Czechoslovak Mathematical Journal

Mirko Horňák; Štefan Pčola

Achromatic number of $K_{5} \times K_{n}$ for small n

Czechoslovak Mathematical Journal, Vol. 53 (2003), No. 4, 963-988

Persistent URL: http://dml.cz/dmlcz/127853

Terms of use:

© Institute of Mathematics AS CR, 2003

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz

ACHROMATIC NUMBER OF $K_{5} \times K_{n}$ FOR SMALL n

Mirko Horňák and Štefan Pčola, Košice

(Received February 1, 2001)

Abstract

The achromatic number of a graph G is the maximum number of colours in a proper vertex colouring of G such that for any two distinct colours there is an edge of G incident with vertices of those two colours. We determine the achromatic number of the Cartesian product of K_{5} and K_{n} for all $n \leqslant 24$.

Keywords: complete vertex colouring, achromatic number, Cartesian product, complete graph

MSC 2000: 05C15

1. Introduction

Consider a simple finite graph G and its vertex k-colouring f mapping $V(G)$ into $\{1,2, \ldots, k\}$. As usual, f is proper if $f(u) \neq f(v)$ whenever $u v \in E(G)$. Let $\operatorname{chr}(G)$ denote the chromatic number of G, the minimum k such that there is a proper vertex k-colouring of G. It is easy to see that any proper vertex $\operatorname{chr}(G)$-colouring of G is complete: for every $i, j \in\{1,2, \ldots, \operatorname{chr}(G)\}, i \neq j$, there is an edge $u v$ in G with $f(u)=i$ and $f(v)=j$. In other words, $\operatorname{chr}(G)$ is the minimum k admitting a complete proper vertex k-colouring of G. It is natural to ask also for the maximum l admitting a complete proper vertex l-colouring of G, i.e., for the achromatic number of G, in symbol $\operatorname{achr}(G)$. This graph invariant was introduced by Harary, Hedetniemi and Prins in [5], where the authors proved among other things also the following interpolation theorem:

Theorem 1. If G is a graph and k an integer with $\operatorname{chr}(G) \leqslant k \leqslant \operatorname{achr}(G)$, then there exists a complete proper vertex k-colouring of G.

[^0]It is known, see Yannakakis and Gavril [8], that, given a graph G and a positive integer k, to decide whether $\operatorname{achr}(G) \geqslant k$ is an NP-complete problem. Note that classes of graphs with exactly determined achromatic number are quite rare. A reader can find a survey of results on the achromatic number in Edwards [4].

Cartesian products of complete graphs form a class of graphs with structure simple enough to evaluate (at least for some subclasses) the achromatic number. The Cartesian product of complete graphs K_{m} and K_{n} is the graph $K_{m} \times K_{n}$ with $V\left(K_{m} \times K_{n}\right)=\{(i, j): i \in\{1,2, \ldots, n\}\}$, in which $\left(i_{1}, j_{1}\right)$ is adjacent to $\left(i_{2}, j_{2}\right)$ if and only if the pairs $\left(i_{1}, j_{1}\right),\left(i_{2}, j_{2}\right)$ have exactly one common co-ordinate. Since the graphs $K_{m} \times K_{n}$ and $K_{n} \times K_{m}$ are isomorphic, when analyzing $\operatorname{achr}\left(K_{m} \times K_{n}\right)$ we may suppose that $m \leqslant n$. The achromatic number of $K_{m} \times K_{n}$ is completely determined for $m=1,2,3,4$: It is known that $\operatorname{achr}\left(K_{1} \times K_{n}\right)=\operatorname{achr}\left(K_{n}\right)=n$ (trivially), $\operatorname{achr}\left(K_{2} \times K_{n}\right)=n+1$ (easily), $\operatorname{achr}\left(K_{3} \times K_{3}\right)=5$ and $\operatorname{achr}\left(K_{3} \times K_{n}\right)=\left\lfloor\frac{3}{2} n\right\rfloor$ for $n \geqslant 4$ (proved independently by Horňák and Puntigán [7] and Chiang and Fu [2]), $\operatorname{achr}\left(K_{4} \times K_{n}\right)=2 n$ if $4 \leqslant n \leqslant 12, \operatorname{achr}\left(K_{4} \times K_{13}\right)=24, \operatorname{achr}\left(K_{4} \times K_{n}\right)=\left\lfloor\frac{4}{3} n\right\rfloor$ if $14 \leqslant n \leqslant 24$ and $\operatorname{achr}\left(K_{4} \times K_{n}\right)=\left\lfloor\frac{5}{3} n\right\rfloor$ for $n \geqslant 25$, see [7]. Bouchet [1] found that $\operatorname{achr}\left(K_{6} \times K_{6}\right)=18$. Chiang and Fu [3] generalized his result in an important way by showing that $\operatorname{achr}\left(K_{m} \times K_{m}\right)=\frac{1}{2} p^{2 r}\left(p^{r}+1\right)$ holds for an odd prime p, a positive integer r and $m=\frac{1}{2} p^{r}\left(p^{r}+1\right)$. We succeeded in establishing values of $\operatorname{achr}\left(K_{5} \times K_{n}\right)$ in [6] for $n \geqslant 25$; they are resumed in Theorem 4. The aim of the present paper is to complete the results of [6] for $n \leqslant 24$.

For integers p, q, we denote by $[p, q]$ the set of all integers z with $p \leqslant z \leqslant q$. Using the structure of $K_{m} \times K_{n}$, we can transform the problem of determining $\operatorname{achr}\left(K_{m} \times K_{n}\right)$ as follows: For a positive integer p, let $M_{m, n}^{p}$ be the set of all $m \times n$ matrices A with entries from $[1, p]$ (an entry in the row i and the column j is the colour of the vertex $(i, j))$ such that the entries in any line (a row or a column) of A are distinct (the corresponding p-colouring of $K_{m} \times K_{n}$ is proper) and for every $i, j \in[1, p], i \neq j$, there is a line of A containing both i and j (the colouring is complete). Evidently, $\operatorname{achr}\left(K_{m} \times K_{n}\right)$ is the maximum p with $M_{m, n}^{p} \neq \emptyset$. If we permute rows and/or columns of a matrix in $M_{m, n}^{p}$, what results is again a matrix in $M_{m, n}^{p}$. This trivial (but important) fact will be frequently used throughout the paper. A colour (an entry) of a matrix $A \in M_{m, n}^{p}$ is a k-colour if it appears in A exactly k times.

2. Constructions

In this section we present some $5 \times n$ matrices which will turn out to be optimal for the achromatic number of $K_{5} \times K_{n}$ in Section 3. We define $I_{3}:=\{1,6\}, I_{2}:=$ $\{2,4,5,7,8,10\}, I_{1}:=\{3,9\} \cup[11,14], I_{0}:=[15,24]$ and $c(n):=2 n+a$ for $n \in I_{a}$, $a=0,1,2,3$.

Theorem 2. If $n \in[1,24]$, then $\operatorname{achr}\left(K_{5} \times K_{n}\right) \geqslant c(n)$.
Proof. For $n \leqslant 4$ we simply use the results of [7]. In what follows, we restrict ourselves to $n \in[5,24]$.

For $n \in[5,10]$ we present a matrix belonging to $M_{5, n}^{c(n)}$ in which \bar{k} stands for $k+10$ and $\overline{\bar{l}}$ for $l+20$:

$$
\begin{aligned}
& \left(\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
6 & 1 & 2 & 3 & 7 \\
8 & 9 & \overline{0} & 7 & 4 \\
5 & \overline{1} & 9 & \overline{2} & 6 \\
\overline{0} & \overline{2} & 8 & \overline{1} & 9
\end{array}\right)\left(\begin{array}{cccccc}
1 & 2 & 3 & 4 & 5 & 6 \\
2 & 1 & 7 & 8 & 9 & \overline{0} \\
\overline{1} & 2 & 4 & 3 & 7 & \overline{3} \\
5 & \overline{4} & \overline{5} & \overline{0} & \overline{2} & 8 \\
\overline{3} & \overline{5} & \overline{4} & 9 & 6 & \overline{1}
\end{array}\right)\left(\begin{array}{ccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 \\
2 & 1 & 8 & 9 & \overline{0} & \overline{1} & \overline{2} \\
\overline{3} & \overline{4} & 4 & 3 & 5 & 8 & \overline{1} \\
\overline{1} & 7 & \overline{6} & \overline{0} & 9 & \overline{3} & 8 \\
\overline{6} & \overline{5} & \overline{2} & 6 & \overline{4} & 5 & \overline{3}
\end{array}\right) \\
& \left(\begin{array}{llllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
2 & 1 & 9 & \overline{0} & \overline{1} & 2 & \overline{3} & \overline{4} \\
\overline{5} & \overline{6} & 4 & 3 & \overline{3} & \overline{7} & \overline{1} & \overline{8} \\
\overline{8} & 5 & \overline{4} & 6 & 6 & 5 & 7 & 9 \\
7 & 8 & 5 & 2 & 6 & 0 & 8 & 7
\end{array}\right)\left(\begin{array}{ccccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
\overline{3} & 4 & \overline{5} & 7 & 4 & 5 & 6 & \overline{1} & \overline{2} \\
3 & \overline{0} & \overline{5} & \overline{6} & \overline{7} & \overline{8} & \overline{9} & \overline{2} & \overline{1} \\
\overline{5} & 3 & \overline{4} & \overline{0} & 9 & \overline{6} & \overline{7} & 1 & 8 \\
\overline{4} & 5 & \overline{3} & 8 & \overline{9} & 0 & 8 & 9 & 1
\end{array}\right)\left(\begin{array}{ccccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
\overline{1} & \overline{2} \\
\overline{2} & \overline{3} & 4 & \overline{5} & \overline{6} & \overline{0} & 7 & 8 & 9 \\
2 & \overline{7} & \overline{6} & \overline{8} & 1 & \overline{3} & \overline{9} & \overline{0} & \overline{1} \\
\hline \overline{2} \\
3 & 5 & 4 & \overline{1} & \overline{2} & \overline{2} & \overline{7} & \overline{8} & \overline{9} \\
\overline{0} \\
4 & 9 & 5 & \overline{1} & 6 & \overline{0} & \overline{1} & \overline{2} & 7 \\
\hline
\end{array}\right)
\end{aligned}
$$

For $n \in[11,14]$, consider the following matrices B_{n-8} and C_{8} :

$$
\begin{aligned}
& B_{3}=\left(\begin{array}{lll}
\overline{\overline{2}} & 1 & 2 \\
2 & \overline{3} & 1 \\
3 & 4 & 5 \\
5 & 3 & 4 \\
4 & 5 & 3
\end{array}\right) \quad B_{4}=\left(\begin{array}{llll}
\overline{4} & 1 & 2 & 3 \\
2 & 3 & \overline{5} & 1 \\
4 & 5 & 6 & 7 \\
7 & 4 & 5 & 6 \\
6 & 7 & 4 & 5
\end{array}\right) \quad B_{5}=\left(\begin{array}{ccccc}
\overline{\overline{6}} & 1 & 2 & 3 & 4 \\
3 & 4 & \overline{7} & 1 & 2 \\
5 & 6 & 7 & 8 & 9 \\
9 & 5 & 6 & 7 & 8 \\
8 & 9 & 5 & 6 & 7
\end{array}\right) \quad B_{6}=\left(\begin{array}{ccccc}
\overline{\overline{8}} & 1 & 2 & 3 & 4 \\
3 & 4 & 5 & \overline{9} & 1
\end{array}\right) \\
& C_{8}=\left(\begin{array}{cccccccc}
-16 & -15 & -14 & -13 & -12 & -11 & -10 & -9 \\
-8 & -7 & -6 & -5 & -4 & -3 & -2 & -1 \\
-13 & -16 & -15 & -14 & -2 & -1 & -4 & -3 \\
+1 & -9 & -8 & -7 & -11 & -12 & 0 & -10 \\
-6 & -5 & +1 & -10 & -9 & 0 & -11 & -12
\end{array}\right)
\end{aligned}
$$

Let $C_{8,2 n}$ be the matrix obtained from C_{8} by increasing all its entries by $2 n$. The block matrix $M_{n}=\left(B_{n-8} C_{8,2 n}\right)$ has the following colour structure: colours of $[1, n-9]$ are 2 -colours appearing in both rows 1,2 of B_{n-8}, colours of $[n-8,2 n-$

17] are 3-colours appearing in all three rows $3,4,5$ of B_{n-8}, colours of $[2 n-16$, $2 n-13] \cup[2 n-8,2 n-1]$ are 2-colours appearing in exactly one of the rows 1,2 and in exactly one of the rows $3,4,5$ of $C_{8,2 n}$, colours of $[2 n-12,2 n-9]$ are 3 -colours appearing in all three rows $1,4,5$ of $C_{8,2 n}$, and colours of $[2 n, 2 n+1]$ are 3 -colours appearing in exactly one of the rows 1,2 of B_{n-8} and in both rows 4,5 of $C_{8,2 n}$.

