong to the so called class F defined in [11] we have λl = l · θl and
the condition (∗) of Theorem 4 yields 1/C 6 θl/θ′l 6 C for all l or θl = θ′l if we can

find isometric subspaces or (1 + ε)-isomorphic subspaces for all ε > 0.

Example 3. Let fr(x) = logr
2(1 + x) with 0 < r < 3 log 2 − 1. Then

(f−1
r (k)) ∈ F and if 0 < r < s < 3 log 2 − 1, the spaces T

[(
Ak, 1/fr(k)

)∞
k=1

]

and T
[(

Ak, 1/fs(k)
)∞
k=1

]
are, by Theorem 4, totally incomparable. Moreover, it is

easy to check that these spaces are also totally incomparable to `p, 1 6 p < ∞ or c0.
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