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Abstract. The concept of a Prüfer ring is studied in the case of rings with involution such
that it coincides with the corresponding notion in the case of commutative rings.
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1. Introduction

Rings with involution have been studied intensively, especially in some applications

to Lie algebras, Jordan algebras, and rings of operators. More recently, the category
of rings with involution has been taken under investigation (see [1]). The ideals of an

object in this category must be closed under the involution *, and are called *-ideals.

The main purpose of this paper is to study the concept of a Prüfer ring in the

case of rings with involution such that it coincides with the corresponding notion in
the case of commutative rings. This is done in Section 3 for prime Goldie rings. In

Section 4, we consider domains with involution. We give generalizations for some of
the conditions of a commutative domain to be a Prüfer domain. We show that a

domain R is a Prüfer ring if for any two *-ideals A ⊆ B of R, there exists a *-ideal C
of R with A = BC. A commutative integral domain R has a distributive lattice of

ideals if and only if the localizations RM of R at any maximal ideal M are valuation
rings. These rings are called Dedekind rings if they are also noetherian. In Section 4,

we extend this result to noncommutative domains with involution.

In [2], Dubrovin generalizes the concept of a Prüfer ring to orders in simple Ar-

tinian rings, but that concept does not extend the class of Prüfer domains in the
commutative case. To study this concept in the case of rings with involution, it

881



must extend the class of commutative Prüfer domains, because when we take the

involution to be the identity, the ring turns out to be commutative.

2. Definitions and basic facts

In this section, we state the basic definitions and some facts that will be needed

in this work. All rings considered will be noncommutative with unity and with
involution * (an anti-automorphism of period 2). A subring of a ring must contain

the unity. If R is a *-closed subring (r ∈ R implies r∗ ∈ R), then we simply say that
R is a *-subring. For a *-closed additive subgroup I of a ring with involution Q,

the order of I is defined to be the *-subring O(I) = {q ∈ Q : qI ⊆ I, q∗I ⊆ I}, or
equivalently O(I) = {q ∈ Q : Iq ⊆ I, Iq∗ ⊆ I}. We also define the inverse of I to

be I−1 = {q ∈ Q : IqI ⊆ I, Iq∗I ⊆ I}. Clearly I−1 is *-closed. The quotient of
a *-subring R by a *-closed subset A of R is defined as [R : I ] = {q ∈ Q : qA ⊆
R, q∗A ⊆ R} or equivalently [R : I ] = {q ∈ Q : Aq ⊆ R, Aq∗ ⊆ R}. Let R be a
*-subring of Q. A *-closed R-submodule I of Q is called a fractional *-ideal of R if

there is a regular element (an element which is not a zero-divisor) d ∈ Q such that
dI ⊆ R, d∗I ⊆ R. Since I and R are *-closed, we also have Id ⊆ R, Id∗ ⊆ R,

and hence we do not need to define right and left fractional *-ideals. Clearly, every
fractional *-ideal is a fractional ideal. Also, each *-ideal of R is a fractional *-ideal

of R. We note that, if I is a fractional *-ideal, then [R : I ] is a fractional *-ideal. A
fractional *-ideal I is called invertible if I−1I = R.

Lemma 1. Let I be a fractional *-ideal of a *-subring R and assume that there

exist a *-closed subset M of Q such that MI = R. Then O(I) = R.

���������
. Since I is an R-submodule, hence R ⊆ O(I). Conversely, for q ∈ O(I)

we have MIq ⊆ MI so that Rq ⊆ R and q ∈ R. �

Lemma 2. Let I be a fractional *-ideal of a *-ring R. Then [R : I ]I = R if and

only if I is invertible.

���������
. Assume I−1I = R. Since O(I)R ⊆ O(I), Lemma (1) implies

O(I)I−1I ⊆ R so that O(I)I−1 ⊆ [R : I ] and O(I) ⊆ [R : I ]I , i.e., R ⊆ [R : I ]I .
Hence R = [R : I ]I . Conversely, assume [R : I ]I = R. Using the definitions we have
[R : I ]I ⊆ I−1I ⊆ O(I). So, R ⊆ I−1I ⊆ R and R = I−1I . �

Let R be a subring of Q, R is said to be symmetric if aR = a∗R for every a ∈ Q.