All connections between 2-colours of B_{n-8} and 3 -colours of B_{n-8} are realized in columns of B_{n-8} : any 3 -colour of B_{n-8} covers three consecutive (modulo $n-8$) columns of B_{n-8}, and a maximum "column gap" between two exemplars of any 2colour of B_{n-8} consists of $\left\lceil\frac{1}{2}(n-10)\right\rceil \leqslant 2$ columns. All other colour connections involving 2-colours of B_{n-8} are realized in one of the rows 1,2 of M_{n} and all colour connections between 3-colours of B_{n-8} and 2-colours of $C_{8,2 n}$ are realized in one of the rows $3,4,5$ of M_{n}. It is easy to check that all colour connections between 2 -colours of $C_{8,2 n}$ and colours appearing not only in B_{n-8} are present in M_{n}. Clearly, because of the Pigeonhole Principle (PP), it is unnecessary to look for colour connections involving two 3 -colours. Finally, as all rows of M_{n} contain n distinct colours and all columns of M_{n} contain five distinct colours, we have $M_{n} \in M_{5, n}^{2 n+1}$.

To conclude the proof, it is sufficient to use Proposition 1 of [6], showing that $\operatorname{achr}\left(K_{5} \times K_{n}\right) \geqslant 2 n$ for $n \in[12,24]$.

3. Optimality

Theorem 3. If $n \in[1,24]$, then $\operatorname{achr}\left(K_{5} \times K_{n}\right)=c(n)$.
Proof. Again we omit the case $n \in[1,4]$. Let $n \in I_{a}$, so that $c(n)=2 n+a$. Because of Theorem 2, it suffices to show that $\operatorname{ach}\left(K_{5} \times K_{n}\right) \leqslant 2 n+a$. Proceeding by the way of contradiction, we assume that $\operatorname{achr}\left(K_{5} \times K_{n}\right) \geqslant 2 n+a+1$. Then, by Theorem 1, we know that there is a matrix $A \in M_{5, n}^{2 n+a+1}$.

For a positive integer i, let C_{i} be the set of i-colours of A; put $c_{i}:=\left|C_{i}\right|, c_{3+}:=$ $c_{3}+c_{4}+c_{5}, c_{4+}:=c_{4}+c_{5}$.

Claim 1. If $c_{i}>0$, then $i \in[2,5]$.
Proof of Claim 1. Clearly, $c_{i}=0$ for $i \geqslant 6$ (PP). If some colour appears only once in A, all colours of A must be present in the corresponding row or in the corresponding column of A, so their number is at most $n+4$. However, $2 n+a+1 \geqslant$ $2 n+1 \geqslant n+5+1>n+4$, a contradiction.

By Claim 1, we have $2 n+a+1 \leqslant\left\lfloor\frac{5}{2} n\right\rfloor$, which yields immediately a contradiction if $n \in[5,6]$. Thus, from now on we suppose that $n \in[7,24]$.

Claim 2. $c_{2} \geqslant c_{4+}+n+3 a+3$ and $c_{3+} \leqslant n-2 a-2$.
Proof of Claim 2. Claim 1 implies $2 n+a+1=c_{2}+c_{3}+c_{4+}$ and $5 n=\sum_{i=2}^{5} i c_{i} \geqslant$ $2 c_{2}+3 c_{3}+4 c_{4+}=2(2 n+a+1)+c_{3}+2 c_{4+}$, so that $c_{3+} \leqslant c_{3}+2 c_{4+} \leqslant n-2 a-2$ and $c_{2}-c_{4+}=\left(2 n+a+1-c_{3}-c_{4+}\right)-c_{4+} \geqslant 2 n+a+1-(n-2 a-2)$.

Claim 3. $c_{2} \geqslant 15$.
Proof of Claim 3. As a consequence of Claim 2, we obtain the following inequalities for $a=0,1$ and 2 , respectively: $c_{2} \geqslant n+3 \geqslant 18, c_{2} \geqslant n+6 \geqslant 15$ and $c_{2} \geqslant n+9 \geqslant 16$.

For sets $S_{1} \subseteq[1,5]$ and $S_{2} \subseteq[1, n]$, an S_{1}-row is a row whose number is in S_{1} and an S_{2}-column is a column whose number is in S_{2}. Instead of $\left\{s_{1}\right\}$-rows and $\left\{s_{2}\right\}$ columns we speak simply about s_{1}-rows and s_{2}-columns. For $i, j \in[1,5], i \neq j$, let $R_{i, j}$ denote the set of 2-colours occurring in both $\{i, j\}$-rows, $S_{i, j}$ the set of numbers of columns covered by the colours of $R_{i, j}$ and, for $l \in[1,2]$, let $S_{i, j}^{(l)}$ be the set of numbers of $S_{i, j}$-columns containing l colours of $R_{i, j}$. For a colour α, we denote by S_{α} the set of numbers of columns covered by α. Put $r_{i, j}:=\left|R_{i, j}\right|, s_{i, j}:=\left|S_{i, j}\right|$, $s_{i, j}^{(l)}:=\left|S_{i, j}^{(l)}\right|$, and let $t_{i, j}$ be the total number of colours appearing in both $\{i, j\}$-rows. Sets $R_{i, j, k}$ (of 3-colours) and numbers $r_{i, j, k}$ are defined analogously.

We associate with the matrix A an edge-labelled graph $K_{5}(A)$ as the graph K_{5} with $V\left(K_{5}\right)=[1,5]$, in which an edge $\{i, j\}$ is labelled with $r_{i, j}$.

Claim 4. If $i, j \in[1,5], i \neq j$ and $r_{i, j}>0$, then $t_{i, j} \leqslant 5-a$. Consequently, the graph $K_{5}(A)$ is labelled with numbers from $[0,5-a]$.

Proof of Claim 4. Consider a 2-colour $\alpha \in R_{i, j}$. Because of connections with α, all colours missing in both $\{i, j\}$-rows must be present in one of the two S_{α}-columns, and the total number of colours in A is $2 n+a+1 \leqslant\left(2 n-t_{i, j}\right)+6$, so that $r_{i, j} \leqslant t_{i, j} \leqslant 5-a$.

The weight $w(G)$ of a subgraph G of the graph $K_{5}(A)$ is the sum of labels of all edges of G. Thus, $w\left(K_{5}(A)\right)=c_{2}$. By $\bar{w}(G)$ we denote the weight of \bar{G}, the complement of G.

Claim 5. Any subgraph $K_{1,4}$ of $K_{5}(A)$ is of weight at least $n-c_{3+} \geqslant 2 a+2$.
Proof of Claim 5. Since, by Claim 2, $c_{3+} \leqslant n-2 a-2$, the claim follows from the fact that the number of 2 -colours in any row of A is at least $n-c_{3+}$.

Claim 6. The graph $K_{5}(A)$ has a subgraph $K_{2} \cup K_{3}$ of weight at least $\left\lceil\frac{2}{5} c_{2}\right\rceil \geqslant$ $\left\lceil\frac{2}{5}(n+3 a+3)\right\rceil$.

Proof of Claim 6. The graph $K_{5}(A)$ has ten subgraphs $K_{2} \cup K_{3}$ and each of its edges appears in four such subgraphs: once in a K_{2}-component and three times in a K_{3}-component. So, by Claim 2, the sum of weights of those ten subgraphs is $4 c_{2} \geqslant 4(n+3 a+3)$, and the maximum weight is at least $\left\lceil\frac{4}{10} c_{2}\right\rceil$.

Denote by $K(i, j)$ the subgraph $K_{2} \cup K_{3}$ of $K_{5}(A)$ with $V\left(K_{2}\right)=\{i, j\}$ and by $K(i)$ the subgraph $K_{1,4}$ of $K_{5}(A)$ with parts $\{i\}$ and $[1,5]-\{i\}$. We may suppose without loss of generality that the subgraph $K(1,2)$ is of the maximum weight $w=$ $r_{1,2}+\left(r_{3,4}+r_{3,5}+r_{4,5}\right)$, and that $r_{3,4} \geqslant r_{3,5} \geqslant r_{4,5}$. We assume also that $r_{1,2}$ is the maximum weight of a K_{2}-component among all subgraphs $K_{2} \cup K_{3}$ of $K_{5}(A)$ of weight w. Put $R:=R_{3,4} \cup R_{3,5} \cup R_{4,5}, r:=|R|, R_{i}:=R_{1, i} \cup R_{2, i}, r_{i}:=\left|R_{i}\right|$, $i \in[3,5], \tilde{R}:=R_{3} \cup R_{4} \cup R_{5}$ and $\tilde{r}:=|\tilde{R}|$. Thus, r is the weight of the K_{3}-component of $K(1,2)$ and $c_{2}=w+\tilde{r}$.

Claim 7. If $\{i, j, k\}=[3,5]$, then $r_{i} \leqslant r_{j, i}+r_{k, i}$. If, moreover, $r_{j, k}>r_{1,2}$, then $r_{i}<r_{j, i}+r_{k, i}$.

Proof of Claim 7. As $r_{j, k}+\left(r_{1,2}+r_{1, i}+r_{2, i}\right)=w(K(j, k)) \leqslant w(K(1,2))=$ $r_{1,2}+\left(r_{j, i}+r_{k, i}+r_{j, k}\right)$, the first part of the claim is proved. The second issues from the assumption on $r_{1,2}$.

Claim 8. $r_{1,2}+3 r \geqslant c_{2} \geqslant n+3 a+3$.
Proof od Claim 8. By Claim 7 we have $r_{3}+r_{4}+r_{5} \leqslant 2 r$, hence it follows from Claim 2 that $n+3 a+3 \leqslant c_{2}=r_{1,2}+r+r_{3}+r_{4}+r_{5} \leqslant r_{1,2}+3 r$.

Claim 9. $w \geqslant 7$.
Proof of Claim 9. If $n \neq 9$, it suffices to apply Claim 6. For $n=9$ the same claim yields $r_{1,2}+r \geqslant 6$. So, suppose that $r_{1,2}+r=6$. Returning to the proofs of Claims 6,7 and 8 we see that then $c_{2}=15$, all ten subgraphs $K_{2} \cup K_{3}$ of $K_{5}(A)$ are of weight 6 , and $r_{1,2}+3 r=15$. This, however, leads to $2 r=9$, a contradiction.

Claim 10. $r_{1,2} \leqslant 2$.
Proof of Claim 10. By Claims 4 and 9 we know that $r_{1,2} \leqslant 5$ and $r_{1,2}+r \geqslant 7$. However, $r_{1,2}=5$ is impossible: in such a case any 2 -colour missing in both [1, 2]rows (and there are at least $7-5=2$ such colours in R) has at most $2 \cdot 2=4$ connections with (colours of) $R_{1,2}$, a contradiction.

So, suppose that $r_{1,2} \in[3,4]$. Since any exemplar of a colour $\alpha \in R$ realizes in its column at most two connections with $R_{1,2}$, we have $S_{\alpha} \subseteq S_{1,2}, S_{\alpha} \cap S_{1,2}^{(2)} \neq \emptyset$ and, if $r_{1,2}=4$, even $S_{\alpha} \subseteq S_{1,2}^{(2)}$.

Assume first that $r_{4,5}>0$. Any colour of $R_{i}, i \in[3,5]$, must have at least one of its exemplars in an $S_{1,2}$-column, otherwise its connections with $R_{j, k}$, where $\{j, k\}=$ $[3,5]-\{i\}$, would be missing. Thus, for the number p of places in the $S_{1,2}$-columns filled in with 2 -colours, we obtain $2\left(r_{1,2}+r\right)+\left(c_{2}-\left(r_{1,2}+r\right)\right) \leqslant p \leqslant 5 s_{1,2}$, hence, by Claims 3 and $9,7+15 \leqslant\left(r_{1,2}+r\right)+c_{2} \leqslant 5 s_{1,2}$ and $s_{1,2} \geqslant 5$. Similarly, for $r_{1,2}=4$, we obtain $22 \leqslant 5 s_{1,2}^{(2)}$ and $s_{1,2}^{(2)} \geqslant 5$ in contradiction with the immediate bound $s_{1,2}^{(2)} \leqslant 4$. Clearly, we have $s_{1,2}^{(1)}+s_{1,2}^{(2)}=s_{1,2}, s_{1,2}^{(1)}+2 s_{1,2}^{(2)}=2 r_{1,2}$ and, consequently, $s_{1,2}+s_{1,2}^{(2)}=2 r_{1,2}$. Thus, $r_{1,2}=3$ yields $s_{1,2}^{(2)}=6-s_{1,2} \leqslant 6-5=1$, and then $r \leqslant 3$ in contradiction with Claim 9.

