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Abstract. The achromatic number of a graph G is the maximum number of colours in a
proper vertex colouring of G such that for any two distinct colours there is an edge of G
incident with vertices of those two colours. We determine the achromatic number of the
Cartesian product of K5 and Kn for all n 6 24.
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1. Introduction

Consider a simple finite graph G and its vertex k-colouring f mapping V (G) into
{1, 2, . . . , k}. As usual, f is proper if f(u) 6= f(v) whenever uv ∈ E(G). Let chr(G)
denote the chromatic number of G, the minimum k such that there is a proper vertex

k-colouring of G. It is easy to see that any proper vertex chr(G)-colouring of G is
complete: for every i, j ∈ {1, 2, . . . , chr(G)}, i 6= j, there is an edge uv in G with

f(u) = i and f(v) = j. In other words, chr(G) is the minimum k admitting a
complete proper vertex k-colouring of G. It is natural to ask also for the maximum l

admitting a complete proper vertex l-colouring of G, i.e., for the achromatic number
of G, in symbol achr(G). This graph invariant was introduced by Harary, Hedetniemi
and Prins in [5], where the authors proved among other things also the following

interpolation theorem:

Theorem 1. If G is a graph and k an integer with chr(G) 6 k 6 achr(G), then
there exists a complete proper vertex k-colouring of G.

The first author was supported by the Grant VEGA 1/7467/20 of the Slovak Republic.
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It is known, see Yannakakis and Gavril [8], that, given a graph G and a positive

integer k, to decide whether achr(G) > k is an NP-complete problem. Note that
classes of graphs with exactly determined achromatic number are quite rare. A reader
can find a survey of results on the achromatic number in Edwards [4].

Cartesian products of complete graphs form a class of graphs with structure sim-
ple enough to evaluate (at least for some subclasses) the achromatic number. The

Cartesian product of complete graphs Km and Kn is the graph Km × Kn with
V (Km × Kn) = {(i, j) : i ∈ {1, 2, . . . , n}}, in which (i1, j1) is adjacent to (i2, j2) if
and only if the pairs (i1, j1), (i2, j2) have exactly one common co-ordinate. Since the
graphs Km ×Kn and Kn ×Km are isomorphic, when analyzing achr(Km ×Kn) we
may suppose that m 6 n. The achromatic number of Km ×Kn is completely deter-
mined for m = 1, 2, 3, 4: It is known that achr(K1 ×Kn) = achr(Kn) = n (trivially),

achr(K2 ×Kn) = n + 1 (easily), achr(K3 × K3) = 5 and achr(K3 × Kn) = b 3
2nc for

n > 4 (proved independently by Horňák and Puntigán [7] and Chiang and Fu [2]),
achr(K4 ×Kn) = 2n if 4 6 n 6 12, achr(K4 × K13) = 24, achr(K4 ×Kn) = b 4

3nc if
14 6 n 6 24 and achr(K4 × Kn) = b 5

3nc for n > 25, see [7]. Bouchet [1] found that
achr(K6 × K6) = 18. Chiang and Fu [3] generalized his result in an important way
by showing that achr(Km ×Km) = 1

2p2r(pr +1) holds for an odd prime p, a positive

integer r and m = 1
2pr(pr +1). We succeeded in establishing values of achr(K5×Kn)

in [6] for n > 25; they are resumed in Theorem 4. The aim of the present paper is
to complete the results of [6] for n 6 24.

For integers p, q, we denote by [p, q] the set of all integers z with p 6 z 6 q.
Using the structure of Km × Kn, we can transform the problem of determining

achr(Km ×Kn) as follows: For a positive integer p, let M p
m,n be the set of all m× n

matrices A with entries from [1, p] (an entry in the row i and the column j is the

colour of the vertex (i, j)) such that the entries in any line (a row or a column)
of A are distinct (the corresponding p-colouring of Km×Kn is proper) and for every

i, j ∈ [1, p], i 6= j, there is a line of A containing both i and j (the colouring is
complete). Evidently, achr(Km × Kn) is the maximum p with Mp

m,n 6= ∅. If we
permute rows and/or columns of a matrix in M p

m,n, what results is again a matrix
in Mp

m,n. This trivial (but important) fact will be frequently used throughout the

paper. A colour (an entry) of a matrix A ∈ M p
m,n is a k-colour if it appears in A

exactly k times.
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2. Constructions

In this section we present some 5 × n matrices which will turn out to be optimal

for the achromatic number of K5 × Kn in Section 3. We define I3 := {1, 6}, I2 :=
{2, 4, 5, 7, 8, 10}, I1 := {3, 9} ∪ [11, 14], I0 := [15, 24] and c(n) := 2n + a for n ∈ Ia,

a = 0, 1, 2, 3.

Theorem 2. If n ∈ [1, 24], then achr(K5 ×Kn) > c(n).
���������

. For n 6 4 we simply use the results of [7]. In what follows, we restrict
ourselves to n ∈ [5, 24].
For n ∈ [5, 10] we present a matrix belonging toM

c(n)
5,n in which k stands for k+10

and ¯̄l for l + 20:



1 2 3 4 5
6 1 2 3 7
8 9 0 7 4
5 1 9 2 6
0 2 8 1 9







1 2 3 4 5 6
2 1 7 8 9 0
1 2 4 3 7 3
5 4 5 0 2 8
3 5 4 9 6 1







1 2 3 4 5 6 7
2 1 8 9 0 1 2
3 4 4 3 5 8 1
1 7 6 0 9 3 8
6 5 2 6 4 5 3







1 2 3 4 5 6 7 8
2 1 9 0 1 2 3 4
5 6 4 3 3 7 1 8
8 5 4 6 6 5 7 9
7 8 5 2 6 0 8 7







1 2 3 4 5 6 7 8 9
3 4 5 7 4 5 6 1 2
3 0 5 6 7 8 9 2 1
5 3 4 0 9 6 7 1 8
4 5 3 8 9 0 8 9 1







1 2 3 4 5 6 7 8 9 0
1 2 3 4 5 6 0 7 8 9
2 7 6 8 1 3 9 0 1 2
3 5 4 1 2 2 7 8 9 0
4 9 5 1 6 0 1 2 7 8




For n ∈ [11, 14], consider the following matrices Bn−8 and C8:

B3 =




2 1 2
2 3 1
3 4 5
5 3 4
4 5 3




B4 =




4 1 2 3
2 3 5 1
4 5 6 7
7 4 5 6
6 7 4 5




B5 =




6 1 2 3 4
3 4 7 1 2
5 6 7 8 9
9 5 6 7 8
8 9 5 6 7




B6 =




8 1 2 3 4 5
3 4 5 9 1 2
6 7 8 9 0 1
1 6 7 8 9 0
0 1 6 7 8 9




C8 =




−16 −15 −14 −13 −12 −11 −10 −9
−8 −7 −6 −5 −4 −3 −2 −1
−13 −16 −15 −14 −2 −1 −4 −3
+1 −9 −8 −7 −11 −12 0 −10
−6 −5 +1 −10 −9 0 −11 −12




Let C8,2n be the matrix obtained from C8 by increasing all its entries by 2n.

The block matrix Mn = (Bn−8C8,2n) has the following colour structure: colours of
[1, n − 9] are 2-colours appearing in both rows 1, 2 of Bn−8, colours of [n − 8, 2n −
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17] are 3-colours appearing in all three rows 3, 4, 5 of Bn−8, colours of [2n − 16,

2n− 13]∪ [2n− 8, 2n− 1] are 2-colours appearing in exactly one of the rows 1, 2 and
in exactly one of the rows 3, 4, 5 of C8,2n, colours of [2n − 12, 2n− 9] are 3-colours
appearing in all three rows 1, 4, 5 of C8,2n, and colours of [2n, 2n + 1] are 3-colours
appearing in exactly one of the rows 1, 2 of Bn−8 and in both rows 4, 5 of C8,2n.
All connections between 2-colours of Bn−8 and 3-colours of Bn−8 are realized in

columns of Bn−8: any 3-colour of Bn−8 covers three consecutive (modulo n − 8)
columns of Bn−8, and a maximum “column gap” between two exemplars of any 2-

colour of Bn−8 consists of d 1
2 (n − 10)e 6 2 columns. All other colour connections

involving 2-colours of Bn−8 are realized in one of the rows 1, 2 of Mn and all colour

connections between 3-colours of Bn−8 and 2-colours of C8,2n are realized in one of the
rows 3, 4, 5 of Mn. It is easy to check that all colour connections between 2-colours

of C8,2n and colours appearing not only in Bn−8 are present inMn. Clearly, because
of the Pigeonhole Principle (PP), it is unnecessary to look for colour connections

involving two 3-colours. Finally, as all rows of Mn contain n distinct colours and all
columns of Mn contain five distinct colours, we have Mn ∈ M2n+1

5,n .

To conclude the proof, it is sufficient to use Proposition 1 of [6], showing that
achr(K5 ×Kn) > 2n for n ∈ [12, 24]. �

3. Optimality

Theorem 3. If n ∈ [1, 24], then achr(K5 ×Kn) = c(n).
���������

. Again we omit the case n ∈ [1, 4]. Let n ∈ Ia, so that c(n) = 2n + a.
Because of Theorem 2, it suffices to show that achr(K5 ×Kn) 6 2n + a. Proceeding

by the way of contradiction, we assume that achr(K5 ×Kn) > 2n + a + 1. Then, by
Theorem 1, we know that there is a matrix A ∈ M 2n+a+1

5,n .

For a positive integer i, let Ci be the set of i-colours of A; put ci := |Ci|, c3+ :=
c3 + c4 + c5, c4+ := c4 + c5.

Claim 1. If ci > 0, then i ∈ [2, 5].
���������

of Claim 1. Clearly, ci = 0 for i > 6 (PP). If some colour appears
only once in A, all colours of A must be present in the corresponding row or in the

corresponding column of A, so their number is at most n+4. However, 2n+a+1 >
2n + 1 > n + 5 + 1 > n + 4, a contradiction. �

By Claim 1, we have 2n+a + 1 6 b 5
2nc, which yields immediately a contradiction

if n ∈ [5, 6]. Thus, from now on we suppose that n ∈ [7, 24].
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Claim 2. c2 > c4+ + n + 3a + 3 and c3+ 6 n − 2a− 2.

���������
of Claim 2. Claim 1 implies 2n+a+1 = c2 +c3 +c4+ and 5n =

5∑
i=2

ici >
2c2 + 3c3 + 4c4+ = 2(2n + a + 1) + c3 + 2c4+, so that c3+ 6 c3 + 2c4+ 6 n− 2a− 2
and c2 − c4+ = (2n + a + 1− c3 − c4+) − c4+ > 2n + a + 1− (n− 2a− 2). �

Claim 3. c2 > 15.
���������

of Claim 3. As a consequence of Claim 2, we obtain the following

inequalities for a = 0, 1 and 2, respectively: c2 > n + 3 > 18, c2 > n + 6 > 15 and
c2 > n + 9 > 16. �

For sets S1 ⊆ [1, 5] and S2 ⊆ [1, n], an S1-row is a row whose number is in S1 and

an S2-column is a column whose number is in S2. Instead of {s1}-rows and {s2}-
columns we speak simply about s1-rows and s2-columns. For i, j ∈ [1, 5], i 6= j, let

Ri,j denote the set of 2-colours occurring in both {i, j}-rows, Si,j the set of numbers
of columns covered by the colours of Ri,j and, for l ∈ [1, 2], let S

(l)
i,j be the set of

numbers of Si,j-columns containing l colours of Ri,j . For a colour α, we denote

by Sα the set of numbers of columns covered by α. Put ri,j := |Ri,j |, si,j := |Si,j |,
s
(l)
i,j := |S(l)

i,j |, and let ti,j be the total number of colours appearing in both {i, j}-rows.
Sets Ri,j,k (of 3-colours) and numbers ri,j,k are defined analogously.