R is called invariant in Q if aR = Ra for every a ∈ Q. These definitions generalize
those given in the case of a division ring D with involution (a symmetric subring
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of D is a subring which contains x−1x∗ for every non-zero element x in D). Also,

when the involution is the identity then Q is commutative and every subring R of Q
will be symmetric and invariant.
We note that every symmetric subring R is *-closed, because for r ∈ R we have

r∗ ∈ r∗R = rR ⊆ R. Then R is a symmetric subring if and only if Ra = Ra∗ for
every a ∈ Q.

Lemma 3. Every symmetric subring R is invariant.
���������

. We first note that abR = baR for every a, b ∈ Q, because abR =
b∗a∗R = b∗aR = a∗bR = a∗b∗R = baR. Similarly, Rab = Rba for every a, b ∈ Q.

Now, let ra ∈ Ra for r ∈ R. Then ra ∈ raR = arR ⊆ aR, so that Ra ⊆ aR.
Similarly, aR ⊆ Ra and R is invariant. �

Lemma 4. Let R be a symmetric ring. Then each ideal of R is *-closed, two

sided, and such that xy ∈ I implies yx ∈ I .
���������

. Let I be a left ideal of R, x ∈ I , then x∗ ∈ Rx∗ = Rx ⊆ RI ⊆ I

and I is *-closed. Now, let x ∈ I , y ∈ R; then x∗ ∈ I and y∗ ∈ R so that
(xy)∗ = y∗x∗ ∈ I . Since I is *-closed, it follows that xy ∈ I and I is a right ideal.

Similarly, if I is a right ideal then it is *-closed and a left ideal. Finally, if xy ∈ I ,
then x∗y∗ ∈ Rx∗y∗R = RxyR ⊆ RIR ⊆ I . Hence yx = (x∗y∗)∗ ∈ I as I is *-closed.

�

If R is any ring with identity, then R is called a right chain ring if aR ⊆ bR or
bR ⊆ aR for any a, b in R. Similarly, left chain rings are defined. For *-rings all

chain rings are two sided because, if R is a right chain *-ring, then a∗R ⊆ b∗R or
b∗R ⊆ a∗R for a, b ∈ R so that Ra ⊆ Rb or Rb ⊆ Ra and R is also a left chain ring.

In the case of a division ring D with involution, a subring R ⊆ D is called total
if for every non-zero x in D, x or x−1 ∈ R. R is called a valuation ring if it is total

and symmetric. Total rings and chain rings are the same in this case as follows from
the following proposition.

Proposition 5. Let R be a subring of a *-division ring D. Then R is a chain

ring if and only if R is total in D.
���������

. If R is total, then a−1b ∈ R or b−1a ∈ R for every non-zero a, b in D.

Hence a−1bR ⊆ R or b−1aR ⊆ R, so that bR ⊆ aR or aR ⊆ bR and R is a chain
ring. Conversely, if R is a chain ring then aR ⊆ R or R ⊆ aR. Hence aR ⊆ R or

a−1R ⊆ R so that a ∈ R or a−1 ∈ R for every non-zero a in D. �
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Corollary 6. A symmetric subring R ⊂ D is a chain ring if and only if it is a

valuation ring.

This shows that chain rings play for symmetric rings the role valuation rings play
for division rings. Finally, let us look at rings of quotients of rings with involution.
The following proposition shows that the involution makes the situation symmetric.

Proposition 7. Rings with involution have only two-sided rings of quotients.
���������

. Let R be a ring with involution, Q a right ring of quotients of R. Then

every element x in Q is of the form x = as−1, where a ∈ R, and s is a regular
element in R. Since s∗ is also a regular element, then there is an element b ∈ R and

a regular element t such that a∗t = s∗b. Taking the involution we get t∗a = b∗s, so
that x = as−1 = (t∗)−1b∗ and Q is a left ring of quotients of R. �

Proposition 8 ([3]). Let R be a ring with involution, Q a ring of quotients of R.

Then the involution of R extends uniquely to Q.

For a general noncommutative ring R the existence of a localization is a difficult
problem, so we will assume in the next section that R is a prime Goldie ring with

involution and so R has a ring of quotients Q with involution extending the involution
in R. In this case, Q = Mn(D), the ring of n × n matrices over a division ring D,

or Q = Mn(D)⊕Mop
n (D) where the latter is endowed with the exchange involution

(see [3]).