From now on we suppose that $r_{4,5}=0$. We cannot have $s_{1,2}=s_{1,2}^{(2)}=3$, because in such a case $r_{1,2}=3, r_{3,4}+r_{3,5} \leqslant 3$ (any colour of $R=R_{3,4} \cup R_{3,5}$ has its 3-row exemplar in $\{3\} \times S_{1,2}$) and $r_{1,2}+r \leqslant 3+3$. So, $s_{1,2} \geqslant 4$ and it is easy to see that there are colours $\alpha, \beta \in R_{1,2}$ sharing no column. Then 3 -row exemplars of colours of R must appear in $\{3\} \times\left(S_{\alpha} \cup S_{\beta}\right), r=r_{3,4}+r_{3,5} \leqslant 4, r_{1,2}+3 r \leqslant 16$, and Claim 8 yields $n \in\{7,9\}$. Since $r_{3,5} \leqslant 2$, it follows from Claim 7 that $w(K(5))=$ $r_{5}+r_{3,5}+r_{4,5} \leqslant 2+2+0=4$.

Hence, by Claim 5, the only remaining possibility is $n=9$. If $r_{3,5} \leqslant 1$, Claim 7 yields $w(K(5)) \leqslant 2(1+0)$ in contradiction with Claim 5 . Thus, we must have $r_{3,4}=r_{3,5}=2$. Claims 5 and 7 imply $r_{4}=r_{5}=2$.

If $i \in[4,5]$, then each colour of R_{i} must have an exemplar in one of the $S_{1,2^{-}}$ columns: it needs connections with $R_{j, k}$, where $\{j, k\}=[3,5]-\{i\}$. Since $r_{4}+r_{5}=4$, we cannot have $s_{1,2}=3$ (at least fourteen places in the $S_{1,2}$-columns are occupied by colours of $R_{1,2} \cup R$). From $s_{1,2} \geqslant 4$ we obtain, as above, that there are two colours $\alpha, \beta \in R_{1,2}$ with $S_{\alpha} \cap S_{\beta}=\emptyset$. We may suppose without loss of generality that $S_{\alpha}=[1,2]$ and $S_{\beta}=[3,4]$. Every colour of R has both its exemplars in the [1, 4]-columns and, as $r>3$, any colour of $R_{1,2}$ must also have both its exemplars in the $[1,4]$-columns. Thus, in the rectangle $[1,2] \times[1,4]$ (in the intersection of the set of the $[1,2]$-rows and the set of the [1,4]-columns) of the matrix A there are at most two positions for colours of the set $R_{4} \cup R_{5}$ and at least two positions for colours of $R_{4} \cup R_{5}$ must be in the rectangle $[4,5] \times[1,4]$ (note that in $\{3\} \times[1,4]$ there are all four colours of R).

A colour missing in both [1, 2]-rows has at least two its exemplars in $[3,5] \times[1,4]$ (connections with $R_{1,2}$); the number of such colours is therefore at most $\left\lfloor\frac{1}{2}(12-2)\right\rfloor=$ 5. As the [1, 2]-rows contain at most $18-r_{1,2}$ colours, the total number of colours in A is $20 \leqslant 23-r_{1,2}$, so that $r_{1,2}=3$, there are five colours missing in both [1,2]-rows
(four of R and the fifth of $R_{3,4,5}$), any colour of $R_{4} \cup R_{5}$ has exactly one exemplar in $[1,5] \times[1,4]$ and the distribution of $R_{4} \cup R_{5}$ in the rectangles [1,2] $\times[1,4]$ and $[3,5] \times[1,4]$ is $2+2$. Let γ, δ be colours of $R_{4} \cup R_{5}$ occurring in [1, 2]×[1,4]. Because of the distribution of $R_{1,2}$ in $[1,2] \times[1,4]$, it is clear that a connection γ / δ can only be provided by γ_{2} and δ_{2}. (For a 2 -colour μ we denote its two exemplars by μ_{1} and μ_{2}, and we assume that μ_{1} is the exemplar entering into our considerations as the first.)

The mentioned colour of $R_{3,4,5}$ occupies two positions in $[4,5] \times[1,4]$, hence one position in that rectangle is occupied by a colour of R_{4} and one by a colour of R_{5}. That is why, if $\gamma \in R_{l, i}, l \in[1,2], i \in[4,5]$, then (because of $r_{4}=r_{5}=2$) $\delta \in$ $R_{3-l, 9-i}$. Thus, a connection γ / δ is realized in a column. However, that column must contain also all colours of R_{3}, because the colour $\gamma \in R_{l, i}$ needs connections with $R_{3,9-i}$ (its second exemplar cannot help, as all exemplars of R_{3} are in $[1,5] \times[5,9]$) and, analogously, the colour $\delta \in R_{3-l, 9-i}$ needs connections with $R_{3, i}$. This leads to a contradiction since $r_{3}=c_{2}-w-\left(r_{4}+r_{5}\right) \geqslant 15-7-4=4$.

Claim 11. If $\{i, j, k, l, m\}=[1,5], r_{i, j}=5$, then $r_{k, l}=r_{k, m}=r_{l, m}=0$, $s_{i, j}=r_{k, l, m}=6$ and all positions in $\{k, l, m\} \times S_{i, j}$ are filled in with colours of $R_{k, l, m}$.

Proof of Claim 11. From Claim 4 we obtain $a=0$. The number of colours missing in both $\{i, j\}$-rows is then $(2 n+1)-(2 n-5)=6$, and each exemplar of such a colour provides at most two connections with $R_{i, j}$. Hence, $r_{k, l}=r_{k, m}=r_{l, m}=0$ and $r_{k, l, m}=6$.

Any colour of $R_{k, l, m}$ occupies three positions in $\{k, l, m\} \times S_{i, j}$ and at least two positions in $\{k, l, m\} \times S_{i, j}^{(2)}$, that is why $18=3 r_{k, l, m} \leqslant 3 s_{i, j}$ and $12=2 r_{k, l, m} \leqslant 3 s_{i, j}^{(2)}$. Moreover, $s_{i, j}^{(1)}+s_{i, j}^{(2)}=s_{i, j}, s_{i, j}^{(1)}+2 s_{i, j}^{(2)}=2 r_{i, j}=10$, consequently $s_{i, j}=10-s_{i, j}^{(2)}$, $6 \leqslant 10-s_{i, j}^{(2)} \leqslant 10-4=6, s_{i, j}^{(2)}=4, s_{i, j}=6$, and the proof follows.

Claim 12. If $\{i, j, k, l, m\}=[1,5]$ and $r_{i, j} \in[3,4]$, then $r_{k, l}+r_{k, m} \leqslant 4$.
Proof of Claim 12. Suppose first that there are colours $\alpha, \beta \in R_{i, j}$ with $S_{\alpha} \cap S_{\beta}=\emptyset$. Evidently, any colour of $R_{k, l} \cup R_{k, m}$ must have its k-row exemplar in an $\left(S_{\alpha} \cup S_{\beta}\right)$-column, and so $r_{k, l}+r_{k, m}=\left|R_{k, l} \cup R_{k, m}\right| \leqslant\left|\{k\} \times\left(S_{\alpha} \cup S_{\beta}\right)\right|=4$.

If the above assumption is not fulfilled, then $s_{i, j}=3$ and any colour of $R_{k, l} \cup R_{k, m}$ must have its k-row exemplar in an $S_{i, j}$-column, hence $r_{k, l}+r_{k, m} \leqslant\left|\{k\} \times S_{i, j}\right|=3$.

Claim 13. If $\{i, j, k, l, m\}=[1,5]$ and $r_{i, j} \geqslant 1$, then $r_{k, l}+r_{k, m}+r_{l, m}+r_{k, l, m} \leqslant 6$.
Proof of Claim 13. If $\alpha \in R_{i, j}$, then any colour of $R_{k, l} \cup R_{k, m} \cup R_{l, m} \cup R_{k, l, m}$ must be present in $\{k, l, m\} \times S_{\alpha}$.

Claim 14. If $\{i, j, k, l, m\}=[1,5]$ and $r_{i, j} \geqslant 1$, then $r_{i, j}+r_{k, l}+r_{k, m} \leqslant 8$. Moreover, the equality can apply only if $r_{i, j} \in\{2,4\}$.

Proof of Claim 14. The claim is a direct consequence of Claims 11, 12 and 13.

Claim 15. If $r_{1,2} \in[1,2]$, then $\left(r_{3,4}, r_{3,5}, r_{4,5}\right) \in\{(2,2,1),(2,2,2)\}$.
Proof of Claim 15. By Claim 13, we have $r \in[5,6]$ and so $w \in[7,8]$. If $r=5$ (and $r_{1,2}=2$), then, by Claims 6 and $5, n \leqslant 11$ and $w(K(5)) \geqslant 4$. The assumption $r_{3,4}=2$ leads to $r_{3,5}=2$ and $r_{4,5}=1$. On the other hand, if $r_{3,4} \geqslant 3$, using Claim 7 we obtain $4 \leqslant w(K(5))<2\left(r_{3,5}+r_{4,5}\right)=2\left(5-r_{3,4}\right)$ and $r_{3,4}<3$, a contradiction.

So, suppose that $r=6$. If $r_{3,4} \geqslant 4$, Claim 7 implies $w(K(5))<2\left(6-r_{3,4}\right) \leqslant 4$, hence, by Claim 5, $n \geqslant 15$. By Claim 2, we have $c_{2} \geqslant 18, \tilde{r}=\sum_{l=1}^{2}\left(r_{l, 3}+r_{l, 4}+r_{l, 5}\right) \geqslant$ $18-w$ and, as $w(K(1,5))+w(K(2,5))=\tilde{r}+2 r_{3,4}$, there exists $l \in[1,2]$ with $w(K(l, 5)) \geqslant r_{3,4}+\left\lceil\frac{1}{2}(18-w)\right\rceil \geqslant \frac{1}{2}(26-w)>w$, a contradiction.

Henceforth we assume that $r_{3,4}=3$ (otherwise we are done). If $n \geqslant 15$, then, by Claim 2, $c_{2} \geqslant n+3 \geqslant 18$ and $\tilde{r}=c_{2}-w \geqslant 18-8=10$. Moreover, $16 \geqslant$ $w(K(1,5))+w(K(2,5))=2 r_{3,4}+\tilde{r} \geqslant 16$, so that $w(K(1,5))=w(K(2,5))=8$, $\tilde{r}=10, c_{2}=18, n=15, w=8, r_{1,2}=2, c_{3}=c_{3+}=13$. Claim 7 yields $r_{3}+r_{4} \leqslant r_{3,4}+r=9$ and $r_{5} \leqslant 2$, hence $r_{5}=\tilde{r}-\left(r_{3}+r_{4}\right) \geqslant 10-9=1$. If $l \in[1,2]$, then $w(K(l, 5))=8$ by virtue of Claim 13 implies $r_{l, 5} \neq 1$, therefore there is $l \in[1,2]$ with $r_{l, 5}=2, r_{3-l, 3}+r_{3-l, 4}=3, r_{3-l, 5}=0$ and $r_{l, 3}+r_{l, 4}=5$. Since $r_{3,5} \geqslant 2$, from Claim 11 we know that $r_{l, 4} \leqslant 4$ and $r_{l, 3} \geqslant 1$. If $r_{l, 3}=5$ and $r_{l, 4}=0$, then $w(K(3-l, 4)) \geqslant r_{l, 3}+r_{l, 5}+r_{3,5} \geqslant 5+2+2=9$, a contradiction.