We associate with the matrix A an edge-labelled graph K5(A) as the graph K5

with V (K5) = [1, 5], in which an edge {i, j} is labelled with ri,j .

Claim 4. If i, j ∈ [1, 5], i 6= j and ri,j > 0, then ti,j 6 5 − a. Consequently, the

graph K5(A) is labelled with numbers from [0, 5− a].
���������

of Claim 4. Consider a 2-colour α ∈ Ri,j . Because of connections
with α, all colours missing in both {i, j}-rows must be present in one of the two
Sα-columns, and the total number of colours in A is 2n + a + 1 6 (2n− ti,j) + 6, so
that ri,j 6 ti,j 6 5− a. �

The weight w(G) of a subgraph G of the graph K5(A) is the sum of labels of
all edges of G. Thus, w(K5(A)) = c2. By w(G) we denote the weight of G, the
complement of G.

Claim 5. Any subgraph K1,4 of K5(A) is of weight at least n− c3+ > 2a + 2.
���������

of Claim 5. Since, by Claim 2, c3+ 6 n− 2a− 2, the claim follows from
the fact that the number of 2-colours in any row of A is at least n − c3+. �
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Claim 6. The graph K5(A) has a subgraph K2 ∪ K3 of weight at least d 2
5c2e >

d 2
5 (n + 3a + 3)e.
���������

of Claim 6. The graph K5(A) has ten subgraphs K2 ∪ K3 and each of
its edges appears in four such subgraphs: once in a K2-component and three times

in a K3-component. So, by Claim 2, the sum of weights of those ten subgraphs is
4c2 > 4(n + 3a + 3), and the maximum weight is at least d 4

10c2e. �

Denote by K(i, j) the subgraph K2 ∪ K3 of K5(A) with V (K2) = {i, j} and
by K(i) the subgraph K1,4 of K5(A) with parts {i} and [1, 5]−{i}. We may suppose
without loss of generality that the subgraph K(1, 2) is of the maximum weight w =
r1,2 + (r3,4 + r3,5 + r4,5), and that r3,4 > r3,5 > r4,5. We assume also that r1,2 is
the maximum weight of a K2-component among all subgraphs K2 ∪ K3 of K5(A)
of weight w. Put R := R3,4 ∪ R3,5 ∪ R4,5, r := |R|, Ri := R1,i ∪ R2,i, ri := |Ri|,
i ∈ [3, 5], R̃ := R3∪R4∪R5 and r̃ := |R̃|. Thus, r is the weight of the K3-component

of K(1, 2) and c2 = w + r̃.

Claim 7. If {i, j, k} = [3, 5], then ri 6 rj,i + rk,i. If, moreover, rj,k > r1,2, then

ri < rj,i + rk,i.

���������
of Claim 7. As rj,k + (r1,2 + r1,i + r2,i) = w(K(j, k)) 6 w(K(1, 2)) =

r1,2 + (rj,i + rk,i + rj,k), the first part of the claim is proved. The second issues from
the assumption on r1,2. �

Claim 8. r1,2 + 3r > c2 > n + 3a + 3.
���������

od Claim 8. By Claim 7 we have r3 + r4 + r5 6 2r, hence it follows from

Claim 2 that n + 3a + 3 6 c2 = r1,2 + r + r3 + r4 + r5 6 r1,2 + 3r. �

Claim 9. w > 7.
���������

of Claim 9. If n 6= 9, it suffices to apply Claim 6. For n = 9 the same
claim yields r1,2 + r > 6. So, suppose that r1,2 + r = 6. Returning to the proofs of
Claims 6, 7 and 8 we see that then c2 = 15, all ten subgraphs K2 ∪K3 of K5(A) are
of weight 6, and r1,2 + 3r = 15. This, however, leads to 2r = 9, a contradiction. �

Claim 10. r1,2 6 2.
���������

of Claim 10. By Claims 4 and 9 we know that r1,2 6 5 and r1,2 + r > 7.
However, r1,2 = 5 is impossible: in such a case any 2-colour missing in both [1, 2]-
rows (and there are at least 7 − 5 = 2 such colours in R) has at most 2 · 2 = 4
connections with (colours of) R1,2, a contradiction.
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So, suppose that r1,2 ∈ [3, 4]. Since any exemplar of a colour α ∈ R realizes in its

column at most two connections with R1,2, we have Sα ⊆ S1,2, Sα ∩ S
(2)
1,2 6= ∅ and, if

r1,2 = 4, even Sα ⊆ S
(2)
1,2 .

Assume first that r4,5 > 0. Any colour of Ri, i ∈ [3, 5], must have at least one of
its exemplars in an S1,2-column, otherwise its connections with Rj,k, where {j, k} =
[3, 5]− {i}, would be missing. Thus, for the number p of places in the S1,2-columns
filled in with 2-colours, we obtain 2(r1,2 + r)+(c2− (r1,2 + r)) 6 p 6 5s1,2, hence, by

Claims 3 and 9, 7 + 15 6 (r1,2 + r) + c2 6 5s1,2 and s1,2 > 5. Similarly, for r1,2 = 4,
we obtain 22 6 5s

(2)
1,2 and s

(2)
1,2 > 5 in contradiction with the immediate bound

s
(2)
1,2 6 4. Clearly, we have s

(1)
1,2 + s

(2)
1,2 = s1,2, s

(1)
1,2 + 2s

(2)
1,2 = 2r1,2 and, consequently,

s1,2 + s
(2)
1,2 = 2r1,2. Thus, r1,2 = 3 yields s

(2)
1,2 = 6− s1,2 6 6− 5 = 1, and then r 6 3

in contradiction with Claim 9.

From now on we suppose that r4,5 = 0. We cannot have s1,2 = s
(2)
1,2 = 3, because

in such a case r1,2 = 3, r3,4 + r3,5 6 3 (any colour of R = R3,4 ∪ R3,5 has its 3-row

exemplar in {3} × S1,2) and r1,2 + r 6 3 + 3. So, s1,2 > 4 and it is easy to see that
there are colours α, β ∈ R1,2 sharing no column. Then 3-row exemplars of colours

of R must appear in {3} × (Sα ∪ Sβ), r = r3,4 + r3,5 6 4, r1,2 + 3r 6 16, and
Claim 8 yields n ∈ {7, 9}. Since r3,5 6 2, it follows from Claim 7 that w(K(5)) =
r5 + r3,5 + r4,5 6 2 + 2 + 0 = 4.

Hence, by Claim 5, the only remaining possibility is n = 9. If r3,5 6 1, Claim 7
yields w(K(5)) 6 2(1 + 0) in contradiction with Claim 5. Thus, we must have
r3,4 = r3,5 = 2. Claims 5 and 7 imply r4 = r5 = 2.

If i ∈ [4, 5], then each colour of Ri must have an exemplar in one of the S1,2-
columns: it needs connections with Rj,k, where {j, k} = [3, 5]−{i}. Since r4+r5 = 4,
we cannot have s1,2 = 3 (at least fourteen places in the S1,2-columns are occupied

by colours of R1,2 ∪ R). From s1,2 > 4 we obtain, as above, that there are two
colours α, β ∈ R1,2 with Sα ∩ Sβ = ∅. We may suppose without loss of generality
that Sα = [1, 2] and Sβ = [3, 4]. Every colour of R has both its exemplars in the
[1, 4]-columns and, as r > 3, any colour of R1,2 must also have both its exemplars in

the [1, 4]-columns. Thus, in the rectangle [1, 2]× [1, 4] (in the intersection of the set
of the [1, 2]-rows and the set of the [1, 4]-columns) of the matrix A there are at most

two positions for colours of the set R4 ∪ R5 and at least two positions for colours of
R4 ∪R5 must be in the rectangle [4, 5]× [1, 4] (note that in {3} × [1, 4] there are all
four colours of R).

A colour missing in both [1, 2]-rows has at least two its exemplars in [3, 5]× [1, 4]
(connections with R1,2); the number of such colours is therefore at most b 1

2 (12−2)c =
5. As the [1, 2]-rows contain at most 18−r1,2 colours, the total number of colours in A

is 20 6 23 − r1,2, so that r1,2 = 3, there are five colours missing in both [1, 2]-rows

969



(four of R and the fifth of R3,4,5), any colour of R4 ∪ R5 has exactly one exemplar

in [1, 5] × [1, 4] and the distribution of R4 ∪ R5 in the rectangles [1, 2] × [1, 4] and
[3, 5]× [1, 4] is 2+2. Let γ, δ be colours of R4∪R5 occurring in [1, 2]× [1, 4]. Because
of the distribution of R1,2 in [1, 2]× [1, 4], it is clear that a connection γ/δ can only

be provided by γ2 and δ2. (For a 2-colour µ we denote its two exemplars by µ1 and
µ2, and we assume that µ1 is the exemplar entering into our considerations as the

first.)
The mentioned colour of R3,4,5 occupies two positions in [4, 5]× [1, 4], hence one

position in that rectangle is occupied by a colour of R4 and one by a colour of R5.
That is why, if γ ∈ Rl,i, l ∈ [1, 2], i ∈ [4, 5], then (because of r4 = r5 = 2) δ ∈
R3−l,9−i. Thus, a connection γ/δ is realized in a column. However, that column must
contain also all colours of R3, because the colour γ ∈ Rl,i needs connections with

R3,9−i (its second exemplar cannot help, as all exemplars of R3 are in [1, 5]× [5, 9])
and, analogously, the colour δ ∈ R3−l,9−i needs connections with R3,i. This leads to

a contradiction since r3 = c2 − w − (r4 + r5) > 15− 7− 4 = 4. �

Claim 11. If {i, j, k, l, m} = [1, 5], ri,j = 5, then rk,l = rk,m = rl,m = 0,
si,j = rk,l,m = 6 and all positions in {k, l, m}×Si,j are filled in with colours of Rk,l,m.
���������

of Claim 11. From Claim 4 we obtain a = 0. The number of colours
missing in both {i, j}-rows is then (2n+1)− (2n−5) = 6, and each exemplar of such
a colour provides at most two connections with Ri,j . Hence, rk,l = rk,m = rl,m = 0
and rk,l,m = 6.
Any colour of Rk,l,m occupies three positions in {k, l, m} × Si,j and at least two

positions in {k, l, m}×S
(2)
i,j , that is why 18 = 3rk,l,m 6 3si,j and 12 = 2rk,l,m 6 3s

(2)
i,j .