Another class of rings with involution that have rings of quotients are those studied

in [4]. Such rings with involution satisfy a commutative condition on the products
of norms, and have rings of quotients where symmetric elements are invertible. If,

further, these rings are semiprime rings, then their rings of quotients are division
rings, direct sums of a division ring and its opposite, or 2 × 2 matrices over a field
(see [4]).

3. Prüfer rings

A *-subring R is called a Prüfer ring if every finitely generated fractional *-ideal I
of R is invertible. If R is a commutative Prüfer domain, then every finitely generated

fractional ideal is invertible (see [5]), so every commutative Prüfer domain is a Prüfer
ring, where the involution can be taken as the identity. Also, if R is a symmetric

Prüfer subring of a division ring with involution, then R is a Prüfer ring (see [6]).
We first show that an overring of a Prüfer ring is also a Prüfer ring.
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Proposition 9. Let R be a symmetric prime Goldie ring which is a Prüfer ring.

Then any symmetric overring of R is also a Prüfer ring.

���������
. Let Q be the *-ring of quotients of R. Let S be a symmetric overring

of R, i.e., S is a symmetric subring of Q such that R ⊆ S ⊆ Q. Clearly every regular
element of S is invertible in Q and hence S is a prime Goldie ring with Q as its *-ring

of quotients.

Suppose that J is a finitely generated fractional *-ideal of S, say J = a1S + . . . +
anS. Consider I = a1R + . . . + anR. Then IS = J and I is a finitely generated

fractional *-ideal of R, so that I−1I = R. Since I−1J = I−1(IS) = (I−1I)S = RS =
S, we have O(J) = S by Lemma 1. Also, I−1 ⊆ J−1 implies thatR = I−1I ⊆ J−1J

so that 1 ∈ J−1J . Thus, J−1J = O(J) = S, i.e., J is invertible and S is a Prüfer

ring. �

It is well known that a commutative domain R is a Prüfer domain if and only if
the localizations RP at prime ideals P of R are valuation domains (see [5]). Also, in

the case of a symmetric subring R of a division ring with involution, R is a Prüfer
ring if and only if the localizations RM , at maximal *-ideals M of R are valuation

rings (see [6]). For a noncommutative *-ring we can prove the following result under
the assumption that localizations exist. A non-empty subset S of a *-ring R is called
an Ore *-set if it is an Ore set and closed under *.

Theorem 10. Let R be a symmetric prime Goldie ring with involution such that

for every maximal *-ideal M of R, the set S(M) = {r ∈ R : r + M is a regular

element in R/M} is an Ore *-set of elements regular in R, and the localization RM

with respect to that set is a valuation ring in Q, the ring of quotients of R. Then R

is a Prüfer ring.

���������
. Let I = b1R + . . . + bnR be a finitely generated fractional *-ideal of R.

Let M be a maximal *-ideal of R. Then there exists a regular element aM of R

such that IRM = aMRM and hence a−1
M I ⊆ RM . Then a−1

M bi ∈ a−1
M I ⊆ RM and

a−1
M bi = c−1

i di where ci ∈ S(M) and di ∈ R (i = 1, . . . , n). We can assume that
a−1

M bi = c−1ri where c ∈ S(M) and ri ∈ R (i = 1, . . . , n). So

ca−1
M I = ca−1

M b1R + . . . + ca−1
M bnR = r1R + . . . + rnR ⊆ R.

Since R is symmetric, hence b∗i R = biR (i = 1, . . . , n) and

Ica−1
M = b1Rca−1

M + . . . + bnRca−1
M = b∗1Rca−1

M + . . . + b∗nRca−1
M

= b∗1(ca
−1
M )

∗
R + . . . + b∗n(ca−1

M )
∗
R = r∗1R + . . . + r∗nR ⊆ R.
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Hence (ca−1
M )

∗
I ⊆ R, and ca−1

M ∈ [R : I ] follows. If ca−1
M I ⊆ M , then RM =

ca−1
M IRM ⊆ RM ⊆ MRM , so that RM = MRM , i.e., RM is the Jacobson radical
of RM , which is a contradiction (since RM is a valuation ring). Therefore ca

−1
M I 6⊂ M .