Thus, $r_{l, 3} r_{l, 4}>0$ and, by Claim 13, $\left(r_{3-l, 4}+r_{3-l, 5}+r_{4,5}+r_{3-l, 4,5}\right)+\left(r_{3-l, 3}+\right.$ $\left.r_{3-l, 5}+r_{3,5}+r_{3-l, 3,5}\right)=6+r_{3-l, 3,5}+r_{3-l, 4,5} \leqslant 12$ and $r_{3-l, 3,5}+r_{3-l, 4,5} \leqslant 6$. Consider a colour $\alpha \in R_{1,2}$. Clearly, all positions in [3,5] $\times S_{\alpha}$ are occupied by six distinct colours of R. At least one colour of $R_{l, 5}$, say β, is out of S_{α}, therefore $s_{3,4}^{(2)}=2, s_{3,4}=4$ and $S_{3,4}=S_{\alpha} \cup S_{\beta}$. Because of connections $R_{l, 5} /\left(R_{3-l, 3} \cup R_{3-l, 4}\right)$, in $\{3-l, 3,4\} \times S_{\beta}$ there are all three colours of $R_{3-l, 3} \cup R_{3-l, 4}$ (together with all three colours of $R_{3,4}$). We have $S_{l, 5} \subseteq S_{3,4}$, and so connections $R_{l, 5} /\left(R_{3-l, 3} \cup R_{3-l, 4}\right)$ imply $S_{l, 5}=S_{\beta}$. Consequently, $S_{1,2}=S_{\alpha}$ and $r_{1,2,5}\left(=r_{3-l, l, 5}\right)=0$, since all places in $\{1,2,5\} \times S_{3,4}$ are filled in exclusively with colours of $R_{1,2} \cup R_{l, 5} \cup R_{3,5} \cup$ $R_{4,5} \cup R_{3-l, 3} \cup R_{3-l, 4}$. From $r_{3-l, l}+\left(r_{3-l, 3}+r_{3-l, 4}\right)+r_{3-l, 5}=2+3+0=5$ and $r_{l, 5}+r_{3-l, 5}+\left(r_{3,5}+r_{4,5}\right)=2+0+3=5$ we see that in both $\{3-l, 5\}$-rows there are ten 3 -colours. Since $c_{3}=13$, at least seven 3 -colours are in both $\{3-l, 5\}$-rows, i.e. $r_{3-l, l, 5}+r_{3-l, 3,5}+r_{3-l, 4,5}=0+r_{3-l, 3,5}+r_{3-l, 4,5} \geqslant 7$ in contradiction with $r_{3-l, 3,5}+r_{3-l, 4,5} \leqslant 6$.

If $n \leqslant 14$, then, by Claims 5 and $7,1 \leqslant r_{5} \leqslant 2$. Let us find a lower bound for the number \hat{c} of colours of $R_{3} \cup R_{4}$ needing a column connection with (at least one of) colours of R_{5} : If $r_{m, 5}=0$ for some $m \in[1,2]$, then $r_{3-m, 5} \in[1,2]$ and, by Claim 5, $\hat{c}=r_{m, 3}+r_{m, 4} \geqslant 2$; on the other hand, if $r_{1,5}=r_{2,5}=1$, then $\hat{c}=r_{3}+r_{4}=c_{2}-w-r_{5} \geqslant 15-8-1-1=5$. The number of colours missing in both $[3,4]$-rows is $r_{1,2}+r_{1,5}+r_{2,5}+r_{1,2,5}=2 n+a+1-\left(2 n-t_{3,4}\right) \geqslant r_{3,4}+a+1=a+4 \geqslant 5$. Since $r_{3,4}=3$, all colours of $\dot{R}:=R_{1,2} \cup R_{1,5} \cup R_{2,5} \cup R_{1,2,5}$ must have at least two exemplars in $\{1,2,5\} \times S_{3,4}$. Consider a colour $\alpha \in R_{1,2}$; clearly, all positions in $[3,5] \times S_{\alpha}$ are filled in with colours of R, and so $s_{3,4} \in[4,5]$ (three positions outside of $[3,5] \times S_{\alpha}$ are occupied by colours of $R_{3,4}$).

If $s_{3,4}=4$, then in $[1,5] \times S_{3,4}$ there are at least $2|\dot{R}| \geqslant 10$ places occupied by colours of \dot{R} and at least $r+r_{3,4}=9$ places occupied by colours of R, hence at most one position can be occupied there by a colour of $R_{3} \cup R_{4}$ in contradiction with $\hat{c} \geqslant 2$ (note that any colour of R_{5} has both its exemplars in $\{1,2,5\} \times S_{3,4}$).

If $s_{3,4}=5$, then $s_{3,4}^{(2)}=1, S_{3,4}^{(2)} \subseteq S_{\alpha}$ and $r_{1,2}+r_{1,5}+r_{2,5} \leqslant 2$, because any colour of $R_{1,2} \cup R_{1,5} \cup R_{2,5}$ must be present in $[1,2] \times S_{3,4}^{(2)}$; thus we have $r_{1,2}=r_{3-m, 5}=1$, $r_{m, 5}=0$ and $r_{1,2,5} \geqslant 3$. Consequently, $14 \geqslant w(K(1,5))+w(K(2,5))=2 r_{3,4}+\tilde{r}=$ $6+\left(c_{2}-w\right) \geqslant 6+15-7=14$ and $w(K(3-m, 5))=7, \hat{c}=r_{m, 3}+r_{m, 4}=3$. Evidently, an exemplar of a colour of $R_{3-m, 5}$ in an $S_{3,4}^{(2)}$-column does not provide connections with $R_{m, 3} \cup R_{m, 4}$ (in that column there are only colours of $R_{1,2} \cup R_{3-m, 5} \cup R$) and all three connections are realized in the unique remaining $S_{3-m, 5}$-column (that is not an S_{α}-column); however, this is impossible, as colours of $R_{1,2} \cup R_{3-m, 5} \cup R_{1,2,5}$ occupy in $\{1,2,5\} \times S_{3,4}-\left(\{5\} \times S_{\alpha}\right)$ at least $2 \cdot 2+3 \cdot 3$ (and so all) positions.

Claim 16. If $r_{1,2} \in[1,2], \alpha \in R_{1,2}, i \in[3,5], \beta, \gamma \in R_{i}$ and $S_{\alpha} \cap\left(S_{\beta} \cup S_{\gamma}\right)=\emptyset$, then $S_{\beta} \cap S_{\gamma} \neq \emptyset$.

Proof of Claim 16. Let $\{j, k\}=[3,5]-\{i\}$ and consider a colour $\delta \in R_{j, k} \neq \emptyset$ (Claim 15). Because of connections with β and γ, we have $S_{\delta} \neq S_{\alpha}$ and an $\left(S_{\delta}-S_{\alpha}\right)$ column contains both β and γ.

Claim 17. If $r_{1,2}=2$, then $s_{1,2}=2$.
Proof of Claim 17. If $R_{1,2}=\{\alpha, \beta\}$, we may suppose without loss of generality that α is in $(1,1)$ and $(2,2)$. Put $S:=S_{3,4} \cup S_{3,5} \cup S_{4,5}$.

If $S_{\alpha} \cap S_{\beta}=\emptyset$ (or, equivalently, $s_{1,2}=4$), it follows from $r \geqslant 5$ that all colours of R must have one exemplar in an S_{α}-column and the other in an S_{β}-column and, consequently, $S \subseteq S_{\alpha} \cup S_{\beta}$. Any colour of $C_{2}-R_{1,2}-R$ has one exemplar in one of the [1, 2]-rows and another one in an i-row, $i \in[3,5]$; if $\{i, j, k\}=[3,5]$, this colour needs connections with the set $R_{j, k} \neq \emptyset$ (Claim 15), and therefore must have at least
one exemplar in an $S_{j, k}$-column, and hence in an S-column. Colours of $R_{1,2} \cup R$ have both their exemplars in the S-columns, and so, with help of Claims 3 and 9 , $15+7 \leqslant c_{2}+w=2\left(r_{1,2}+r\right)+\left(c_{2}-r_{1,2}-r\right) \leqslant 5|S|=20$, a contradiction.

If $s_{1,2}=3$, we may assume without loss of generality that β occupies the positions $(1,3)$ and $(2,1)$. Clearly, all colours of R that are not in the 1-column must share both $[2,3]$-columns.

If three colours of R share the [2,3]-columns, it is easily seen that, for any $i \in[3,5]$ and $j \in[3,5]-\{i\}$, there is a colour $\mu \in R_{i, j}$ with $S_{\mu}=[2,3]$; if $\{i, j, k\}=[3,5]$, then, because of a connection with μ, any colour of R_{k} must have an exemplar in $\{(1,2),(2,3)\}$. Therefore, $\tilde{r}=r_{3}+r_{4}+r_{5} \leqslant 2$ and $c_{2}=r_{1,2}+r+\tilde{r} \leqslant 2+6+2$ in contradiction with Claim 3.

Thus, we see that exactly two colours of R share the [2,3]-columns, $r=5$ and $r_{4,5}=1$. If the colours in the [2,3]-columns are not both from $R_{3,4}$ or $R_{3,5}$, then there are $i, j, k \in[3,5]$ such that $\{i, j, k\}=[3,5]$ and the [2,3]-columns share exactly one colour of $R_{i, j}$ and exactly one colour of $R_{i, k}$. Because of connections with $R_{i, j}$ (with $R_{i, k}$), any colour of R_{k} (of R_{j}) must occur in the [2,3]-columns, and so $r_{j}+r_{k} \leqslant 4$. For a colour $\gamma \in R_{j, k}$ (by Claim 15, $r_{j, k} \geqslant 1$) we have $S_{\gamma}=\{1, l\}, l \in[2, n]$. Any colour of R_{i} must be in $\{1,2, i\} \times\{l\}$ (it needs a connection with γ), and so $r_{i} \leqslant 3$. As a consequence, $c_{2}=r_{1,2}+r+\tilde{r} \leqslant 2+5+(4+3)=14$ in contradiction with Claim 3.

What remains is the following possibility: the [2,3]-columns share both colours of $R_{3, i}$ with $i \in[4,5]$ and the 1 -column is filled in with colours of $R_{1,2} \cup R_{3,9-i} \cup R_{4,5}$. By Claim 7, $\max \left\{r_{4}, r_{5}\right\} \leqslant 3$. Moreover, because of a connection with the unique colour of $R_{4,5}$, all colours of R_{3} must appear in a unique ($S_{4,5}-\{1\}$)-column so that $r_{3} \leqslant 3$, too. Claim 3 yields $\tilde{r}=r_{3}+r_{4}+r_{5}=c_{2}-w \geqslant 15-7=8$, hence $\min \left\{r_{j}: j=3,4,5\right\} \geqslant 2$ and at most one of the numbers r_{3}, r_{4}, r_{5} is 2 . Furthermore, $c_{2}=w+r_{3}+r_{4}+r_{5} \leqslant 7+3+3+3=16$, and so $n \in\{7,9\}$ (Claim 2) and $a \geqslant 1$.

We have $S_{3,9-i} \cap S_{4,5}=\{1\}$: if an l-column, $l \in[2, n]$, contains a colour of $R_{3,9-i}$ and a colour of $R_{4,5}$, it contains all colours of R_{3}, R_{i} and $R_{4,5}$, altogether at least $\left(r_{3}+r_{i}\right)+r_{4,5}+1 \geqslant 5+1+1=7$ colours, a contradiction. Thus, we may suppose without loss of generality that $S_{3,9-i}=\{1\} \cup\left[4, s_{3,9-i}+2\right]$ and $S_{4,5}=\left\{1, s_{3,9-i}+3\right\}$ (note that the "rectangle" $\{9-i\} \times[2,3]$ is free of colours of $R_{3,9-i} \cup R_{4,5}$, since $\min \left\{r_{3}, r_{i}\right\} \geqslant 2$).

If $s_{3,9-i}=3$, then, since all connections of a colour $\gamma \in R_{i}$ with $R_{3,9-i}$ are realized out of the 1-column, we have $S_{1, i} \cup S_{2, i}=[4,5]$, and so $r_{i}=2, r_{3}=r_{9-i}=3, c_{2}=15$ and $n=9$. Because of connections with $R_{4,5}$, all three colours of R_{3} are in $[1,3] \times\{6\}$. At least one of colours of R_{3} in $[1,2] \times\{6\}$, say δ in $(l, 6), l \in[1,2]$, is out of $\{3\} \times[4,5]$ (one position in $\{3\} \times[4,5]$ is occupied by a colour of $R_{3,9-i}$). Because of connections δ / R_{i} we have $R_{i}=R_{l, i}$. Clearly, $S_{\delta} \subseteq[6,9]$ and $S_{\delta} \cap S_{l, i}=\emptyset$. As $r_{9-i}=3$, we have
$r_{3-l, 9-i} \geqslant 1$. For a colour $\varepsilon \in R_{3-l, 9-i}, \varepsilon_{1}$ situated in $\{3-l, 9-i\} \times[2,3]$ provides no connections with $\{\delta\} \cup R_{l, i}$; however, $S_{\delta} \cap S_{l, i}=\emptyset$ means that ε_{2} cannot provide all connections with $\{\delta\} \cup R_{l, i}$.