Moreover, s(1)
i,j + s

(2)
i,j = si,j , s

(1)
i,j + 2s

(2)
i,j = 2ri,j = 10, consequently si,j = 10 − s

(2)
i,j ,

6 6 10− s
(2)
i,j 6 10− 4 = 6, s(2)

i,j = 4, si,j = 6, and the proof follows. �

Claim 12. If {i, j, k, l, m} = [1, 5] and ri,j ∈ [3, 4], then rk,l + rk,m 6 4.
���������

of Claim 12. Suppose first that there are colours α, β ∈ Ri,j with

Sα ∩ Sβ = ∅. Evidently, any colour of Rk,l ∪ Rk,m must have its k-row exemplar in
an (Sα ∪ Sβ)-column, and so rk,l + rk,m = |Rk,l ∪Rk,m| 6 |{k} × (Sα ∪ Sβ)| = 4.
If the above assumption is not fulfilled, then si,j = 3 and any colour of Rk,l∪Rk,m

must have its k-row exemplar in an Si,j-column, hence rk,l + rk,m 6 |{k}×Si,j| = 3.
�

Claim 13. If {i, j, k, l, m} = [1, 5] and ri,j > 1, then rk,l +rk,m +rl,m +rk,l,m 6 6.
���������

of Claim 13. If α ∈ Ri,j , then any colour of Rk,l ∪ Rk,m ∪ Rl,m ∪ Rk,l,m

must be present in {k, l, m}× Sα. �
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Claim 14. If {i, j, k, l, m} = [1, 5] and ri,j > 1, then ri,j + rk,l + rk,m 6 8.
Moreover, the equality can apply only if ri,j ∈ {2, 4}.
���������

of Claim 14. The claim is a direct consequence of Claims 11, 12 and

13. �

Claim 15. If r1,2 ∈ [1, 2], then (r3,4, r3,5, r4,5) ∈ {(2, 2, 1), (2, 2, 2)}.
���������

of Claim 15. By Claim 13, we have r ∈ [5, 6] and so w ∈ [7, 8]. If r = 5
(and r1,2 = 2), then, by Claims 6 and 5, n 6 11 and w(K(5)) > 4. The assumption
r3,4 = 2 leads to r3,5 = 2 and r4,5 = 1. On the other hand, if r3,4 > 3, using Claim 7
we obtain 4 6 w(K(5)) < 2(r3,5 + r4,5) = 2(5− r3,4) and r3,4 < 3, a contradiction.
So, suppose that r = 6. If r3,4 > 4, Claim 7 implies w(K(5)) < 2(6 − r3,4) 6 4,

hence, by Claim 5, n > 15. By Claim 2, we have c2 > 18, r̃ =
2∑

l=1

(rl,3 + rl,4 + rl,5) >

18 − w and, as w(K(1, 5)) + w(K(2, 5)) = r̃ + 2r3,4, there exists l ∈ [1, 2] with
w(K(l, 5)) > r3,4 + d 1

2 (18− w)e > 1
2 (26− w) > w, a contradiction.

Henceforth we assume that r3,4 = 3 (otherwise we are done). If n > 15, then,
by Claim 2, c2 > n + 3 > 18 and r̃ = c2 − w > 18 − 8 = 10. Moreover, 16 >
w(K(1, 5)) + w(K(2, 5)) = 2r3,4 + r̃ > 16, so that w(K(1, 5)) = w(K(2, 5)) = 8,
r̃ = 10, c2 = 18, n = 15, w = 8, r1,2 = 2, c3 = c3+ = 13. Claim 7 yields
r3 + r4 6 r3,4 + r = 9 and r5 6 2, hence r5 = r̃ − (r3 + r4) > 10− 9 = 1. If l ∈ [1, 2],
then w(K(l, 5)) = 8 by virtue of Claim 13 implies rl,5 6= 1, therefore there is l ∈ [1, 2]
with rl,5 = 2, r3−l,3 + r3−l,4 = 3, r3−l,5 = 0 and rl,3 + rl,4 = 5. Since r3,5 > 2,
from Claim 11 we know that rl,4 6 4 and rl,3 > 1. If rl,3 = 5 and rl,4 = 0, then
w(K(3 − l, 4)) > rl,3 + rl,5 + r3,5 > 5 + 2 + 2 = 9, a contradiction.
Thus, rl,3rl,4 > 0 and, by Claim 13, (r3−l,4 + r3−l,5 + r4,5 + r3−l,4,5) + (r3−l,3 +

r3−l,5 + r3,5 + r3−l,3,5) = 6 + r3−l,3,5 + r3−l,4,5 6 12 and r3−l,3,5 + r3−l,4,5 6 6.
Consider a colour α ∈ R1,2. Clearly, all positions in [3, 5] × Sα are occupied by
six distinct colours of R. At least one colour of Rl,5, say β, is out of Sα, therefore

s
(2)
3,4 = 2, s3,4 = 4 and S3,4 = Sα∪Sβ . Because of connections Rl,5/(R3−l,3∪R3−l,4),
in {3 − l, 3, 4} × Sβ there are all three colours of R3−l,3 ∪ R3−l,4 (together with all

three colours of R3,4). We have Sl,5 ⊆ S3,4, and so connections Rl,5/(R3−l,3∪R3−l,4)
imply Sl,5 = Sβ . Consequently, S1,2 = Sα and r1,2,5(= r3−l,l,5) = 0, since all
places in {1, 2, 5} × S3,4 are filled in exclusively with colours of R1,2 ∪ Rl,5 ∪ R3,5 ∪
R4,5 ∪ R3−l,3 ∪ R3−l,4. From r3−l,l + (r3−l,3 + r3−l,4) + r3−l,5 = 2 + 3 + 0 = 5 and
rl,5 + r3−l,5 + (r3,5 + r4,5) = 2 + 0 + 3 = 5 we see that in both {3− l, 5}-rows there
are ten 3-colours. Since c3 = 13, at least seven 3-colours are in both {3− l, 5}-rows,
i.e. r3−l,l,5 + r3−l,3,5 + r3−l,4,5 = 0 + r3−l,3,5 + r3−l,4,5 > 7 in contradiction with
r3−l,3,5 + r3−l,4,5 6 6.
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If n 6 14, then, by Claims 5 and 7, 1 6 r5 6 2. Let us find a lower bound
for the number ĉ of colours of R3 ∪ R4 needing a column connection with (at least
one of) colours of R5: If rm,5 = 0 for some m ∈ [1, 2], then r3−m,5 ∈ [1, 2] and,
by Claim 5, ĉ = rm,3 + rm,4 > 2; on the other hand, if r1,5 = r2,5 = 1, then
ĉ = r3 +r4 = c2−w−r5 > 15−8−1−1 = 5. The number of colours missing in both
[3, 4]-rows is r1,2+r1,5+r2,5+r1,2,5 = 2n+a+1−(2n−t3,4) > r3,4+a+1 = a+4 > 5.
Since r3,4 = 3, all colours of Ṙ := R1,2 ∪ R1,5 ∪ R2,5 ∪ R1,2,5 must have at least two
exemplars in {1, 2, 5} × S3,4. Consider a colour α ∈ R1,2; clearly, all positions in

[3, 5]× Sα are filled in with colours of R, and so s3,4 ∈ [4, 5] (three positions outside
of [3, 5]× Sα are occupied by colours of R3,4).

If s3,4 = 4, then in [1, 5] × S3,4 there are at least 2|Ṙ| > 10 places occupied by
colours of Ṙ and at least r + r3,4 = 9 places occupied by colours of R, hence at most
one position can be occupied there by a colour of R3∪R4 in contradiction with ĉ > 2
(note that any colour of R5 has both its exemplars in {1, 2, 5}× S3,4).

If s3,4 = 5, then s
(2)
3,4 = 1, S(2)

3,4 ⊆ Sα and r1,2 + r1,5 + r2,5 6 2, because any colour

of R1,2 ∪R1,5 ∪R2,5 must be present in [1, 2]×S
(2)
3,4 ; thus we have r1,2 = r3−m,5 = 1,

rm,5 = 0 and r1,2,5 > 3. Consequently, 14 > w(K(1, 5)) + w(K(2, 5)) = 2r3,4 + r̃ =
6+(c2−w) > 6+15−7 = 14 and w(K(3−m, 5)) = 7, ĉ = rm,3+rm,4 = 3. Evidently,
an exemplar of a colour of R3−m,5 in an S

(2)
3,4-column does not provide connections

with Rm,3 ∪ Rm,4 (in that column there are only colours of R1,2 ∪ R3−m,5 ∪ R) and

all three connections are realized in the unique remaining S3−m,5-column (that is
not an Sα-column); however, this is impossible, as colours of R1,2 ∪ R3−m,5 ∪ R1,2,5

occupy in {1, 2, 5}× S3,4 − ({5}× Sα) at least 2 · 2 + 3 · 3 (and so all) positions. �

Claim 16. If r1,2 ∈ [1, 2], α ∈ R1,2, i ∈ [3, 5], β, γ ∈ Ri and Sα ∩ (Sβ ∪ Sγ) = ∅,
then Sβ ∩ Sγ 6= ∅.
���������

of Claim 16. Let {j, k} = [3, 5]− {i} and consider a colour δ ∈ Rj,k 6= ∅
(Claim 15). Because of connections with β and γ, we have Sδ 6= Sα and an (Sδ−Sα)-
column contains both β and γ. �

Claim 17. If r1,2 = 2, then s1,2 = 2.
���������

of Claim 17. If R1,2 = {α, β}, we may suppose without loss of generality
that α is in (1,1) and (2,2). Put S := S3,4 ∪ S3,5 ∪ S4,5.

If Sα ∩ Sβ = ∅ (or, equivalently, s1,2 = 4), it follows from r > 5 that all colours
of R must have one exemplar in an Sα-column and the other in an Sβ-column and,
consequently, S ⊆ Sα ∪ Sβ . Any colour of C2 −R1,2 −R has one exemplar in one of

the [1, 2]-rows and another one in an i-row, i ∈ [3, 5]; if {i, j, k} = [3, 5], this colour
needs connections with the set Rj,k 6= ∅ (Claim 15), and therefore must have at least
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one exemplar in an Sj,k-column, and hence in an S-column. Colours of R1,2 ∪ R

have both their exemplars in the S-columns, and so, with help of Claims 3 and 9,
15 + 7 6 c2 + w = 2(r1,2 + r) + (c2 − r1,2 − r) 6 5|S| = 20, a contradiction.
If s1,2 = 3, we may assume without loss of generality that β occupies the positions

(1,3) and (2,1). Clearly, all colours of R that are not in the 1-column must share
both [2, 3]-columns.
If three colours of R share the [2, 3]-columns, it is easily seen that, for any i ∈ [3, 5]

and j ∈ [3, 5] − {i}, there is a colour µ ∈ Ri,j with Sµ = [2, 3]; if {i, j, k} = [3, 5],
then, because of a connection with µ, any colour of Rk must have an exemplar in
{(1, 2), (2, 3)}. Therefore, r̃ = r3 + r4 + r5 6 2 and c2 = r1,2 + r + r̃ 6 2 + 6 + 2 in
contradiction with Claim 3.

Thus, we see that exactly two colours of R share the [2, 3]-columns, r = 5 and
r4,5 = 1. If the colours in the [2, 3]-columns are not both from R3,4 or R3,5, then there
are i, j, k ∈ [3, 5] such that {i, j, k} = [3, 5] and the [2, 3]-columns share exactly one
colour of Ri,j and exactly one colour of Ri,k. Because of connections with Ri,j (with
Ri,k), any colour of Rk (of Rj) must occur in the [2, 3]-columns, and so rj + rk 6 4.
For a colour γ ∈ Rj,k (by Claim 15, rj,k > 1) we have Sγ = {1, l}, l ∈ [2, n]. Any
colour of Ri must be in {1, 2, i}× {l} (it needs a connection with γ), and so ri 6 3.
As a consequence, c2 = r1,2 + r + r̃ 6 2 + 5 + (4 + 3) = 14 in contradiction with
Claim 3.

What remains is the following possibility: the [2, 3]-columns share both colours of
R3,i with i ∈ [4, 5] and the 1-column is filled in with colours of R1,2 ∪ R3,9−i ∪ R4,5.