So, [R : I ]I 6⊂ M for every maximal *-ideal M of R. Hence [R : I ]I = R, and by

Lemma 2, I is invertible. �

For a converse of Theorem 10, one can adopt the proof of Theorem 3 in [2] to get

the following theorem.

Theorem 11. Suppose M is a *-ideal of a symmetric Prüfer ring R with

involution such that R/M is an Artinian ring. Then S(M) = {r ∈ R : r +
M is a regular element in R/M} is an Ore *-set of regular elements of R. Moreover,
if R/M is a simple Artinian ring, then RM is a valuation ring.

For a prime *-ring R, the center Z is an integral domain. Consequently, all of
the localizations RM , for maximal ideals M of Z, exist and lie in a common ring of

quotients Q of R. In this case we have the following result.

Proposition 12. Let Z be the center of a prime *-ring R. If for any maximal

ideal M of Z the localization RM is a Prüfer ring, then R is also a Prüfer ring.
���������

. Let I be a finitely generated fractional *-ideal of R. Then (I−1)M =
(IM )−1 for any maximal ideal M of Z. So,

I−1I =
⋂

(I−1I)M =
⋂

(I−1)M IM =
⋂

RM = R,

where all of these intersections are over the set of maximal ideals M of Z. �

4. Prüfer domains

For equivalent conditions for a commutative domain to be a Prüfer domain one

refers to [5, Theorem 6.6]. We consider in this section symmetric *-domains.

Proposition 13. Let R be a symmetric domain with involution and for any two

*-ideals A ⊆ B of R let there exist a *-ideal C of R with A = BC. Then the

localization RM is a chain ring for every maximal *-ideal M of R.
���������

. Let M be a maximal *-ideal of R, let RM be the corresponding local
ring. For a, b ∈ R, aR and aR + bR are two *-ideals of R and aR ⊆ aR + bR, hence

there exists a *-ideal C of R such that aR = (aR + bR)C. So, a = ax + by for some
x, y ∈ C. If x ∈ M , then 1 − x is a unit in RM and a(1 − x) = by ∈ bRM implies

that aRM ⊆ bRM . If x 6∈ M , then byx−1 = a(x−1 − 1). But yx−1 ∈ CRM = RM ,
and so bRM ⊆ aRM follows. Thus RM is a chain ring. �
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Corollary 14. Let R be a symmetric Ore domain with involution such that for

any two *-ideals A ⊆ B of R there exists a *-ideal C of R with A = BC. Then R is

a Prüfer ring.

���������
. R is now a symmetric subring of a division ring, the division ring of

quotients of R. Thus, Corollary follows from Corollary 6 and [6, Theorem 11]. �

Proposition 13 generalizes Theorem 6.6 (part 7) in [5] to the case of a noncommu-
tative *-domain. To give a generalization of part 10 of the same theorem we start

by giving first the meaning of a D-*-ring. A *-ring R is called a D-*-ring if for every
three *-ideals A, B, C of R,

A ∩ (B + C) = A ∩ B + A ∩ C,

i.e., the lattice of *-ideals is distributive.

Lemma 15. Let R be a symmetric D-*-ring, M a maximal *-ideal. Then S =
R−M is an Ore *-set.

���������
. Clearly S is *-closed since M is *-closed. To prove the right Ore

condition, we note that for r ∈ R the right ideals rR are two-sided *-ideals. Then
for r, s ∈ R,

rR = rR ∩ (sR + (r − s)R) = (rR ∩ sR) + (rR ∩ (r − s)R).

Hence r = (r − s)t + x for t ∈ R, x ∈ rR ∩ sR, so that

st = (r(t − 1) + a) ∈ rR ∩ sR,

and

r(1− t) = (s(−t) + a) ∈ rR ∩ sR.

Now, let r ∈ R, s ∈ S. If t ∈ M , it follows that 1 − t ∈ S (otherwise 1 ∈ M),
and the right Ore condition is satisfied. If t 6∈ M , then st = ru for some u in R and

again the right Ore condition is satisfied. Since R and S are *-closed, the left Ore
condition is also satisfied. �
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Lemma 16. Let R and M be as in Lemma 15 and let R have no zero divisors,

or be a noetherian ring. Then the ring of quotients RM with respect to S exists.