If $s_{3,9-i}=2$, then $S_{3,9-i}=\{1,4\}$ and $S_{4,5}=\{1,5\}$. If a colour $\mu \in \tilde{R}$ appears in $[1,2] \times[6, n]$, all its connections with R are realized by μ_{2}. Therefore, μ_{2} must occupy one of the positions in the set $\tilde{S}:=\{(9-i, 2),(9-i, 3),(i, 4),(3,5)\}$. Let \tilde{C} be the set of colours of \tilde{R} appearing in $[1,2] \times[6, n]$. Since $\tilde{r} \geqslant 8$, we have $|\tilde{C}| \geqslant 2$.

Suppose first that there is a 3 -element set $\tilde{C}^{\prime} \subseteq \tilde{C}$ such that its colours occupy three positions in \tilde{S} forming an independent set of vertices in the graph $K_{5} \times K_{n}$ corresponding to A. Then, clearly, all connections between the colours of \tilde{C}^{\prime} are provided by exemplars of \tilde{C}^{\prime} in $[1,2] \times[6, n]$, and this is possible only if those exemplars share an m-row, $m \in[1,2]$. By Claim $5, w(K(3-m)) \geqslant 4$ and, since in $\{3-m\} \times[6, n]$ there are no 2 -colours (such a 2 -colour would miss at least one connection with $\left.\tilde{C}^{\prime}\right)$, in $\{3-m\} \times[2,5]$ there are at least two colours of \tilde{R}; hence some of them, say γ, is such that γ_{2} does not occupy a position in \tilde{S}. Then γ_{2} does not provide all connections γ / R so that, if $\gamma \in R_{j}, j \in[3,5]$ and $\{k, l\}=[3,5]-\{j\}$, γ_{1} must be in a column containing (all) colours of $R_{k, l}$. There are altogether at most three connections $\gamma / \tilde{C}^{\prime}$ (one row connection and at most two column connections); however, two of them are connections with the unique colour of $\tilde{C}^{\prime} \cap R_{j}$, and so at least one connection $\gamma / \tilde{C}^{\prime}$ is missing.

So we see that $|\tilde{C}| \leqslant 3$ and, if $|\tilde{C}|=3$, then two colours of \tilde{C}, say γ and δ, occupy positions $(9-i, 2)$ and $(9-i, 3)$, respectively; a third colour $\varepsilon \in \tilde{C}$ occupies a position of \tilde{S} in one of the $[4,5]$-columns. First, let $|\tilde{C}|=3$. If γ_{2}, δ_{2} and ε_{2} share an m-row, $m \in[1,2]$, consider two colours $\zeta, \eta \in \tilde{R}$ occurring in $\{3-m\} \times[1,5]$ (they do exist by Claim 5 , since $a \geqslant 1$ and in $\{3-m\} \times[6, n]$ there is no colour of $\tilde{R})$. Because of connections $\{\zeta, \eta\} /(\{\gamma, \delta\} \cup R), \zeta_{2}$ and η_{2} appear in $\{9-i\} \times[6, n]$. This, however, is in contradiction with Claim 16 (possibly, if $m=2$, with β in the role of a colour of $R_{1,2}$).

Now, suppose that δ_{2} and ε_{2} share an m-row, $m \in[1,2]$, and γ_{2} in the $(3-m)$-row shares a column with ε_{2}. Since $\tilde{r} \geqslant 8$, at least three colours of \tilde{R} are present in the square $[1,2] \times[4,5]$. Consider colours $\zeta, \eta \in \tilde{R}$, occupying diagonal positions in $[1,2] \times[4,5]$. Evidently, because of connections $\{\gamma, \delta\} /\{\zeta, \eta\}, \zeta_{2}$ and η_{2} must appear in the columns of γ_{2} and δ_{2} (in an appropriate way), and we have again obtained a contradiction with Claim 16.

The only remaining possibility (with respect to connections γ / ε and δ / ε) is that γ_{2} and ε_{2} share an m-row, $m \in[1,2]$, and δ_{2} in the $(3-m)$-row shares a column with ε_{2}; this is solved analogously as the preceding case.

Assume, finally, that $|\tilde{C}|=2$. Then in $[1,2] \times[2,5]$ there are six colours of \tilde{R}, $\tilde{r}=8, c_{2}=15, n=9$ and $c_{3}=c_{3+}=5$. As five colours of C_{3} occupy $8-2=6$
positions in $[1,2] \times[6,9]$, at least one of them, say γ, appears twice in that rectangle. Because of connections $\gamma / R, \gamma_{3}$ (the third exemplar of γ) must be in \tilde{S}.

Let \tilde{F} be the set of six colours of \tilde{R} appearing in $[1,2] \times[2,5]$ and let an \tilde{F}-pair be a pair of colours $\{\mu, \nu\} \subseteq \tilde{F}$ such that the positions of μ_{1} and ν_{1} correspond to nonadjacent vertices of $K_{5} \times K_{n}$. The number of \tilde{F}-pairs is $3 \cdot 3-2=7$. Note that if $\{\mu, \nu\}$ is an \tilde{F}-pair, then, by Claim 16 (possibly with β in the role of α) there is a column connection μ / ν. Let \tilde{F}_{1} be the set of those $\mu \in \tilde{F}$ that μ_{2} is in $[3,5] \times[2,5]$; clearly, $\left|\tilde{F}_{1}\right| \leqslant 2$.

Consider an l-column, $l \in[2,5]$, containing p colours of $\tilde{F}_{1}, p \in[1,2]$. If $p=1$, the number of column connections corresponding to an \tilde{F}-pair that are realized in the considered column is at most 1 . If $p=2$, that number is at most 3 . On the other hand, if an m-column, $m \in[6,9]$, contains q colours of \tilde{F}, in that column at most $\binom{q}{2}$ column connections corresponding to an \tilde{F}-pair are realized.

Therefore, if $\left|\tilde{F}_{1}\right|=2$, the total number of column connections corresponding to an \tilde{F}-pair is at most $3+\binom{3}{2}+\binom{1}{2}=6$, which is insufficient, as seven such connections should be present. If $\left|\tilde{F}_{1}\right|=1$, that number is at most $1+\binom{3}{2}+\binom{2}{2}=5<7$. Finally, for $\left|\tilde{F}_{1}\right|=0$ we have an upper bound $2 \cdot\binom{3}{2}=6<7$.

Consider a colour $\alpha \in R_{1,2}$. A 3-element set $\{\beta, \gamma, \delta\}$ of colours of $R_{i}, i \in[3,5]$, is said to be an α-appropriate triple, if $S_{\beta} \cap S_{\gamma} \cap S_{\delta} \neq \emptyset$ (i.e., the colours β, γ, δ share a column) and $S_{\alpha} \cap\left(S_{\beta} \cup S_{\gamma} \cup S_{\delta}\right)=\emptyset$ (i.e., there are no column connections $\alpha /\{\beta, \gamma, \delta\})$.

Claim 18. If $r_{1,2} \in[1,2]$ and $\alpha \in R_{1,2}$, then there is an α-appropriate triple.
Proof of Claim 18. We may suppose without loss of generality that α is in $(1,1)$ and $(2,2)$. If $r_{1,2}=2$, then, by Claim 17, the square $[1,2] \times[1,2]$ is filled in with colours of $R_{1,2}$. Claim 3 yields $15 \leqslant c_{2}=2+r+\tilde{r}$, hence $\tilde{r}=r_{3}+r_{4}+r_{5} \geqslant 13-r$. By Claims 9 and 13, we have $r \in[5,6]$.

If $r=6$, there is $i \in[3,5]$ with $r_{i}=3$. Let $\{j, k\}=[3,5]-\{i\}$; since the [1, 2]columns are filled in with colours of $R_{1,2}$ and R, all connections $R_{i} / R_{j, k}$ are realized in the $[3, n]$-columns. Therefore, an l-column, $l \in[3, n]$, containing a colour of the (non-empty) set $R_{j, k}$, contains also colours of R_{i}. Thus, R_{i} is an α-appropriate triple.

Now, suppose that $r=5$ (and $\tilde{r} \geqslant 8$). If there is $i \in[3,5]$ with $r_{i} \geqslant 4$, there is a 3 -element subset of R_{i} representing an α-appropriate triple, since at most one colour of R_{i} is present in an S_{α}-column. On the other hand, if there are $i, j \in[3,5], i \neq j$, with $r_{i}=r_{j}=3$, then at least one of the sets R_{i} and R_{j} is an α-appropriate triple.

If $r_{1,2}=1$ (and $r=6$), we have $\tilde{r} \geqslant 15-1-6=8$. By Claim $15, r_{3,4}=r_{3,5}=$ $r_{4,5}=2$, hence Claim 7 yields $r_{i} \leqslant(2+2)-1=3, i=3,4,5$. Thus, there are
$i, j, k \in[3,5]$ such that $\{i, j, k\}=[3,5], r_{i}=r_{j}=3$ and $r_{k} \in[2,3]$. There are only two positions that can prevent a 3 -element set $R_{l}, l \in[3,5]$, from being an α-appropriate triple (by carrying a colour of R_{l}), namely $(1,2)$ and $(2,1)$ (because of connections $\left.R_{l} / R\right)$.

Therefore, it is sufficient to deal with the case when $r_{k}=2$ (implying $c_{2}=15$, $n=9$ and $c_{3}=c_{3+}=5$), the position $(1,2)$ is occupied by a colour $\beta \in R_{i}$ and the position $(2,1)$ by a colour $\gamma \in R_{j}$. Clearly, β_{2} and γ_{2} must share a column (a connection β / γ), without loss of generality the 3 -column. Because of connections with β and γ, both colours $\delta, \varepsilon \in R_{k}$ are in $\{1,2, k\} \times\{3\}$. In the 3 -column there are no colours of $R_{i, j}$, and so connections $\{\delta, \varepsilon\} / R_{i, j}$ are realized by δ_{2} and ε_{2} in a column, without loss of generality in the 4 -column. If $R_{i}=\{\beta, \zeta, \eta\}$ and $R_{j}=\{\gamma, \vartheta, \iota\}$, then, because of connections $\{\delta, \varepsilon\} /\{\zeta, \eta, \vartheta, \iota\}$ (that can be realized only by exemplars of $\zeta, \eta, \vartheta, \iota$ in the $[1,2]$-rows), it is clear that δ and ε must share an l-row, $l \in[1,2]$ (otherwise, if δ and ε occupy diagonal positions in $[1,2] \times[3,4]$, only the remaining two positions in that square provide both connections with δ and ε). We may assume without loss of generality that that δ_{1} is in $(l, 3)$ and ε_{2} in $(l, 4)$. By Claim 5, $w(K(3-l)) \geqslant 4$ and so at least two of the colours $\zeta, \eta, \vartheta, \iota$ must be present in the $(3-l)$-row. Therefore, using Claim 16, we see that the "rectangle" $\{3-l\} \times[3,4]$ is filled in with one colour of $\{\zeta, \eta\}$, say ζ, and one colour of $\{\vartheta, \iota\}$, say ϑ. Then, evidently, all connections $\zeta / R_{j, k}$ are realized by ζ_{2} (without loss of generality in $(i, 5))$, and all connections $\vartheta / R_{i, k}$ by ϑ_{2} (without loss of generality in $\left.(j, 6)\right)$. So, with an additional use of Claim 16, the 5-column contains all four colours of $\{\zeta, \eta\} \cup R_{j, k}$, and the 6 -column all four colours of $\{\vartheta, \iota\} \cup R_{i, k}$. Thus, all six positions in $[1,2] \times[7,9]$ are occupied by 3 -colours, and at least one of them, say κ, has two its exemplars in that rectangle. Since κ_{3} is in $[3,5] \times[7,9]$, two of connections κ / R are missing.

Claim 19. $r_{1,2}=0$ and, consequently, $r_{3,4} \geqslant 3$.
Proof of Claim 19. If $r_{1,2} \in[1,2]$ and $\alpha \in R_{1,2}$, by Claim 18 there is $i \in$ $[3,5]$ and an α-appropriate triple $\{\beta, \gamma, \delta\} \subseteq R_{i}$. We may suppose without loss of generality that α is in $(1,1),(2,2), \beta$ in $(1,3),(i, 4), \gamma$ in $(2,3),(i, 5)$ and δ in $(i, 3)$ (δ_{2} is unimportant for the moment). We suppose also that $\{\beta, \gamma, \delta\}$ maximizes the number of colours of R in the unique common column of its colours among all possible α-appropriate triples.