By Claim 7, max{r4, r5} 6 3. Moreover, because of a connection with the unique
colour of R4,5, all colours of R3 must appear in a unique (S4,5 − {1})-column so
that r3 6 3, too. Claim 3 yields r̃ = r3 + r4 + r5 = c2 − w > 15 − 7 = 8, hence
min{rj : j = 3, 4, 5} > 2 and at most one of the numbers r3, r4 ,r5 is 2. Furthermore,
c2 = w + r3 + r4 + r5 6 7 + 3 + 3 + 3 = 16, and so n ∈ {7, 9} (Claim 2) and a > 1.
We have S3,9−i ∩ S4,5 = {1}: if an l-column, l ∈ [2, n], contains a colour of R3,9−i

and a colour of R4,5, it contains all colours of R3, Ri and R4,5, altogether at least

(r3 + ri) + r4,5 + 1 > 5 + 1 + 1 = 7 colours, a contradiction. Thus, we may suppose
without loss of generality that S3,9−i = {1}∪ [4, s3,9−i +2] and S4,5 = {1, s3,9−i +3}
(note that the “rectangle” {9 − i} × [2, 3] is free of colours of R3,9−i ∪ R4,5, since
min{r3, ri} > 2).
If s3,9−i = 3, then, since all connections of a colour γ ∈ Ri with R3,9−i are realized

out of the 1-column, we have S1,i∪S2,i = [4, 5], and so ri = 2, r3 = r9−i = 3, c2 = 15
and n = 9. Because of connections with R4,5, all three colours of R3 are in [1, 3]×{6}.
At least one of colours of R3 in [1, 2]×{6}, say δ in (l, 6), l ∈ [1, 2], is out of {3}×[4, 5]
(one position in {3}× [4, 5] is occupied by a colour of R3,9−i). Because of connections
δ/Ri we have Ri = Rl,i. Clearly, Sδ ⊆ [6, 9] and Sδ ∩ Sl,i = ∅. As r9−i = 3, we have
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r3−l,9−i > 1. For a colour ε ∈ R3−l,9−i, ε1 situated in {3− l, 9− i} × [2, 3] provides
no connections with {δ} ∪Rl,i; however, Sδ ∩ Sl,i = ∅ means that ε2 cannot provide
all connections with {δ} ∪ Rl,i.

If s3,9−i = 2, then S3,9−i = {1, 4} and S4,5 = {1, 5}. If a colour µ ∈ R̃ appears

in [1, 2] × [6, n], all its connections with R are realized by µ2. Therefore, µ2 must
occupy one of the positions in the set S̃ := {(9 − i, 2), (9 − i, 3), (i, 4), (3, 5)}. Let
C̃ be the set of colours of R̃ appearing in [1, 2]× [6, n]. Since r̃ > 8, we have |C̃ | > 2.
Suppose first that there is a 3-element set C̃ ′ ⊆ C̃ such that its colours occupy

three positions in S̃ forming an independent set of vertices in the graph K5 × Kn

corresponding to A. Then, clearly, all connections between the colours of C̃ ′ are

provided by exemplars of C̃ ′ in [1, 2] × [6, n], and this is possible only if those ex-
emplars share an m-row, m ∈ [1, 2]. By Claim 5, w(K(3 − m)) > 4 and, since in
{3−m} × [6, n] there are no 2-colours (such a 2-colour would miss at least one con-
nection with C̃ ′), in {3−m} × [2, 5] there are at least two colours of R̃; hence some
of them, say γ, is such that γ2 does not occupy a position in S̃. Then γ2 does not
provide all connections γ/R so that, if γ ∈ Rj , j ∈ [3, 5] and {k, l} = [3, 5] − {j},
γ1 must be in a column containing (all) colours of Rk,l. There are altogether at most
three connections γ/C̃ ′ (one row connection and at most two column connections);

however, two of them are connections with the unique colour of C̃ ′ ∩ Rj , and so at
least one connection γ/C̃ ′ is missing.

So we see that |C̃ | 6 3 and, if |C̃| = 3, then two colours of C̃, say γ and δ, occupy
positions (9−i, 2) and (9−i, 3), respectively; a third colour ε ∈ C̃ occupies a position

of S̃ in one of the [4, 5]-columns. First, let |C̃ | = 3. If γ2, δ2 and ε2 share an m-row,
m ∈ [1, 2], consider two colours ζ, η ∈ R̃ occurring in {3−m} × [1, 5] (they do exist
by Claim 5, since a > 1 and in {3−m} × [6, n] there is no colour of R̃). Because of
connections {ζ, η}/({γ, δ} ∪ R), ζ2 and η2 appear in {9− i} × [6, n]. This, however,
is in contradiction with Claim 16 (possibly, if m = 2, with β in the role of a colour
of R1,2).
Now, suppose that δ2 and ε2 share an m-row, m ∈ [1, 2], and γ2 in the (3−m)-row

shares a column with ε2. Since r̃ > 8, at least three colours of R̃ are present in
the square [1, 2] × [4, 5]. Consider colours ζ, η ∈ R̃, occupying diagonal positions in

[1, 2]× [4, 5]. Evidently, because of connections {γ, δ}/{ζ, η}, ζ2 and η2 must appear
in the columns of γ2 and δ2 (in an appropriate way), and we have again obtained a

contradiction with Claim 16.

The only remaining possibility (with respect to connections γ/ε and δ/ε) is that

γ2 and ε2 share an m-row, m ∈ [1, 2], and δ2 in the (3 − m)-row shares a column
with ε2; this is solved analogously as the preceding case.

Assume, finally, that |C̃| = 2. Then in [1, 2] × [2, 5] there are six colours of R̃,
r̃ = 8, c2 = 15, n = 9 and c3 = c3+ = 5. As five colours of C3 occupy 8 − 2 = 6
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positions in [1, 2]× [6, 9], at least one of them, say γ, appears twice in that rectangle.

Because of connections γ/R, γ3 (the third exemplar of γ) must be in S̃.

Let F̃ be the set of six colours of R̃ appearing in [1, 2] × [2, 5] and let an F̃ -pair

be a pair of colours {µ, ν} ⊆ F̃ such that the positions of µ1 and ν1 correspond to
nonadjacent vertices of K5 ×Kn. The number of F̃ -pairs is 3 · 3− 2 = 7. Note that
if {µ, ν} is an F̃ -pair, then, by Claim 16 (possibly with β in the role of α) there is a
column connection µ/ν. Let F̃1 be the set of those µ ∈ F̃ that µ2 is in [3, 5]× [2, 5];
clearly, |F̃1| 6 2.
Consider an l-column, l ∈ [2, 5], containing p colours of F̃1, p ∈ [1, 2]. If p = 1, the

number of column connections corresponding to an F̃ -pair that are realized in the

considered column is at most 1. If p = 2, that number is at most 3. On the other
hand, if an m-column, m ∈ [6, 9], contains q colours of F̃ , in that column at most(
q
2

)
column connections corresponding to an F̃ -pair are realized.

Therefore, if |F̃1| = 2, the total number of column connections corresponding to
an F̃ -pair is at most 3+

(
3
2

)
+

(
1
2

)
= 6, which is insufficient, as seven such connections

should be present. If |F̃1| = 1, that number is at most 1+
(
3
2

)
+

(
2
2

)
= 5 < 7. Finally,

for |F̃1| = 0 we have an upper bound 2 ·
(
3
2

)
= 6 < 7. �

Consider a colour α ∈ R1,2. A 3-element set {β, γ, δ} of colours of Ri, i ∈ [3, 5],
is said to be an α-appropriate triple, if Sβ ∩ Sγ ∩ Sδ 6= ∅ (i.e., the colours β, γ, δ

share a column) and Sα ∩ (Sβ ∪ Sγ ∪ Sδ) = ∅ (i.e., there are no column connections
α/{β, γ, δ}).

Claim 18. If r1,2 ∈ [1, 2] and α ∈ R1,2, then there is an α-appropriate triple.

���������
of Claim 18. We may suppose without loss of generality that α is in

(1, 1) and (2, 2). If r1,2 = 2, then, by Claim 17, the square [1, 2]×[1, 2] is filled in with
colours of R1,2. Claim 3 yields 15 6 c2 = 2 + r + r̃, hence r̃ = r3 + r4 + r5 > 13− r.

By Claims 9 and 13, we have r ∈ [5, 6].
If r = 6, there is i ∈ [3, 5] with ri = 3. Let {j, k} = [3, 5] − {i}; since the [1, 2]-

columns are filled in with colours of R1,2 and R, all connections Ri/Rj,k are realized

in the [3, n]-columns. Therefore, an l-column, l ∈ [3, n], containing a colour of the
(non-empty) set Rj,k, contains also colours of Ri. Thus, Ri is an α-appropriate

triple.

Now, suppose that r = 5 (and r̃ > 8). If there is i ∈ [3, 5] with ri > 4, there is a
3-element subset of Ri representing an α-appropriate triple, since at most one colour
of Ri is present in an Sα-column. On the other hand, if there are i, j ∈ [3, 5], i 6= j,

with ri = rj = 3, then at least one of the sets Ri and Rj is an α-appropriate triple.

If r1,2 = 1 (and r = 6), we have r̃ > 15 − 1 − 6 = 8. By Claim 15, r3,4 = r3,5 =
r4,5 = 2, hence Claim 7 yields ri 6 (2 + 2) − 1 = 3, i = 3, 4, 5. Thus, there are
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i, j, k ∈ [3, 5] such that {i, j, k} = [3, 5], ri = rj = 3 and rk ∈ [2, 3]. There are
only two positions that can prevent a 3-element set Rl, l ∈ [3, 5], from being an
α-appropriate triple (by carrying a colour of Rl), namely (1, 2) and (2, 1) (because
of connections Rl/R).

Therefore, it is sufficient to deal with the case when rk = 2 (implying c2 = 15,
n = 9 and c3 = c3+ = 5), the position (1, 2) is occupied by a colour β ∈ Ri and
the position (2, 1) by a colour γ ∈ Rj . Clearly, β2 and γ2 must share a column (a

connection β/γ), without loss of generality the 3-column. Because of connections
with β and γ, both colours δ, ε ∈ Rk are in {1, 2, k}×{3}. In the 3-column there are
no colours of Ri,j , and so connections {δ, ε}/Ri,j are realized by δ2 and ε2 in a column,
without loss of generality in the 4-column. If Ri = {β, ζ, η} and Rj = {γ, ϑ, ι}, then,
because of connections {δ, ε}/{ζ, η, ϑ, ι} (that can be realized only by exemplars of
ζ, η, ϑ, ι in the [1, 2]-rows), it is clear that δ and ε must share an l-row, l ∈ [1, 2]
(otherwise, if δ and ε occupy diagonal positions in [1, 2]×[3, 4], only the remaining two
positions in that square provide both connections with δ and ε). We may assume

without loss of generality that that δ1 is in (l, 3) and ε2 in (l, 4). By Claim 5,
w(K(3 − l)) > 4 and so at least two of the colours ζ, η, ϑ, ι must be present in the

(3 − l)-row. Therefore, using Claim 16, we see that the “rectangle” {3 − l} × [3, 4]
is filled in with one colour of {ζ, η}, say ζ, and one colour of {ϑ, ι}, say ϑ. Then,

evidently, all connections ζ/Rj,k are realized by ζ2 (without loss of generality in
(i, 5)), and all connections ϑ/Ri,k by ϑ2 (without loss of generality in (j, 6)). So, with
an additional use of Claim 16, the 5-column contains all four colours of {ζ, η}∪Rj,k,
and the 6-column all four colours of {ϑ, ι}∪Ri,k. Thus, all six positions in [1, 2]×[7, 9]
are occupied by 3-colours, and at least one of them, say κ, has two its exemplars in
that rectangle. Since κ3 is in [3, 5]× [7, 9], two of connections κ/R are missing. �

Claim 19. r1,2 = 0 and, consequently, r3,4 > 3.