���������
. This is obvious if R has no zero divisors. Now, let R be a noetherian

ring. Define I = {r ∈ R : rs = 0 for some s ∈ S}, then I is a *-ideal of R. The
image S of S in R =R/I is an Ore *-set and consists of regular elements, as R satisfies

the maximum condition for annihilators in R (see [7]). Then one can form the ring
RM = {rs−1 : r ∈ R, s ∈ S} , the ring of quotients of R with respect to S. �

Proposition 17. Let R be a symmetric D-*-ring which has no zero divisors, or

a noetherian ring. Then S = R−M is an Ore *-set and RM = RS−1 is a chain ring

for every maximal *-ideal M of R.

���������
. By virtue of Lemma 16, it remains to show that the ring of quotients RM

is a chain ring. It is clear that RM has a unique maximal ideal. Also, every principal

ideal in RM has the form aRM for a ∈ R. Since R is a symmetric ring, R is also
symmetric. Also, the lattice of *-ideals of RM is distributive. Then as in the proof

of Lemma 15, for any two elements a, b in R there exists t in R with a(1 − t),
bt ∈ aRM ∩ bRM . Either t or 1− t is in S , i.e., a unit in RM , hence a ∈ aRM ∩ bRM

or b ∈ aRM ∩ bRM . So, aRM ⊆ bRM or bRM ⊆ aRM and RM is a chain ring. �

Theorem 18. Let R be a symmetric ring which has no zero divisors or a noethe-

rian ring. Then R is a D-*-ring if and only if S = R − M is an Ore *-set and

RM = RS−1 is a chain ring for every maximal *-ideal M of R.

���������
. Due to Proposition 17, it remains to prove that R is a D-*-ring under

the assumption that RM as defined in the proof of Lemma 13 exists, and a chain
ring for all maximal *-idealsM of R. Let ϕ be the canonical homomorphism from R

onto R = R/I . For a *-ideal L of R, we have

ϕ−1(R ∩ LRM ) = {r ∈ R : rs ∈ L for some s ∈ S}.

So, L =
⋂

ϕ−1(R∩LRM ). Then, for *-ideals L, J of R we have L = J if and only if
LRM = JRM for all maximal *-ideals M . But for any three *-ideals A, B, C of R

we have

(A ∩ (B + C))RM = ((A ∩B) + (A ∩ C))RM ,

as RM is a chain ring. This proves that R is a D-*-ring. �
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Corollary 19. Let R be a symmetric Ore domain with involution. Then R is a

D-*-ring if and only if R is a Prüfer domain.

If R is a symmetric subring of a division ring with involution, then R is a Prüfer
ring if and only if RM is a valuation ring for every maximal *-idealM of R (see [6]).

Thus, in this case we have

Theorem 20. Let R be a symmetric subring of a division ring with involution.

The following conditions are equivalent:

(1) R is a Prüfer ring,

(2) RM is a chain ring for every maximal *-ideal M of R,

(3) RM is a valuation ring for every maximal *-ideal M of R,

(4) RP is a valuation ring for every prime *-ideal P of R,

(5) R is D-*-ring.

Let D be a division ring with involution. For a given preordering T of D, one

can construct a subring consisting of elements of D, which are bounded by some
rational number with respect to every ordering containing T . This subring V =

{d ∈ D : r− dd∗ ∈ T for some positive rational r} is called the bounded subring. It
is shown in [6] that V is a noncommutative Prüfer domain. In fact, it is shown that

this subring is the intersection of all valuation subrings of D which are compatible
with the preordering T . This generalizes the commutative case (where * = identity).

Let R be a *-ring, P an ordering of R (for the definitions of orderings and pre-

orderings on *-rings one refers to [4] ). The ideal p = P ∩ −P is a prime ideal, and
is referred to as the support of P . Support p orderings on R are in correspondence

with support zero orderings on the domain R = R/p. So we can assume that R is an
integral domain and P has support zero. If R is an Ore domain, then every support

zero ordering on R extends uniquely to an ordering on the division ring of quotients
of R.

Proposition 21. For any preordering of an Ore *-domain R, the bounded sub-

ring Vo is a Prüfer ring.

���������
. This follows from Proposition (16) in [6] and the fact that Vo = V ∩R,

where V is the bounded subring of the extended preordering on the division ring of

quotients of R. �
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