Consider the set $B:=\{j, k\} \times[6, n]$, where $\{j, k\}=[3,5]-\{i\}$. Let b_{R} be the number of colours of R in B and, for $l \in[1,2]$ and $m \in[2,5]$, let $b_{m}^{(l)}$ be the number of colours in $C_{m}-R_{1,2}-R$ that appear l times in B. We have $b_{2}^{(1)}+b_{3}^{(2)} \leqslant 2$: to have all connections with $R_{1,2} \cup\{\beta, \gamma\}$, all colours contributing to $b_{2}^{(1)}+b_{3}^{(2)}$ must have an exemplar in $(1,5)$ or $(2,4)$. Further, $b_{2}^{(2)}=0$ (a connection with α). As a
consequence, the number of positions in B is $2(n-5)=b_{R}+\sum_{l=2}^{5} b_{l}^{(1)}+2 \sum_{l=3}^{5} b_{l}^{(2)} \leqslant$ $b_{R}+\left(b_{2}^{(1)}+b_{3}^{(2)}\right)+c_{3}+2 c_{4}+3 c_{5} \leqslant b_{R}+2+\sum_{l=2}^{5}(l-2) c_{l}=b_{R}+2+5 n-2(2 n+a+1)=$ $b_{R}+n-2 a$. Thus, we have $b_{R} \geqslant n+2 a-10 \geqslant 1$.

For a set $Q \subseteq[3,5] \times[1, n]$, let $q(Q)$ be the number of positions in Q occupied by colours of $\tilde{R}=C_{2}-R_{1,2}-R$. Let us show that $q(B)=b_{2}^{(1)} \leqslant 1$. Suppose that $b_{2}^{(1)}=2$ and that colours $\varepsilon, \zeta \in \tilde{R}$ contribute to $b_{2}^{(1)}$. Then ε_{2} and ζ_{2} occupy the positions $(1,5),(2,4)$ and $\varepsilon_{1}, \zeta_{1}$ must be in a common line of A. By Claim 16, this line must be a column, without loss of generality the 6 -column. Now, any colour of R realizes its connection with one of the colours $\beta, \varepsilon, \zeta$ in a column (those three colours cover all the [3, 5]-rows), and so ($\left.S_{3,4} \cup S_{3,5} \cup S_{4,5}\right)-[1,2] \subseteq S_{\beta} \cup S_{\varepsilon} \cup S_{\zeta}=[3,6]$. This inclusion, however, means that $b_{R}=0$ (note that in $\{j, k\} \times\{6\} \subseteq B$ there are ε_{1} and ζ_{1}), a contradiction.

Put $q_{1}:=q([3,5] \times[1,2]), q_{2}:=q(\{j, k\} \times\{3\})$ and $q_{3}:=q(\{i\} \times[6, n])$. We are going to prove that $q_{1}+q_{2}+q_{3}+q(B) \leqslant 9-r_{1,2}-r$. First, since all connections of the α-appropriate triple $\{\beta, \gamma, \delta\}$ with any colour of $R_{j, k}$ are realized in the 3-column, we have $q_{2} \leqslant 2-r_{j, k}=2+r_{i, j}+r_{i, k}-r \leqslant 2+2+2-r=6-r$ (Claim 15).

Suppose that $r=6$ and, consequently, $r_{3,4}=r_{3,5}=r_{4,5}=2$. A colour contributing to q_{3} needs connections with $R_{j, k}$, and they can be realized only in the [1, 2]-columns (clearly, the 3 -column is of no use). However, not more than one of the [1,2]-columns contains both colours of $R_{j, k}$, so that $q_{3} \leqslant 2-r_{1,2}$ (for $r_{1,2}=2$ use Claim 17). Altogether, we obtain $q_{1}+q_{2}+q_{3}+q(B) \leqslant 0+0+\left(2-r_{1,2}\right)+1=9-r_{1,2}-r$.

If $r=5$, then $r_{1,2}=2$ (Claim 9) and $q_{3}=0$ (as above). Since $q_{1}+q_{2}+q(B) \leqslant 1+1+$ 1 , to prove our inequality it suffices to find a contradiction if $q_{1}=q_{2}=q(B)=1$. So, suppose that $q_{1}, q_{2}, q(B)$ are all 1 's, and that ε, ζ and η are colours of \tilde{R} contributing to q_{1}, q_{2} and $q(B)$, respectively; we may assume without loss of generality that η_{1} is in $(j, 6)$ (the only assumption imposed on j, k so far is $\{j, k\}=[3,5]-\{i\}$). Evidently, $q_{2}=1$ means that $r_{j, k}=1$ and $r_{i, j}=r_{i, k}=2$.

Suppose first that ε_{1} is not in the i-row. Since ε and η need connections both with β and γ, ε_{2} and η_{2} must occupy positions $(l, 6-l)$ and $(3-l, 3+l)$, respectively, for some $l \in[1,2]$. Therefore, ε_{1} and η_{1} must share the j-row (a connection ε / η), and ε_{1} is in (j, m) for some $m \in[1,2]$. Now, ζ_{1} cannot be in $(k, 3)$: in such a case ζ_{2} is in $(l, 6)$ (connections with ε and η), and ζ misses a connection with at least one colour of $R_{i, j}$ (in the 3-column there is no such colour and in $(j, 6)$ there is η_{1}). Thus, ζ_{1} is in $(j, 3)$, and in $(k, 3)$ there is a colour $\vartheta \in R_{j, k}$. So, ϑ_{2} is in $(j, 3-m)$, and a colour ι in $(k, 3-m)$ belongs to $R_{i, k}$. Hence, ι_{2} is in (i, p) with $p \in[6, n]$, and a connection ε / ι is missing.

Now, assume that ε_{1} is in (i, l) for some $l \in[1,2]$. If ζ_{1} is in $(j, 3)$, then, by Claim 16, $S_{\zeta} \cap S_{\eta} \neq \emptyset$. Clearly, there is only one column shared by ζ and η, and that column must contain both colours of $R_{i, k}$; hence, it must be the 6 -column. Because of connections $R_{j} / R_{i, k}$, we have $r_{j} \leqslant 3$. However, $r_{j}=3$ is impossible: in such a case R_{j} would be an α-appropriate triple with $r_{i, k}=2$ colours of R in a column shared by colours of R_{j} in contradiction with the fact that $\{\beta, \gamma, \delta\}$ has only $r_{j, k}=1$ colour of R in "its" 3 -column; so, $r_{j} \leqslant 2$. Further, $r_{k} \leqslant 2$, since k-row exemplars of R_{k} can only be in $\{k\} \times[4,5]$ (recall that $q_{2}=1$ is realized by ζ_{1} and $q(B)=1$ by η_{1}). Claim 7 yields $r_{i} \leqslant 4$ so that $r_{i}=4, r_{j}=r_{k}=2, c_{2}=15$ and, by Claim 2, $n=9, c_{4+}=0$ and $c_{3}=c_{3+}=5$. Moreover, in $(k, 4)$ and $(k, 5)$ there are colours of R_{k}, say ϑ and ι, respectively. Also, ζ_{2} is in $(p, 6)$ for some $p \in[1,2]$ (connections $\{\zeta, \eta\} / R_{i, k}$). Neither ϑ_{2} nor ι_{2} can be in $(3-p, 6)$ (in the 6 -column there is no colour of $R_{i, j}$ and, considering β in $(i, 4)$ and γ in $(i, 5)$, both ϑ_{1} and ι_{1} provide at most one connection with $R_{i, j}$). That is why, because of connections $\{\vartheta, \iota\} /\{\beta, \gamma, \zeta\}$, ϑ_{2} must be in $(p, 5)$ and ι_{2} in $(p, 4)$. Now, η_{2} must be in $(3-p, 3+p)$ (connections $\eta /\{\beta, \gamma\})$. Moreover, the "rectangle" $\{j\} \times[4,5]$ must be filled in with colours of $R_{i, j}$ (connections $\{\vartheta, \iota\} / R_{i, j}$), and in $\{j, k\} \times[7,9]$ there are only 3 -colours. However, $c_{3}=5$, at least one 3-colour, say κ, has two exemplars in $\{j, k\} \times[7,9]$, and at least one of connections $\beta / \kappa, \gamma / \kappa$ is missing: in $(p, 6-p)$ there is either ϑ_{2} or ι_{2}, and in $(3-p, 3+p)$ there is η_{2}.

Finally, suppose that ζ_{1} is in $(k, 3)$. Then, because of a connection $\varepsilon / R_{j, k}$, in (k, l) there is the unique colour of $R_{j, k}$, hence in $\{i, k\} \times\{3-l\}$ there are both colours of $R_{i, k}$ and in $\{j\} \times[1,2]$ there are both colours of $R_{i, j}$. The remaining $R_{i, j}$-exemplars are in $\{i\} \times[6, n]$, and so there is $\mu \in R_{i, j}$ such that a connection ζ / μ is missing.

Using the just proved inequality $q_{1}+q_{2}+q_{3}+q(B) \leqslant 9-r_{1,2}-r$ we obtain $\tilde{r}=c_{2}-r_{1,2}-r=q([3,5] \times[1, n])=\left(q_{1}+q_{2}+q_{3}+q(B)\right)+q(\{i\} \times[3,5])+q(\{j, k\} \times$ $[4,5]) \leqslant\left(9-r_{1,2}-r\right)+3+q(\{j, k\} \times[4,5])$, hence $q(\{j, k\} \times[4,5]) \geqslant c_{2}-12 \geqslant 3$ (Claim 3). Thus, at most one position in $\{j, k\} \times[4,5]$ is not occupied by a colour of \tilde{R}. We may suppose without loss of generality that there is $l \in[4,5]$ such that in $(j, l),(k, l)$ and $(j, 9-l)$ there are colours of \tilde{R}, say ε, ζ and η, respectively. Since ζ needs connections with $R_{i, j}, \zeta_{2}$ cannot be in the $(9-l)$-column (in $\{i, j\} \times[4,5]$ there are $\beta, \gamma, \varepsilon_{1}, \eta_{1} \notin R_{i, j}$). Therefore, ζ_{2} must be in the ($6-l$)-row (connections $\zeta /\{\beta, \gamma\})$; we may suppose without loss of generality that ζ_{2} is in $(6-l, 6)$. Clearly, η_{2} is not in $[1,2] \times[7, n]$ (connections $\eta /\{\beta, \gamma, \zeta\}$). Thus, η_{2} is either in the l-column or in the 6 -column.

If η_{2} is in the l-column, all colours of $R_{i, k}$ are in the [4,5]-columns; however, there is only one "free" place for them, namely $(k, 9-l)$. Thus, $r_{i, k}=1, r_{i, j}=$ $r_{j, k}=2$ (Claim 15), $\{j, k\} \times\{3\}$ is filled in with colours of $R_{j, k}$ (connections $\beta / R_{j, k}$), $\{i, j\} \times\{6\}$ is filled in with colours of $R_{i, j}$ (connections $\left.\zeta / R_{i, j}\right), r_{1,2}=2$ (Claim 9),
and $q_{3}=0$ (as above). Since $8=15-2-5 \leqslant c_{2}-r_{1,2}-r=\tilde{r}=q_{1}+(q([3,5] \times$ $\left.[3,5])+q_{3}\right)+q(B) \leqslant q_{1}+(6+0)+q(B) \leqslant 1+6+1=8$, we have $q_{1}=q(B)=1$, $c_{2}=15, n=9$ and $c_{3}=c_{3+}=5$. Let ϑ and ι be colours contributing to q_{1} and $q(B)$, respectively. Now, $\iota \notin R_{j}$: the assumption $\iota \in R_{j}$ means that ι_{1} is in $\{j\} \times[7,9], \iota_{2}$ is in $(l-3,9-l)$ (connections $\left.\iota /\left(\{\beta, \gamma\} \cup R_{i, k}\right)\right)$, and a connection ζ / ι is missing. So, ι_{1} is in $(k, 6)$ (connections $\left.\iota / R_{i, j}\right)$. Then in $\{j, k\} \times[7,9]$ there are only 3 -colours, and at least one of them, say κ, appears there twice. Consider the distribution of colours in $[3,5] \times[1,2]$. Colours of $R_{i, j}$ occupy in that rectangle one i-row position and one j-row position (they are both in the 6 -column). Analogously, colours of $R_{j, k}$ occupy there one j-row position and one k-row position. Finally, the unique colour of $R_{i, k}$ in $[3,5] \times[1,2]$ is in $\{i\} \times[1,2]$ (it is also in $(k, 9-l)$). Thus, ϑ_{1} is in the k-row. Now, for two positions $(1,5)$ and $(2,4)$, providing both connections with β and γ, there are three "candidates", namely ϑ_{2}, ι_{2} and κ_{3}.