���������
of Claim 19. If r1,2 ∈ [1, 2] and α ∈ R1,2, by Claim 18 there is i ∈

[3, 5] and an α-appropriate triple {β, γ, δ} ⊆ Ri. We may suppose without loss of
generality that α is in (1, 1), (2, 2), β in (1, 3), (i, 4), γ in (2, 3), (i, 5) and δ in
(i, 3) (δ2 is unimportant for the moment). We suppose also that {β, γ, δ} maximizes
the number of colours of R in the unique common column of its colours among all
possible α-appropriate triples.

Consider the set B := {j, k} × [6, n], where {j, k} = [3, 5] − {i}. Let bR be the

number of colours of R in B and, for l ∈ [1, 2] and m ∈ [2, 5], let b
(l)
m be the number

of colours in Cm − R1,2 − R that appear l times in B. We have b
(1)
2 + b

(2)
3 6 2: to

have all connections with R1,2 ∪ {β, γ}, all colours contributing to b
(1)
2 + b

(2)
3 must

have an exemplar in (1, 5) or (2, 4). Further, b(2)
2 = 0 (a connection with α). As a
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consequence, the number of positions in B is 2(n − 5) = bR +
5∑

l=2

b
(1)
l + 2

5∑
l=3

b
(2)
l 6

bR +(b(1)
2 +b

(2)
3 )+c3+2c4+3c5 6 bR +2+

5∑
l=2

(l − 2)cl = bR +2+5n−2(2n+a+1) =

bR + n− 2a. Thus, we have bR > n + 2a− 10 > 1.

For a set Q ⊆ [3, 5] × [1, n], let q(Q) be the number of positions in Q occupied

by colours of R̃ = C2 − R1,2 − R. Let us show that q(B) = b
(1)
2 6 1. Suppose that

b
(1)
2 = 2 and that colours ε, ζ ∈ R̃ contribute to b

(1)
2 . Then ε2 and ζ2 occupy the

positions (1, 5), (2, 4) and ε1, ζ1 must be in a common line of A. By Claim 16, this
line must be a column, without loss of generality the 6-column. Now, any colour of R
realizes its connection with one of the colours β, ε, ζ in a column (those three colours
cover all the [3, 5]-rows), and so (S3,4 ∪ S3,5 ∪ S4,5) − [1, 2] ⊆ Sβ ∪ Sε ∪ Sζ = [3, 6].
This inclusion, however, means that bR = 0 (note that in {j, k}× {6} ⊆ B there are
ε1 and ζ1), a contradiction.

Put q1 := q([3, 5] × [1, 2]), q2 := q({j, k} × {3}) and q3 := q({i} × [6, n]). We are
going to prove that q1+q2+q3+q(B) 6 9−r1,2−r. First, since all connections of the

α-appropriate triple {β, γ, δ} with any colour of Rj,k are realized in the 3-column,
we have q2 6 2− rj,k = 2 + ri,j + ri,k − r 6 2 + 2 + 2− r = 6− r (Claim 15).

Suppose that r = 6 and, consequently, r3,4 = r3,5 = r4,5 = 2. A colour con-
tributing to q3 needs connections with Rj,k, and they can be realized only in the
[1, 2]-columns (clearly, the 3-column is of no use). However, not more than one of
the [1, 2]-columns contains both colours of Rj,k, so that q3 6 2−r1,2 (for r1,2 = 2 use
Claim 17). Altogether, we obtain q1+q2+q3+q(B) 6 0+0+(2−r1,2)+1 = 9−r1,2−r.

If r = 5, then r1,2 = 2 (Claim 9) and q3 = 0 (as above). Since q1+q2+q(B) 6 1+1+
1, to prove our inequality it suffices to find a contradiction if q1 = q2 = q(B) = 1. So,
suppose that q1, q2, q(B) are all 1’s, and that ε, ζ and η are colours of R̃ contributing
to q1, q2 and q(B), respectively; we may assume without loss of generality that η1 is

in (j, 6) (the only assumption imposed on j, k so far is {j, k} = [3, 5]−{i}). Evidently,
q2 = 1 means that rj,k = 1 and ri,j = ri,k = 2.

Suppose first that ε1 is not in the i-row. Since ε and η need connections both

with β and γ, ε2 and η2 must occupy positions (l, 6− l) and (3− l, 3+ l), respectively,
for some l ∈ [1, 2]. Therefore, ε1 and η1 must share the j-row (a connection ε/η),

and ε1 is in (j, m) for some m ∈ [1, 2]. Now, ζ1 cannot be in (k, 3): in such a case
ζ2 is in (l, 6) (connections with ε and η), and ζ misses a connection with at least

one colour of Ri,j (in the 3-column there is no such colour and in (j, 6) there is η1).
Thus, ζ1 is in (j, 3), and in (k, 3) there is a colour ϑ ∈ Rj,k. So, ϑ2 is in (j, 3 − m),
and a colour ι in (k, 3−m) belongs to Ri,k. Hence, ι2 is in (i, p) with p ∈ [6, n], and
a connection ε/ι is missing.
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Now, assume that ε1 is in (i, l) for some l ∈ [1, 2]. If ζ1 is in (j, 3), then, by
Claim 16, Sζ ∩Sη 6= ∅. Clearly, there is only one column shared by ζ and η, and that
column must contain both colours of Ri,k; hence, it must be the 6-column. Because
of connections Rj/Ri,k, we have rj 6 3. However, rj = 3 is impossible: in such a
case Rj would be an α-appropriate triple with ri,k = 2 colours of R in a column
shared by colours of Rj in contradiction with the fact that {β, γ, δ} has only rj,k = 1
colour of R in “its” 3-column; so, rj 6 2. Further, rk 6 2, since k-row exemplars
of Rk can only be in {k} × [4, 5] (recall that q2 = 1 is realized by ζ1 and q(B) = 1
by η1). Claim 7 yields ri 6 4 so that ri = 4, rj = rk = 2, c2 = 15 and, by Claim 2,
n = 9, c4+ = 0 and c3 = c3+ = 5. Moreover, in (k, 4) and (k, 5) there are colours
of Rk, say ϑ and ι, respectively. Also, ζ2 is in (p, 6) for some p ∈ [1, 2] (connections
{ζ, η}/Ri,k). Neither ϑ2 nor ι2 can be in (3 − p, 6) (in the 6-column there is no
colour of Ri,j and, considering β in (i, 4) and γ in (i, 5), both ϑ1 and ι1 provide at
most one connection with Ri,j). That is why, because of connections {ϑ, ι}/{β, γ, ζ},
ϑ2 must be in (p, 5) and ι2 in (p, 4). Now, η2 must be in (3 − p, 3 + p) (connections
η/{β, γ}). Moreover, the “rectangle” {j} × [4, 5] must be filled in with colours of
Ri,j (connections {ϑ, ι}/Ri,j), and in {j, k}× [7, 9] there are only 3-colours. However,
c3 = 5, at least one 3-colour, say κ, has two exemplars in {j, k} × [7, 9], and at least
one of connections β/κ, γ/κ is missing: in (p, 6 − p) there is either ϑ2 or ι2, and in
(3− p, 3 + p) there is η2.

Finally, suppose that ζ1 is in (k, 3). Then, because of a connection ε/Rj,k, in (k, l)
there is the unique colour of Rj,k, hence in {i, k}× {3− l} there are both colours of
Ri,k and in {j}× [1, 2] there are both colours of Ri,j . The remaining Ri,j -exemplars
are in {i} × [6, n], and so there is µ ∈ Ri,j such that a connection ζ/µ is missing.

Using the just proved inequality q1 + q2 + q3 + q(B) 6 9 − r1,2 − r we obtain
r̃ = c2− r1,2− r = q([3, 5]× [1, n]) = (q1 + q2 + q3 + q(B))+ q({i}× [3, 5])+ q({j, k}×
[4, 5]) 6 (9 − r1,2 − r) + 3 + q({j, k} × [4, 5]), hence q({j, k} × [4, 5]) > c2 − 12 > 3
(Claim 3). Thus, at most one position in {j, k} × [4, 5] is not occupied by a colour
of R̃. We may suppose without loss of generality that there is l ∈ [4, 5] such that in
(j, l), (k, l) and (j, 9 − l) there are colours of R̃, say ε, ζ and η, respectively. Since
ζ needs connections with Ri,j , ζ2 cannot be in the (9 − l)-column (in {i, j} × [4, 5]
there are β, γ, ε1, η1 /∈ Ri,j). Therefore, ζ2 must be in the (6 − l)-row (connections
ζ/{β, γ}); we may suppose without loss of generality that ζ2 is in (6− l, 6). Clearly,
η2 is not in [1, 2]× [7, n] (connections η/{β, γ, ζ}). Thus, η2 is either in the l-column
or in the 6-column.
If η2 is in the l-column, all colours of Ri,k are in the [4, 5]-columns; however,

there is only one “free” place for them, namely (k, 9 − l). Thus, ri,k = 1, ri,j =
rj,k = 2 (Claim 15), {j, k}×{3} is filled in with colours of Rj,k (connections β/Rj,k),
{i, j} × {6} is filled in with colours of Ri,j (connections ζ/Ri,j), r1,2 = 2 (Claim 9),

978



and q3 = 0 (as above). Since 8 = 15 − 2 − 5 6 c2 − r1,2 − r = r̃ = q1 + (q([3, 5] ×
[3, 5]) + q3) + q(B) 6 q1 + (6 + 0) + q(B) 6 1 + 6 + 1 = 8, we have q1 = q(B) = 1,
c2 = 15, n = 9 and c3 = c3+ = 5. Let ϑ and ι be colours contributing to q1 and q(B),
respectively. Now, ι /∈ Rj : the assumption ι ∈ Rj means that ι1 is in {j} × [7, 9], ι2
is in (l−3, 9− l) (connections ι/({β, γ}∪Ri,k)), and a connection ζ/ι is missing. So,
ι1 is in (k, 6) (connections ι/Ri,j). Then in {j, k} × [7, 9] there are only 3-colours,
and at least one of them, say κ, appears there twice. Consider the distribution of
colours in [3, 5] × [1, 2]. Colours of Ri,j occupy in that rectangle one i-row position

and one j-row position (they are both in the 6-column). Analogously, colours of Rj,k

occupy there one j-row position and one k-row position. Finally, the unique colour

of Ri,k in [3, 5] × [1, 2] is in {i} × [1, 2] (it is also in (k, 9 − l)). Thus, ϑ1 is in the
k-row. Now, for two positions (1, 5) and (2, 4), providing both connections with β

and γ, there are three “candidates”, namely ϑ2, ι2 and κ3.

If η2 is in the 6-column, the only available position for it is (l−3, 6). By Claim 16,
ε2 is in the “rectangle” [1, 2] × {9 − l}. Therefore, ri,k = 2 is impossible: in such a
case colours of Ri,k would fill in the “rectangles” {k} × [5, 6] (connections η/Ri,k)
and {i} × [1, 2], and at least one of connections ε/Ri,k would be missing.

Thus, ri,k = 1, ri,j = rj,k = 2 (Claim 15), r1,2 = 2 (Claim 9), the square [1, 2] ×
[1, 2] is filled in with colours of R1,2 (Claim 17), the set {j, k} × {3} is filled in with
colours of Rj,k (connections β/Rj,k), and the set {i, j}× {6} is filled in with colours
of Ri,j (connections ζ/Ri,j).

Clearly, in {i} × [7, n] there are no colours of Ri (connections Ri/Rj,k) and in
{k}×[7, n] there are no colours of Rk (connections Rk/Ri,j). Further, if in {j}×[7, n]
there is a colour of Rj , say ϑ, then ϑ2 must be in [1, 2] × {9 − l} (Claim 16) and,
because of connections ϑ/{β, γ}, it must be in (l − 3, 9 − l). Then, however, a
connection ϑ/ζ is missing.

So, any colour of R̃ = Ri ∪ Rj ∪ Rk has an exemplar in [3, 5] × [1, 6], hence
r̃ 6 3 · 6 − 2r = 8, c2 = w + r̃ 6 7 + 8, c2 = 15, n = 9, c3 = c3+ = 5, r̃ = 8, and in
[3, 5]× [1, 6] there are exclusively colours of R∪ R̃. From ri,j = rj,k = 2 and ri,k = 1
we see that ri = rk = 3 and rj = 2. The rectangle [3, 5] × [1, 2] cannot contain
both exemplars of a colour of Ri,k (it would have no connections with Rj). Also,

that rectangle does not contain a colour of Ri = {β, γ, δ}. Therefore, it contains five
colours of R and a colour of Rk, say ϑ. Consequently, Rk = {ζ, ϑ, ι}, where ι occupies

the position (k, 6) (connections ι/Ri,j). Because of connections {β, γ}/{ϑ, ι}, ϑ2 and
ι2 must occupy both places in {(1, 5), (2, 4)}. Now, the rectangle [1, 2]×[7, 9] contains
no 2-colour: since Rk = {ζ, ϑ, ι}, it could be only a colour of Ri ∪ Rj , but such a
colour would miss one of the connections with ϑ and ι. Because of c3 = c3+ = 5 that
rectangle contains two exemplars of a 3-colour, say κ. As κ3 appears in the square
[3, 5]× [7, 9], at least one of the connections κ/R is missing.
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As all possibilities with r1,2 ∈ [1, 2] lead to a contradiction, to conclude the proof
of the claim it is sufficient to use Claim 10. �

Claim 20. If i ∈ [1, 5], then w(K(i)) > 3a + 3.
���������

of Claim 20. From the definition it immediately follows that w(K(i)) =
c2 − w(K(i)). Since w(K(i)) 6 n, with help of Claim 2 we obtain w(K(i)) >
(n + 3a + 3) − n = 3a + 3. �

Claim 21. Let {i, j, k} = [3, 5], 3 6 min{ri,j , ri,k} 6 max{ri,j , ri,k} 6 4 and
l ∈ [1, 2]. If ri,j = ri,k = 4, then rl,jr3−l,k = 0. If ri,j + ri,k 6 7 and rl,jr3−l,k > 0,
then rl,j + r3−l,k + ri,j + ri,k 6 9 and, for any α ∈ Rl,j and β ∈ R3−l,k, a connection

α/β is realized in a column containing at least one colour of Ri,j and at least one

colour of Ri,k.

���������
of Claim 21. Suppose that the sets Rl,j and R3−l,k are both non-empty

and consider colours α ∈ Rl,j , β ∈ R3−l,k.

If ri,j = ri,k = 4, because of the connections Rl,j/Ri,k (realized in columns of A)
each Sα-column must contain two colours of Ri,k; analogously, any Sβ-column con-

tains two colours of Ri,j . As a consequence, the sets Sα and Sβ are disjoint (note
that any column of A has at most three colours of R) and there is no connection

α/β in A, a contradiction.

Now, assume that ri,j + ri,k 6 7. A connection α/β is realized in a p-column,
p ∈ [1, n]. Since min{ri,j , ri,k} > 3, the p-column contains at least one colour of Ri,j ,

at least one colour of Ri,k, and altogether at least ri,j +ri,k −4 colours of Ri,j ∪Ri,k :
α2 can realize at most two connections α/Ri,k and β2 at most two connections β/Ri,j .

Thus, if ri,j + ri,k = 7, the “rectangle” [3, 5] × {p} is filled in with colours of
Ri,j∪Ri,k. If {q} = Sα−{p}, then the q-column does not have an analogous property,
as it has in (j, q) the colour α; therefore, it cannot provide any connection Rl,j/R3−l,k.

The same is true for the unique (Sβ − {p})-column, so that rl,j = r3−l,k = 1 and
rl,j + r3−l,k + ri,j + ri,k = 9.
Now, suppose that ri,j = ri,k = 3. If all connections Rl,j/R3−l,k are realized in the

p-column, then rl,j +r3−l,k 6 3 and rl,j +r3−l,k+ri,j +ri,k 6 9. If {q} = Sα−{p} and
the q-column provides a connection α/γ for a colour γ ∈ R3−l,k − {β}, which is not
realized in the p-column, then three positions in [3, 5]×{p, q} are occupied by colours
of Ri,k, two by colours of Ri,j (one in the p-column and the other in the q-column),

and one position is occupied by the colour α. Further, in [1, 2] × {p, q} there are
colours α, β, γ. That is why Sβ ∩Sγ = ∅ (β2 and γ2 are in the k-row), four places in

[3, 5] × ((Sβ ∪ Sγ) − {p, q}) are occupied by colours of Ri,j , and two by the colours
β, γ. So, Si,j = Sβ ∪ Sγ and, besides colours of Ri,j , the set {i, j} × Si,j contains
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α and one colour of Ri,k. Therefore, rl,j = 1 and r3−l,k = 2: a colour of Rl,j − {α}
would miss at least one of connections with β and γ , and a colour of R3−l,k −{β, δ}
would miss a connection with α. As a consequence, rl,j + r3−l,k + ri,j + ri,k = 9.
Similarly, if the unique (Sβ − {p})-column provides a connection β/δ for a colour

δ ∈ Rl,j , we obtain rl,j = 2, r3−l,k = 1 and rl,j + r3−l,k + ri,j + ri,k = 9. �

Claim 22. w 6 n− a− 1, and the equality can apply only if c2 = n + 3a + 3 and
c3 = c3+ = n− a− 2.
���������

of Claim 22. Using successively Claims 19 and 5, we obtain w = r =
c2−w(K(1))−w(K(2)) 6 c2−2(n−c3+) = (c2+c3+)+c3+−2n = (2n+a+1)+c3+−2n

and then, by Claim 2, w−a− 1 6 c3+ 6 n− 2a− 2 so that w 6 n−a− 1. If the last
inequality turns into equality, then c3+ = n−2a−2, c2 = (2n+a+1)−(n−2a−2) =
n + 3a + 3 and, with help of Claim 2, c4+ = 0 and c3 = c3+. �

Claim 23. w > d 1
3 (c2 + 2r3,4)e > d 1

3 (n + 3a + 3 + 2r3,4)e.
���������

of Claim 23. By the choice of K(1, 2) we have 3w > w(K(1, 2)) +

w(K(1, 5)) + w(K(2, 5)) =
4∑

i=1

5∑
j=i+1

ri,j + 2r3,4 > n + 3a + 3 + 2r3,4 where, for the

last inequality, we have used Claim 2. �

Claim 24. r3,5 6 4.
���������

of Claim 24. Suppose that r3,4 = r3,5 = 5. Then, successively by
Claims 11, 4 and 2, r1,4 = r2,4 = r1,5 = r2,5 = 0, a = 0 and c2 > n + 3 > 18,
hence c2 = w(K(3)) + r4,5 and, as w(K(3)) 6 n, r4,5 > 3. Now Claim 14 yields
r̂ := r4,5 + r1,3 + r2,3 6 8 so that 18 6 c2 = (r3,4 + r3,5) + r̂ 6 2 · 5 + 8, c2 = 18,
n = 15, r̂ = 8 and, by Claim 14 again, r4,5 = r1,3 + r2,3 = 4. From Claim 11 it
follows that the sets S3,4, S3,5, S4,5 are pairwise disjoint. On the other hand, from
r4,5 = 4 we see that |S4,5| > 4. Thus, n > |S3,4|+ |S3,5|+ |S4,5| = 2 · 6 + |S4,5| > 16,
a contradiction. �

Claim 25. r4,5 > 1.
���������

of Claim 25. Suppose that r4,5 = 0. Since w > 7, we have r3,4 ∈ [4, 5].
If r3,4 = 5, then, by Claims 4 and 23, w > d 1

3 (15 + 3 · 0 + 3 + 2 · 5)e = 10, hence
r3,5 = 5 in contradiction with Claim 24. If r3,4 = 4, Claims 23 and 3 imply w >
d 1

3 (c2 + 2 · 4)e > d 23
3 e = 8 so that r3,5 = 4, w = 8, c2 6 16, n ∈ {7, 9} (see Claim 2)

and a > 1. However, Claim 22 yields w 6 n− a − 1 6 7, a contradiction. �

981



Claim 26. a = 1.

���������
of Claim 26. If a = 2, by virtue of Claims 19, 23 and 22 we obtain

1
3 (n + 15) 6 d 1

3 (n + 15)e 6 d 1
3 (n + 3 · 2 + 3 + 2r3,4)e 6 w 6 n− 2− 1, hence n > 12,

a contradiction.

So, suppose that a = 0. For k ∈ [0, 3], let t(k) be the number of colours appearing

k times in the [3, 5]-rows; then t := t3,4 + t3,5 + t4,5 = t(2) + 3t(3). From Claims 25

and 4 we obtain max{t3,4, t3,5, t4,5} 6 5 and t 6 15. As
3∑

k=0

t(k) = 2n + 1, we have

also 3n =
3∑

k=1

kt(k) 6
3∑

k=1

t(k) + t(2) + 3t(3) 6 (2n + 1) + t 6 2n + 16, n ∈ [15, 16] and

t > n − 1 > 14. Thus, we know that min{t3,4, t3,5, t4,5} > 4 and at least two of the
numbers t3,4, t3,5, t4,5 are 5’s.

First assume that there are i, j, k with {i, j, k} = [3, 5], Si,j∩Si,k 6= ∅ and, without
loss of generality, ti,j > ti,k (so that ti,j = 5). Consider colours α ∈ Ri,j and β ∈ Ri,k

present in an (Si,j ∩ Si,k)-column. We may suppose without loss of generality that
1 ∈ Sα ∩ Sβ ⊆ Si,j ∩ Si,k. Let ci,j (ci,k, respectively) be the number of colours in

{1, 2, k} × Sα (in {1, 2, j} × Sβ) that are missing in both {i, j}-rows ({i, k}-rows).
Because of connections with α all colours must be present either in one of the {i, j}-
rows or in {1, 2, k}×Sα. That is why 2n+1 = (2n−ti,j)+ci,j = 2n−5+ci,j , ci,j = 6,
and both colours in [1, 2]×{1}, say γ and δ, are out of the {i, j}-rows. By Claim 13
we have R1,2 = ∅, hence both γ and δ are in the k-row. Then, however, ci,k 6 4 (note
that both γ and δ are in one of the {i, k}-rows and in {1, 2, j}× {1} ⊆ {1, 2, j}×Sβ

as well), and 2n + 1 = (2n− ti,k) + ci,k 6 (2n− 4) + 4, a contradiction.

Henceforth we suppose that the sets S3,4, S3,5, S4,5 are pairwise disjoint. Using
Claim 24 we obtain w 6 5+2 ·4, hence r3+r4+r5 = c2−w > 18−13 = 5. If only one
of the numbers r3, r4, r5 is positive, say ri, and {i, j, k} = [3, 5], then ri > 5, Claim 12
yields rj,k 6 2, and consequently c2 = w(K(i)) + rj,k 6 n + 2 in contradiction with
Claim 2. Thus, we know that at least two of r3, r4, r5 are positive. Claim 23 leads
to the estimate r3,5 > d 1

2 (w − r3,4)e > d 1
2 ( 1

3 (18 + 2r3,4) − r3,4)e = d3 − 1
6r3,4e >

d3− 5
6e = 3.