If η_{2} is in the 6 -column, the only available position for it is $(l-3,6)$. By Claim 16, ε_{2} is in the "rectangle" $[1,2] \times\{9-l\}$. Therefore, $r_{i, k}=2$ is impossible: in such a case colours of $R_{i, k}$ would fill in the "rectangles" $\{k\} \times[5,6]$ (connections $\eta / R_{i, k}$) and $\{i\} \times[1,2]$, and at least one of connections $\varepsilon / R_{i, k}$ would be missing.

Thus, $r_{i, k}=1, r_{i, j}=r_{j, k}=2$ (Claim 15), $r_{1,2}=2$ (Claim 9), the square $[1,2] \times$ [1, 2] is filled in with colours of $R_{1,2}$ (Claim 17), the set $\{j, k\} \times\{3\}$ is filled in with colours of $R_{j, k}$ (connections $\beta / R_{j, k}$), and the set $\{i, j\} \times\{6\}$ is filled in with colours of $R_{i, j}$ (connections $\zeta / R_{i, j}$).

Clearly, in $\{i\} \times[7, n]$ there are no colours of R_{i} (connections $R_{i} / R_{j, k}$) and in $\{k\} \times[7, n]$ there are no colours of R_{k} (connections $\left.R_{k} / R_{i, j}\right)$. Further, if in $\{j\} \times[7, n]$ there is a colour of R_{j}, say ϑ, then ϑ_{2} must be in $[1,2] \times\{9-l\}$ (Claim 16) and, because of connections $\vartheta /\{\beta, \gamma\}$, it must be in $(l-3,9-l)$. Then, however, a connection ϑ / ζ is missing.

So, any colour of $\tilde{R}=R_{i} \cup R_{j} \cup R_{k}$ has an exemplar in $[3,5] \times[1,6]$, hence $\tilde{r} \leqslant 3 \cdot 6-2 r=8, c_{2}=w+\tilde{r} \leqslant 7+8, c_{2}=15, n=9, c_{3}=c_{3+}=5, \tilde{r}=8$, and in $[3,5] \times[1,6]$ there are exclusively colours of $R \cup \tilde{R}$. From $r_{i, j}=r_{j, k}=2$ and $r_{i, k}=1$ we see that $r_{i}=r_{k}=3$ and $r_{j}=2$. The rectangle $[3,5] \times[1,2]$ cannot contain both exemplars of a colour of $R_{i, k}$ (it would have no connections with R_{j}). Also, that rectangle does not contain a colour of $R_{i}=\{\beta, \gamma, \delta\}$. Therefore, it contains five colours of R and a colour of R_{k}, say ϑ. Consequently, $R_{k}=\{\zeta, \vartheta, \iota\}$, where ι occupies the position $(k, 6)$ (connections $\left.\iota / R_{i, j}\right)$. Because of connections $\{\beta, \gamma\} /\{\vartheta, \iota\}, \vartheta_{2}$ and ι_{2} must occupy both places in $\{(1,5),(2,4)\}$. Now, the rectangle $[1,2] \times[7,9]$ contains no 2-colour: since $R_{k}=\{\zeta, \vartheta, \iota\}$, it could be only a colour of $R_{i} \cup R_{j}$, but such a colour would miss one of the connections with ϑ and ι. Because of $c_{3}=c_{3+}=5$ that rectangle contains two exemplars of a 3 -colour, say κ. As κ_{3} appears in the square $[3,5] \times[7,9]$, at least one of the connections κ / R is missing.

As all possibilities with $r_{1,2} \in[1,2]$ lead to a contradiction, to conclude the proof of the claim it is sufficient to use Claim 10.

Claim 20. If $i \in[1,5]$, then $\bar{w}(K(i)) \geqslant 3 a+3$.
Proof of Claim 20. From the definition it immediately follows that $\bar{w}(K(i))=$ $c_{2}-w(K(i))$. Since $w(K(i)) \leqslant n$, with help of Claim 2 we obtain $\bar{w}(K(i)) \geqslant$ $(n+3 a+3)-n=3 a+3$.

Claim 21. Let $\{i, j, k\}=[3,5], 3 \leqslant \min \left\{r_{i, j}, r_{i, k}\right\} \leqslant \max \left\{r_{i, j}, r_{i, k}\right\} \leqslant 4$ and $l \in[1,2]$. If $r_{i, j}=r_{i, k}=4$, then $r_{l, j} r_{3-l, k}=0$. If $r_{i, j}+r_{i, k} \leqslant 7$ and $r_{l, j} r_{3-l, k}>0$, then $r_{l, j}+r_{3-l, k}+r_{i, j}+r_{i, k} \leqslant 9$ and, for any $\alpha \in R_{l, j}$ and $\beta \in R_{3-l, k}$, a connection α / β is realized in a column containing at least one colour of $R_{i, j}$ and at least one colour of $R_{i, k}$.

Proof of Claim 21. Suppose that the sets $R_{l, j}$ and $R_{3-l, k}$ are both non-empty and consider colours $\alpha \in R_{l, j}, \beta \in R_{3-l, k}$.

If $r_{i, j}=r_{i, k}=4$, because of the connections $R_{l, j} / R_{i, k}$ (realized in columns of A) each S_{α}-column must contain two colours of $R_{i, k}$; analogously, any S_{β}-column contains two colours of $R_{i, j}$. As a consequence, the sets S_{α} and S_{β} are disjoint (note that any column of A has at most three colours of R) and there is no connection α / β in A, a contradiction.

Now, assume that $r_{i, j}+r_{i, k} \leqslant 7$. A connection α / β is realized in a p-column, $p \in[1, n]$. Since $\min \left\{r_{i, j}, r_{i, k}\right\} \geqslant 3$, the p-column contains at least one colour of $R_{i, j}$, at least one colour of $R_{i, k}$, and altogether at least $r_{i, j}+r_{i, k}-4$ colours of $R_{i, j} \cup R_{i, k}$: α_{2} can realize at most two connections $\alpha / R_{i, k}$ and β_{2} at most two connections $\beta / R_{i, j}$.

Thus, if $r_{i, j}+r_{i, k}=7$, the "rectangle" $[3,5] \times\{p\}$ is filled in with colours of $R_{i, j} \cup R_{i, k}$. If $\{q\}=S_{\alpha}-\{p\}$, then the q-column does not have an analogous property, as it has in (j, q) the colour α; therefore, it cannot provide any connection $R_{l, j} / R_{3-l, k}$. The same is true for the unique $\left(S_{\beta}-\{p\}\right)$-column, so that $r_{l, j}=r_{3-l, k}=1$ and $r_{l, j}+r_{3-l, k}+r_{i, j}+r_{i, k}=9$.

Now, suppose that $r_{i, j}=r_{i, k}=3$. If all connections $R_{l, j} / R_{3-l, k}$ are realized in the p-column, then $r_{l, j}+r_{3-l, k} \leqslant 3$ and $r_{l, j}+r_{3-l, k}+r_{i, j}+r_{i, k} \leqslant 9$. If $\{q\}=S_{\alpha}-\{p\}$ and the q-column provides a connection α / γ for a colour $\gamma \in R_{3-l, k}-\{\beta\}$, which is not realized in the p-column, then three positions in $[3,5] \times\{p, q\}$ are occupied by colours of $R_{i, k}$, two by colours of $R_{i, j}$ (one in the p-column and the other in the q-column), and one position is occupied by the colour α. Further, in $[1,2] \times\{p, q\}$ there are colours α, β, γ. That is why $S_{\beta} \cap S_{\gamma}=\emptyset\left(\beta_{2}\right.$ and γ_{2} are in the k-row $)$, four places in $[3,5] \times\left(\left(S_{\beta} \cup S_{\gamma}\right)-\{p, q\}\right)$ are occupied by colours of $R_{i, j}$, and two by the colours β, γ. So, $S_{i, j}=S_{\beta} \cup S_{\gamma}$ and, besides colours of $R_{i, j}$, the set $\{i, j\} \times S_{i, j}$ contains
α and one colour of $R_{i, k}$. Therefore, $r_{l, j}=1$ and $r_{3-l, k}=2$: a colour of $R_{l, j}-\{\alpha\}$ would miss at least one of connections with β and γ, and a colour of $R_{3-l, k}-\{\beta, \delta\}$ would miss a connection with α. As a consequence, $r_{l, j}+r_{3-l, k}+r_{i, j}+r_{i, k}=9$.

Similarly, if the unique $\left(S_{\beta}-\{p\}\right)$-column provides a connection β / δ for a colour $\delta \in R_{l, j}$, we obtain $r_{l, j}=2, r_{3-l, k}=1$ and $r_{l, j}+r_{3-l, k}+r_{i, j}+r_{i, k}=9$.

Claim 22. $w \leqslant n-a-1$, and the equality can apply only if $c_{2}=n+3 a+3$ and $c_{3}=c_{3+}=n-a-2$.

Proof of Claim 22. Using successively Claims 19 and 5, we obtain $w=r=$ $c_{2}-w(K(1))-w(K(2)) \leqslant c_{2}-2\left(n-c_{3+}\right)=\left(c_{2}+c_{3+}\right)+c_{3+}-2 n=(2 n+a+1)+c_{3+}-2 n$ and then, by Claim 2, $w-a-1 \leqslant c_{3+} \leqslant n-2 a-2$ so that $w \leqslant n-a-1$. If the last inequality turns into equality, then $c_{3+}=n-2 a-2, c_{2}=(2 n+a+1)-(n-2 a-2)=$ $n+3 a+3$ and, with help of Claim 2, $c_{4+}=0$ and $c_{3}=c_{3+}$.

Claim 23. $w \geqslant\left\lceil\frac{1}{3}\left(c_{2}+2 r_{3,4}\right)\right\rceil \geqslant\left\lceil\frac{1}{3}\left(n+3 a+3+2 r_{3,4}\right)\right\rceil$.
Proof of Claim 23. By the choice of $K(1,2)$ we have $3 w \geqslant w(K(1,2))+$ $w(K(1,5))+w(K(2,5))=\sum_{i=1}^{4} \sum_{j=i+1}^{5} r_{i, j}+2 r_{3,4} \geqslant n+3 a+3+2 r_{3,4}$ where, for the last inequality, we have used Claim 2.

Claim 24. $r_{3,5} \leqslant 4$.
Proof of Claim 24. Suppose that $r_{3,4}=r_{3,5}=5$. Then, successively by Claims 11, 4 and 2, $r_{1,4}=r_{2,4}=r_{1,5}=r_{2,5}=0, a=0$ and $c_{2} \geqslant n+3 \geqslant 18$, hence $c_{2}=w(K(3))+r_{4,5}$ and, as $w(K(3)) \leqslant n, r_{4,5} \geqslant 3$. Now Claim 14 yields $\hat{r}:=r_{4,5}+r_{1,3}+r_{2,3} \leqslant 8$ so that $18 \leqslant c_{2}=\left(r_{3,4}+r_{3,5}\right)+\hat{r} \leqslant 2 \cdot 5+8, c_{2}=18$, $n=15, \hat{r}=8$ and, by Claim 14 again, $r_{4,5}=r_{1,3}+r_{2,3}=4$. From Claim 11 it follows that the sets $S_{3,4}, S_{3,5}, S_{4,5}$ are pairwise disjoint. On the other hand, from $r_{4,5}=4$ we see that $\left|S_{4,5}\right| \geqslant 4$. Thus, $n \geqslant\left|S_{3,4}\right|+\left|S_{3,5}\right|+\left|S_{4,5}\right|=2 \cdot 6+\left|S_{4,5}\right| \geqslant 16$, a contradiction.

Claim 25. $r_{4,5} \geqslant 1$.
Proof of Claim 25. Suppose that $r_{4,5}=0$. Since $w \geqslant 7$, we have $r_{3,4} \in[4,5]$. If $r_{3,4}=5$, then, by Claims 4 and $23, w \geqslant\left\lceil\frac{1}{3}(15+3 \cdot 0+3+2 \cdot 5)\right\rceil=10$, hence $r_{3,5}=5$ in contradiction with Claim 24. If $r_{3,4}=4$, Claims 23 and 3 imply $w \geqslant$ $\left\lceil\frac{1}{3}\left(c_{2}+2 \cdot 4\right)\right\rceil \geqslant\left\lceil\frac{23}{3}\right\rceil=8$ so that $r_{3,5}=4, w=8, c_{2} \leqslant 16, n \in\{7,9\}$ (see Claim 2) and $a \geqslant 1$. However, Claim 22 yields $w \leqslant n-a-1 \leqslant 7$, a contradiction.

Claim 26. $a=1$.