Suppose first that r4r5 > 0 and consider colours α ∈ R4 and β ∈ R5. Since α needs
connections with r3,5 > 3 colours of R3,5 and any S3,5-column can provide at most

two such connections, we have Sα ⊆ S3,5; analogously, r3,4 > 3 implies Sβ ⊆ S3,4.
However, S3,4 ∩ S3,5 = ∅ and so the connection α/β is realized in an l-row, l ∈ [1, 2];
then, clearly, all colours of R4 ∪ R5 are in the l-row, and r3−l,4 = r3−l,5 = 0. By
Claim 5, w(K(3 − l)) = r3−l,3 > 2. A colour γ ∈ R3−l,3 needs connections with

α, β and R4,5, therefore all the sets Sγ ∩ Sα, Sγ ∩ Sβ , Sγ ∩ S4,5 are non-empty,
and |Sγ | > |Sγ ∩ (S3,4 ∪ S3,5 ∪ S4,5)| = |Sγ ∩ S3,4| + |Sγ ∩ S3,5| + |Sγ ∩ S4,5| >
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|Sγ ∩Sβ |+ |Sγ ∩Sα|+ |Sγ ∩S4,5| > 1 + 1 + 1 in contradiction with the fact that γ is

a 2-colour.

Thus, we may suppose that r3 > 0 and there is i ∈ [4, 5] such that ri > 0 and
r9−i = 0. Provided that r4,5 > 3, we repeat the above considerations leading to
a contradiction. Therefore, we assume that r4,5 ∈ [1, 2] (Claim 25). By Claim 2 we
have 18 6 c2 = r3 +ri +w 6 r3 +ri +5+r3,5 +2, hence r3 +ri +r3,5 > 11. Consider
a colour α ∈ R4,5.

If r1,ir2,i > 0, then any colour of Rl,3, l ∈ [1, 2], must have one exemplar in an
Sα-column (and hence in an S4,5-column) and the other in an S3,9−i-column: it

needs connections with R3−l,i, and r3,9−i > 3 implies S3−l,i ⊆ S3,9−i; note that the
obtained inclusion together with Claim 11 yield r3,9−i 6 4. The number of colours
of R3 with an exemplar in [1, 2]× S3,9−i is at most 2, since the second exemplar of
each such colour must be in {3} × Sα. On the other hand, the number of colours

of R3 with an exemplar in {3}×S3,9−i is at most 4−r3,9−i: if r3,9−i = 4 and µ ∈ Ri,
all four places in {3, 9− i}×Sµ are occupied by colours of R3,9−i; if r3,9−i = 3, then
a colour µ ∈ Ri must appear in an S

(2)
3,9−i-column, and so µ2 can provide a column

connection with a 3-row exemplar of a colour of R3 only if its column contains in the

(9−i)-row the last colour of R3,9−i. Thus, r3 = r1,3+r2,3 6 2+(4−r3,9−i) and, using
Claim 12, r3 + ri + r3,5 6 r3 + ri + r3,9−i = (r3 + r3,9−i) + (r1,i + r2,i) 6 6 + 4 = 10
in contradiction with r3 + ri + r3,5 > 11.
If r1,ir2,i = 0, there is l ∈ [1, 2] with rl,i > 0 and r3−l,i = 0. In such a case consider

a colour β ∈ Rl,i. Any colour of R3−l,3 has one exemplar in an Sα-column, Sα ⊆ S4,5,

and the other in an Sβ-column, Sβ ⊆ Sl,i ⊆ S3,9−i. As above, the number of colours
of R3−l,3 with an exemplar in {3} × S3,9−i is at most 4 − r3,9−i. The number of

colours of R3−l,3 with an exemplar in {3− l}×S3,9−i is at most 4− rl,3, because any
such colour as well as any colour of Rl,3 must have an exemplar in {l, 3}×Sα. Thus,

r3−l,3 6 (4 − r3,9−i) + (4 − rl,3). Since r3−l,i = r3−l,9−i = r3−l,l = 0, Claim 5 yields
r3−l,3 > 2. A colour γ ∈ R3−l,3 can realize its connections with Rl,i only in the unique

(Sγ ∩ S3,9−i)-column, hence rl,i 6 2. Using the last two inequalities containing the
symbol 6 we obtain r3 +ri +r3,5 6 r3 +ri +r3,9−i = (r3 +r3,9−i)+rl,i 6 8+2 = 10,
a contradiction. �

Claim 27. ri > 1, i = 3, 4, 5.

���������
of Claim 27. Suppose that ri = 0 and {i, j, k} = [3, 5]. If there are

l ∈ [1, 2] and p ∈ {j, k} with rl,p = 0, then, provided that {p, q} = {j, k}, Claim 5
with respect to rl,p = rl,3−l = 0 yields rl,q > 4. As a consequence, ri,p + r3−l,p 6 4
(Claim 12) and c2 = w(K(q)) + ri,p + r3−l,p 6 n + 4 in contradiction with Claim 2.
Thus, we may assume that r1,jr2,jr1,kr2,k > 0.
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Suppose first that the following condition (∗) is fulfilled: There are p ∈ {j, k}
and colours α ∈ R1,p, β ∈ R2,p such that α1, β1 share the p-row and α2, β2 share
a column. Let {p, q} = {j, k} and, without loss of generality, Sα = [1, 2], Sβ = {1, 3}.
By Claim 20, w(K(p)) = rq +ri,q > 6. Let Ĉ be the set of colours of Rq∪Ri,q having

an exemplar in {q}× [4, n]. If µ ∈ Ĉ , then µ2 must provide both connections with α

and β. However, in the {1, 2, i}-rows there are only three appropriate positions for
colours of Ĉ, namely (1,3), (2,2) and (i, 1). Therefore, |Ĉ| = 3, rq + ri,q = 6, and we
may assume without loss of generality that all positions in {q} × [1, 6] are filled in
with colours of Rq∪Ri,q . We have also rp +ri,p > 6. Clearly, each colour of Rp∪Ri,p

has an exemplar in {p} × [1, 6], since any position in the {1, 2, i}-rows provides at
most two connections with Ĉ ; consequently, rp + ri,p = 6. As r1,2 = r1,i = r2,i = 0,
2-colours occupy altogether 6+6=12 positions in the {1, 2, i}-rows. By Claim 2,
the number of places in A occupied by 2-colours is at least 2(n + 6), hence the
{p, q}-rows are filled in with 2-colours. Therefore, colours appearing in {p, q}× [7, n]
are there twice, i.e., rp,q = n − 6 6 4 (Claim 4) so that n = 9 (Claim 26) and
rp,q = 3. Thus, the set of colours missing in both {p, q}-rows is of cardinality
2n + a + 1 − (2n − tp,q) = tp,q + 2 = rp,q + 2 = 5. However, any colour of that set
must have two exemplars in {1, 2, i}× Sp,q = {1, 2, i}× [7, 9], a contradiction.

Now, suppose that (∗) is not fulfilled. Then any Sα-column with α ∈ Ri,j contains

at most two colours of Rk (and if two, one of them is in the k-row), and so rk 6
2 + 2 = 4. Analogously, analyzing the situation of a colour β ∈ Ri,k, we obtain

rj 6 4. On the other hand, by Claim 5, 4 6 rl,j + rl,k, l = 1, 2 and, consequently,
8 6 (r1,j + r1,k) + (r2,j + r2,k) = rj + rk 6 8, hence rj = rk = rl,j + rl,k = 4, l = 1, 2.
Furthermore, if Sα = {p, q}, all of the following four sets contain exactly two colours
of Rk: [1, 2]×Sα, {k}×Sα, {1, 2, k}×{p}, and {1, 2, k}×{q}. Similarly, if Sβ = {x, y},
exactly two colours of Rj are present in the sets [1, 2]×Sβ, {j}×Sβ, {1, 2, j}×{x} and
{1, 2, j}×{y}. Thus, Sα∩Sβ ⊆ Si,j∩Si,k = ∅: an (Si,j∩Si,k)-column should contain
at least one colour of each of the sets Ri,j , Ri,k and exactly two colours of each of the
sets Rj , Rk, which is impossible. By Claim 20, w(K(k)) = rj + ri,j = 4 + ri,j > 6,
hence ri,j > 2 and, analogously, ri,k > 2.

Let us show that ri,j = ri,k = 2. Indeed, if e.g. ri,j > 3, then, according to the
above considerations, si,j 6 4: with si,j > 5 we would have rk > 5. Connections
R1,j/R2,k and R1,k/R2,j (note that r1,jr2,k > 0 and r1,kr2,j > 0) can be realized
(since Si,j ∩Si,k = ∅ and ri,j > 3) only in Si,j-columns and connections β/Rj in Sβ-

columns. Therefore, for any colour µ ∈ Rj with µ1 in [1, 2]× Sβ , µ2 is in {j}× Si,j ,
and the number of such colours is at most si,j−ri,j 6 4−ri,j . The number of colours

of Rj with an exemplar in {j}×Sβ is at most 2, hence rj 6 (4−ri,j)+2 = 6−ri,j 6 3,
a contradiction.
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Thus, by Claim 2, rj,k = c2−rj−rk−(ri,j+ri,k) = c2−4−4−4 > (n+6)−12. From
Claim 4 it follows that 4 > rj,k > n− 6, hence n = 9 and rj,k > 3, so that rj,k = r3,4

and w = ri,j + ri,k + rj,k = r3,4 + 4. By Claim 22 we have w 6 7, hence w = 7
(Claim 9), r3,4 = 3, c2 = 15 and c3 = c3+ = 5. As n = 9 = w(K(j)) = w(K(k)), the
{j, k}-rows are filled in with 2-colours; three colours of Rj,k appear there twice and
the remaining twelve colours just once. Therefore, c3 = r1,2,i and then sj,k > 4 since
the colours of R1,2,i need at least ten places in {1, 2, i}×Sj,k. We have Si,j∩Sj,k = ∅:
if µ ∈ Ri,j , ν ∈ Rj,k and both µ, ν are in a common (Si,j∩Sj,k)-column, that column
should contain µ, ν, two colours of Rk and at least two colours of R1,2,i (as r1,2,i = 5).
Similarly, Si,k∩Sj,k = ∅, and so using Si,j∩Si,k = ∅ we obtain sj,k 6 9−si,j−si,k 6 5.
If sj,k = 5, consider colours γ, δ ∈ Rk present in [1, 2]× Sα and colours ε, ζ ∈ Rj

present in [1, 2] × Sβ . From si,j = ri,j = 2 = si,k = ri,k it follows that Si,j = Sα,
Si,k = Sβ, hence the sets {j}×Sα and {k}×Sβ are filled in with colours of Ri,j and

Ri,k, respectively. That is why γ2 and δ2 are in {k}× ([1, 9]−Sα−Sβ), while ε2 and
ζ2 are in {j} × ([1, 9]− Sα − Sβ). Moreover, as sj,k = 5, γ2, δ2, ε2 and ζ2 cover four

([1, 9]−Sα−Sβ)-columns. Because of connections {γ, δ}/{ε, ζ}, there is l ∈ [1, 2] such
that γ1, δ1, ε1 and ζ1 share the l-row. If η, ϑ are colours of Rk in {k}×Sα and ι, κ are

colours of Rj in {j}×Sβ, then, because of connections {ε, ζ}/{η, ϑ} and {γ, δ}/{ι, κ},
η2, ϑ2, ι2 and κ2 must occur in [1, 2]×([1, 9]−Sα−Sβ). On the other hand, the number
of colours of R1,2,i that appear in only two Sj,k-columns is at most 3 (only the colours
of R1,2,i in the unique column with two colours of Rj,k can have this property), and

the total number of places occupied by R1,2,i in Sj,k-columns is at least 3·2+2·3 = 12;
this is a contradiction since |{1, 2, i}×([1, 9]−Sα−Sβ)| = 15 < 12+ |{η2, ϑ2, ι2, κ2}|.
Thus, sj,k = 4. There are two colours γ, δ /∈ Rj,k having an exemplar in {j, k} ×

Sj,k. Evidently, γ1 and δ1 are in independent positions; we may suppose without
loss of generality that γ1 is in the j-row and δ1 in the k-row. Because of connections

β/γ and α/δ, γ2 must be in an Sβ-column and δ2 must be in an Sα-column. That
is why (note that the sets Si,j , Si,k, Sj,k are pairwise disjoint) γ2 and δ2 must share
an l-row, l ∈ [1, 2]. Since (∗) is not fulfilled, we can replace α by α′ ∈ Ri,j − {α}
and/or β by β′ ∈ Ri,k −{β} and repeat the above analysis. Therefore, if ε and ζ are
colours in (j, m) and (k, m), respectively, where m is the unique element of the set

[1, 9]− Sα − Sβ − Sj,k, there are only the following three possibilities: ε ∈ Ri,j and
ζ ∈ Rk, ε ∈ Rj and ζ ∈ Ri,k, ε ∈ Rj and ζ ∈ Rk.

If ε ∈ Rj , then, because of connections ε/{β, δ}, ε2 must be in {l} × Sβ. As

w(K(l)) = 4, at least one of the two colours of Rk appearing in {k} × Sα has its
second exemplar in the (3− l)-row, and so misses at least one of connections with γ

and ε.

If ζ ∈ Rk, then, analogously, there is a colour of Rj in {j} × Sβ missing at least
one of connections with δ and ζ. �
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Claim 28. r3,4 = 3.
���������

of Claim 28. By Claims 26 and 4, we have r3,4 6 4. If r3,4 = 4,
Claims 22 and 23 yield n − 2 > w > d 1

3 (n + 14)e > 1
3 (n + 14), hence n > 10, even

n > 11 (Claim 26), and w > 9, so that r3,5 ∈ [3, 4].
Suppose first that r3,5 = 4. We know that r4 > 1 and r5 > 1 (Claim 27). On

the other hand, by Claim 21, r1,4r2,5 = r1,5r2,4 = 0, hence there is l ∈ [1, 2] such
that rl,4rl,5 > 0 and r3−l,4 = r3−l,5 = 0. As r3−l,l = 0, with help of Claims 26,
5 and 4 we obtain r3−l,3 = 4 so that, by the choice of K(1, 2), w = 8 + r4,5 >

w(K(3 − l, 3)) = rl,4 + rl,5 + r4,5 + 4, rl,4 + rl,5 6 3 and, by Claim 5, rl,3 > 1. By
Claim 20, w(K(3)) = rl,4 +rl,5 +r4,5 > 6, hence r4,5 > 6− (rl,4 +rl,5) > 3. However,
the inequalities r4,5 > 3 and rl,3 + r3−l,3 > 1 + 4 = 5 are in contradiction with
Claim 12.

Now, assume that r3,5 = 3. If there is l ∈ [1, 2] with rl,5 > 1 and r3−l,4 = 0, then
r3−l,3 + r3−l,5 > 4 (Claim 5), r3−l,3 6 2 (Claim 13), r3−l,5 > 2, rl,4 > 1 (Claim 27)
and so rl,4 + r3−l,5 + r3,4 + r3,5 > 1 + 2 + 4 + 3 = 10 in contradiction with Claim 21.
Thus, we know that rl,5 > 1 implies r3−l,4 > 1 for l = 1, 2; moreover, allowing for
symmetry, we may suppose that, in the case r4,5 = r3,5 = 3, rl,5 > 1 implies also
r3−l,3 > 1 for l = 1, 2.
By Claim 27, there is l ∈ [1, 2] such that rl,5 > 1, hence r3−l,4 > 1 and, by

Claim 21, this is possible only if rl,5 = r3−l,4 = 1. By the choice of K(1, 2),
w(K(l, 5)) = 1 + (r3−l,3 + 1 + 4) < w = 4 + 3 + r4,5, r3−l,3 6 r4,5 and w(K(3− l)) =
r3−l,3 + 1 + r3−l,5 6 r4,5 + 1 + r3−l,5. With respect to Claim 5, r3−l,5 = 0 im-
plies r3−l,3 > 3 and, consequently, r4,5 = r3−l,3 = 3; in such a case, however,
r3,3−l + r3,4 = 7 in contradiction with Claim 13 (as rl,5 > 1). So, we may suppose
that r3−l,5 > 1.
If r4,5 = 3, then by the above symmetry r3−l,5 = rl,3 = 1 and w(K(l)) = rl,4 + 2,

w(K(3 − l)) = r3−l,3 + 2. Then Claim 5 yields rl,4r3−l,3 > 0 and rl,4 + r3−l,3 > 4,
hence rl,4 + r3−l,3 + r3,5 + r4,5 > 10 in contradiction with Claim 21.
Finally, for r4,5 = 2 we obtain r3−l,3 6 2, w(K(3−l, 5)) = r3−l,5+(rl,3+rl,4+4) <

w = 9, r3−l,5+rl,3+rl,4 6 4, rl,3+rl,4 > 3 (Claim 5) and (rl,3+rl,4)+r3,4 > 3+4 = 7
in contradiction with Claim 13 (since r3−l,5 > 1).
Now, the claim follows from Claim 19. �

Put d :=
2∑

l=1

5∑
i=3

d(l, i), where d(l, i) := w − w(K(l, i)).

Claim 29. d = 7w − 3c2.
���������

of Claim 29. If {i, j, k} = [3, 5], then w(K(1, i)) + w(K(2, i)) = 2rj,k +
2∑

l=1

5∑
m=3

rl,m = 2rj,k + c2 −w, hence −d(1, i)− d(2, i) = 2rj,k + c2 − 3w. Analogously,
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−d(1, j)−d(2, j) = 2ri,k + c2−3w and −d(1, k)−d(2, k) = 2ri,j + c2−3w. Summing

the last three equalities we obtain −d = 2(rj,k +ri,k +ri,j)+3c2−9w = 3c2−7w. �

Claim 30. r3,5 = 2.
���������

of Claim 30. By Claim 28, we have 3 = r3,4 > r3,5. Suppose that r3,5 =
3. If w = 7, then c2 = 15 (Claim 23), n = 9 (Claim 2) and min{w(K(1)), w(K(2))} >
4 (Claim 5). Therefore, 14 = 2w > w(K(1, 5)) + w(K(2, 5)) = 2r3,4 + r3 + r4 + r5 =
6 + w(K(1)) + w(K(2)) > 14 and w(K(1, 5)) = w(K(2, 5)) = 7. By the choice of
K(1, 2), we see that then necessarily r1,5 = r2,5 = 0. Since r4 6 3 (Claim 7), we
have r3 = c2 −w− r4 − r5 > 15− 7− 3− 0 = 5 and 9 > w(K(3)) = r3 + r3,4 + r3,5 >
5 + 3 + 3 = 11, a contradiction.
If w > 8, then, by Claim 22, n > 10, hence n > 11 and c2 > 17 (Claim 2). Consider

first the case w = 8, i.e., r4,5 = 2. From Claim 29 we know that d = 56 − 3c2 6 5.
By the choice of K(1, 2), d(l, i) = 0 implies rl,i = 0. By Claim 27, at most three
summands of d are 0’s, so d > 3, c2 = 17, n = 11 and d = 5. There must be l ∈ [1, 2]
and i ∈ [3, 5] with d(l, i) = 0 = rl,i; let {i, j, k} = [3, 5]. Claim 27 yields r3−l,i > 1 so
that 7 > w(K(3 − l, i)) = r3−l,i + (rl,j + rl,k + rj,k) > 1 + (4 + rj,k) (Claim 5) and
rj,k = 2. Thus, 8 = w(K(l, i)) = r3−l,j + r3−l,k + rj,k = r3−l,j + r3−l,k + 2. With
help of Claim 5, c2 = 8 + w(K(l)) + w(K(3 − l)) > 8 + 4 + 7 = 19, a contradiction.
If w = 9 (and r4,5 = 3), then rl,i ∈ [0, 2] for any l ∈ [1, 2] and i ∈ [3, 5]. Indeed,

the assumptions rl,i > 3 and {i, j, k} = [3, 5] would lead, by Claim 21, to r3−l,j =
r3−l,k = 0. Then r3−l,i > 4 (Claim 5) and rl,i + r3−l,i > 7; since rj,k = 3, we have
obtained a contradiction with Claim 12. By Claim 5, we know that at least one

summand of the sum rl,3 + rl,4 + rl,5 is 2 for both l = 1, 2. If there are i, j ∈ [3, 5],
i 6= j, such that r1,i = r2,j = 2, we obtain an immediate contradiction with Claim 21.
Therefore, we may suppose that there is j ∈ [3, 5] with r1,j = r2,j = 2, and the

remaining summands in
2∑

l=1

5∑
m=3

rl,m are 1’s. Let {i, j, k} = [3, 5] and consider colours

α, γ ∈ R1,j , β ∈ R2,k, δ ∈ R2,i. By Claim 21, the connections α/β and α/δ cannot

be realized in the same column: in such a column there would be α, β, δ and at least
one colour of each of the sets Ri,j , Ri,k, Rj,k, a contradiction. Therefore, with help

of the same claim, positions in [3, 5] × Sα are occupied by α, all three colours of
Ri,k, one colour of Ri,j and one colour of Rj,k. Similarly, places in [3, 5] × Sγ are

occupied by γ, all three colours of Ri,k , one colour of Ri,j and one colour of Rj,k. As
a consequence, Sα ∩ Sγ = ∅ (if Sα ∩ Sγ 6= ∅, then for at least one colour ε ∈ {α, γ}
the set {j} × Sε is filled in with α and γ), and at least one of connections β/{α, γ}
is missing. �

To conclude the proof of Theorem 3, we are left with the case r3,5 = r4,5 = 2. By
Claim 23, we have 7 = w > d 1

3 (n + 12)e > 1
3 (n + 12), hence n = 9. Claim 27 implies
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r5 > 1, therefore, by the choice of K(1, 2), 14 = 2w > w(K(1, 5)) + w(K(2, 5)) =
2r3,4 + w(K(1)) + w(K(2)) > 6 + 4 + 4 = 14, where, for the last inequality, we have
used Claim 5. �

To resume the results of the analysis of the achromatic number of K5 ×Kn, recall
that I3 = {1, 6}, I2 = {2, 4, 5, 7, 8, 10}, I1 = {3, 9} ∪ [11, 14], I0 = [15, 24], and put
I−1 := {25}, I−2 := [26, 28].

Theorem 4. Let n be a positive integer and a ∈ [−2, 3].
1. If n ∈ Ia, then achr(K5 ×Kn) = 2n + a.

2. If n ∈ [29, 36], then achr(K5 ×Kn) = b 3
2nc+ 12.

3. If n ∈ [37, 42], then achr(K5 ×Kn) = b 5
3nc+ 6.

4. If n > 43, then achr(K5 ×Kn) = b 9
5nc.
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