Proof of Claim 26. If $a=2$, by virtue of Claims 19, 23 and 22 we obtain $\frac{1}{3}(n+15) \leqslant\left\lceil\frac{1}{3}(n+15)\right\rceil \leqslant\left\lceil\frac{1}{3}\left(n+3 \cdot 2+3+2 r_{3,4}\right)\right\rceil \leqslant w \leqslant n-2-1$, hence $n \geqslant 12$, a contradiction.

So, suppose that $a=0$. For $k \in[0,3]$, let $t^{(k)}$ be the number of colours appearing k times in the [3,5]-rows; then $t:=t_{3,4}+t_{3,5}+t_{4,5}=t^{(2)}+3 t^{(3)}$. From Claims 25 and 4 we obtain $\max \left\{t_{3,4}, t_{3,5}, t_{4,5}\right\} \leqslant 5$ and $t \leqslant 15$. As $\sum_{k=0}^{3} t^{(k)}=2 n+1$, we have also $3 n=\sum_{k=1}^{3} k t^{(k)} \leqslant \sum_{k=1}^{3} t^{(k)}+t^{(2)}+3 t^{(3)} \leqslant(2 n+1)+t \leqslant 2 n+16, n \in[15,16]$ and $t \geqslant n-1 \geqslant 14$. Thus, we know that $\min \left\{t_{3,4}, t_{3,5}, t_{4,5}\right\} \geqslant 4$ and at least two of the numbers $t_{3,4}, t_{3,5}, t_{4,5}$ are 5 's.

First assume that there are i, j, k with $\{i, j, k\}=[3,5], S_{i, j} \cap S_{i, k} \neq \emptyset$ and, without loss of generality, $t_{i, j} \geqslant t_{i, k}$ (so that $t_{i, j}=5$). Consider colours $\alpha \in R_{i, j}$ and $\beta \in R_{i, k}$ present in an $\left(S_{i, j} \cap S_{i, k}\right)$-column. We may suppose without loss of generality that $1 \in S_{\alpha} \cap S_{\beta} \subseteq S_{i, j} \cap S_{i, k}$. Let $c_{i, j}$ ($c_{i, k}$, respectively) be the number of colours in $\{1,2, k\} \times S_{\alpha}\left(\right.$ in $\left.\{1,2, j\} \times S_{\beta}\right)$ that are missing in both $\{i, j\}$-rows ($\{i, k\}$-rows). Because of connections with α all colours must be present either in one of the $\{i, j\}$ rows or in $\{1,2, k\} \times S_{\alpha}$. That is why $2 n+1=\left(2 n-t_{i, j}\right)+c_{i, j}=2 n-5+c_{i, j}, c_{i, j}=6$, and both colours in $[1,2] \times\{1\}$, say γ and δ, are out of the $\{i, j\}$-rows. By Claim 13 we have $R_{1,2}=\emptyset$, hence both γ and δ are in the k-row. Then, however, $c_{i, k} \leqslant 4$ (note that both γ and δ are in one of the $\{i, k\}$-rows and in $\{1,2, j\} \times\{1\} \subseteq\{1,2, j\} \times S_{\beta}$ as well), and $2 n+1=\left(2 n-t_{i, k}\right)+c_{i, k} \leqslant(2 n-4)+4$, a contradiction.

Henceforth we suppose that the sets $S_{3,4}, S_{3,5}, S_{4,5}$ are pairwise disjoint. Using Claim 24 we obtain $w \leqslant 5+2 \cdot 4$, hence $r_{3}+r_{4}+r_{5}=c_{2}-w \geqslant 18-13=5$. If only one of the numbers r_{3}, r_{4}, r_{5} is positive, say r_{i}, and $\{i, j, k\}=[3,5]$, then $r_{i} \geqslant 5$, Claim 12 yields $r_{j, k} \leqslant 2$, and consequently $c_{2}=w(K(i))+r_{j, k} \leqslant n+2$ in contradiction with Claim 2. Thus, we know that at least two of r_{3}, r_{4}, r_{5} are positive. Claim 23 leads to the estimate $r_{3,5} \geqslant\left\lceil\frac{1}{2}\left(w-r_{3,4}\right)\right\rceil \geqslant\left\lceil\frac{1}{2}\left(\frac{1}{3}\left(18+2 r_{3,4}\right)-r_{3,4}\right)\right\rceil=\left\lceil 3-\frac{1}{6} r_{3,4}\right\rceil \geqslant$ $\left\lceil 3-\frac{5}{6}\right\rceil=3$.

Suppose first that $r_{4} r_{5}>0$ and consider colours $\alpha \in R_{4}$ and $\beta \in R_{5}$. Since α needs connections with $r_{3,5} \geqslant 3$ colours of $R_{3,5}$ and any $S_{3,5}$-column can provide at most two such connections, we have $S_{\alpha} \subseteq S_{3,5}$; analogously, $r_{3,4} \geqslant 3$ implies $S_{\beta} \subseteq S_{3,4}$. However, $S_{3,4} \cap S_{3,5}=\emptyset$ and so the connection α / β is realized in an l-row, $l \in[1,2]$; then, clearly, all colours of $R_{4} \cup R_{5}$ are in the l-row, and $r_{3-l, 4}=r_{3-l, 5}=0$. By Claim 5, $w(K(3-l))=r_{3-l, 3} \geqslant 2$. A colour $\gamma \in R_{3-l, 3}$ needs connections with α, β and $R_{4,5}$, therefore all the sets $S_{\gamma} \cap S_{\alpha}, S_{\gamma} \cap S_{\beta}, S_{\gamma} \cap S_{4,5}$ are non-empty, and $\left|S_{\gamma}\right| \geqslant\left|S_{\gamma} \cap\left(S_{3,4} \cup S_{3,5} \cup S_{4,5}\right)\right|=\left|S_{\gamma} \cap S_{3,4}\right|+\left|S_{\gamma} \cap S_{3,5}\right|+\left|S_{\gamma} \cap S_{4,5}\right| \geqslant$
$\left|S_{\gamma} \cap S_{\beta}\right|+\left|S_{\gamma} \cap S_{\alpha}\right|+\left|S_{\gamma} \cap S_{4,5}\right| \geqslant 1+1+1$ in contradiction with the fact that γ is a 2 -colour.

Thus, we may suppose that $r_{3}>0$ and there is $i \in[4,5]$ such that $r_{i}>0$ and $r_{9-i}=0$. Provided that $r_{4,5} \geqslant 3$, we repeat the above considerations leading to a contradiction. Therefore, we assume that $r_{4,5} \in[1,2]$ (Claim 25). By Claim 2 we have $18 \leqslant c_{2}=r_{3}+r_{i}+w \leqslant r_{3}+r_{i}+5+r_{3,5}+2$, hence $r_{3}+r_{i}+r_{3,5} \geqslant 11$. Consider a colour $\alpha \in R_{4,5}$.

If $r_{1, i} r_{2, i}>0$, then any colour of $R_{l, 3}, l \in[1,2]$, must have one exemplar in an S_{α}-column (and hence in an $S_{4,5}$-column) and the other in an $S_{3,9-i}$-column: it needs connections with $R_{3-l, i}$, and $r_{3,9-i} \geqslant 3$ implies $S_{3-l, i} \subseteq S_{3,9-i}$; note that the obtained inclusion together with Claim 11 yield $r_{3,9-i} \leqslant 4$. The number of colours of R_{3} with an exemplar in $[1,2] \times S_{3,9-i}$ is at most 2 , since the second exemplar of each such colour must be in $\{3\} \times S_{\alpha}$. On the other hand, the number of colours of R_{3} with an exemplar in $\{3\} \times S_{3,9-i}$ is at most $4-r_{3,9-i}$: if $r_{3,9-i}=4$ and $\mu \in R_{i}$, all four places in $\{3,9-i\} \times S_{\mu}$ are occupied by colours of $R_{3,9-i}$; if $r_{3,9-i}=3$, then a colour $\mu \in R_{i}$ must appear in an $S_{3,9-i}^{(2)}$-column, and so μ_{2} can provide a column connection with a 3-row exemplar of a colour of R_{3} only if its column contains in the ($9-i$)-row the last colour of $R_{3,9-i}$. Thus, $r_{3}=r_{1,3}+r_{2,3} \leqslant 2+\left(4-r_{3,9-i}\right)$ and, using Claim 12, $r_{3}+r_{i}+r_{3,5} \leqslant r_{3}+r_{i}+r_{3,9-i}=\left(r_{3}+r_{3,9-i}\right)+\left(r_{1, i}+r_{2, i}\right) \leqslant 6+4=10$ in contradiction with $r_{3}+r_{i}+r_{3,5} \geqslant 11$.

If $r_{1, i} r_{2, i}=0$, there is $l \in[1,2]$ with $r_{l, i}>0$ and $r_{3-l, i}=0$. In such a case consider a colour $\beta \in R_{l, i}$. Any colour of $R_{3-l, 3}$ has one exemplar in an S_{α}-column, $S_{\alpha} \subseteq S_{4,5}$, and the other in an $S_{\beta \text {-column, }} S_{\beta} \subseteq S_{l, i} \subseteq S_{3,9-i}$. As above, the number of colours of $R_{3-l, 3}$ with an exemplar in $\{3\} \times S_{3,9-i}$ is at most $4-r_{3,9-i}$. The number of colours of $R_{3-l, 3}$ with an exemplar in $\{3-l\} \times S_{3,9-i}$ is at most $4-r_{l, 3}$, because any such colour as well as any colour of $R_{l, 3}$ must have an exemplar in $\{l, 3\} \times S_{\alpha}$. Thus, $r_{3-l, 3} \leqslant\left(4-r_{3,9-i}\right)+\left(4-r_{l, 3}\right)$. Since $r_{3-l, i}=r_{3-l, 9-i}=r_{3-l, l}=0$, Claim 5 yields $r_{3-l, 3} \geqslant 2$. A colour $\gamma \in R_{3-l, 3}$ can realize its connections with $R_{l, i}$ only in the unique ($S_{\gamma} \cap S_{3,9-i}$)-column, hence $r_{l, i} \leqslant 2$. Using the last two inequalities containing the symbol \leqslant we obtain $r_{3}+r_{i}+r_{3,5} \leqslant r_{3}+r_{i}+r_{3,9-i}=\left(r_{3}+r_{3,9-i}\right)+r_{l, i} \leqslant 8+2=10$, a contradiction.

Claim 27. $r_{i} \geqslant 1, i=3,4,5$.
Proof of Claim 27. Suppose that $r_{i}=0$ and $\{i, j, k\}=[3,5]$. If there are $l \in[1,2]$ and $p \in\{j, k\}$ with $r_{l, p}=0$, then, provided that $\{p, q\}=\{j, k\}$, Claim 5 with respect to $r_{l, p}=r_{l, 3-l}=0$ yields $r_{l, q} \geqslant 4$. As a consequence, $r_{i, p}+r_{3-l, p} \leqslant 4$ (Claim 12) and $c_{2}=w(K(q))+r_{i, p}+r_{3-l, p} \leqslant n+4$ in contradiction with Claim 2. Thus, we may assume that $r_{1, j} r_{2, j} r_{1, k} r_{2, k}>0$.

Suppose first that the following condition $(*)$ is fulfilled: There are $p \in\{j, k\}$ and colours $\alpha \in R_{1, p}, \beta \in R_{2, p}$ such that α_{1}, β_{1} share the p-row and α_{2}, β_{2} share a column. Let $\{p, q\}=\{j, k\}$ and, without loss of generality, $S_{\alpha}=[1,2], S_{\beta}=\{1,3\}$. By Claim 20, $\bar{w}(K(p))=r_{q}+r_{i, q} \geqslant 6$. Let \hat{C} be the set of colours of $R_{q} \cup R_{i, q}$ having an exemplar in $\{q\} \times[4, n]$. If $\mu \in \hat{C}$, then μ_{2} must provide both connections with α and β. However, in the $\{1,2, i\}$-rows there are only three appropriate positions for colours of \hat{C}, namely $(1,3),(2,2)$ and $(i, 1)$. Therefore, $|\hat{C}|=3, r_{q}+r_{i, q}=6$, and we may assume without loss of generality that all positions in $\{q\} \times[1,6]$ are filled in with colours of $R_{q} \cup R_{i, q}$. We have also $r_{p}+r_{i, p} \geqslant 6$. Clearly, each colour of $R_{p} \cup R_{i, p}$ has an exemplar in $\{p\} \times[1,6]$, since any position in the $\{1,2, i\}$-rows provides at most two connections with \hat{C}; consequently, $r_{p}+r_{i, p}=6$. As $r_{1,2}=r_{1, i}=r_{2, i}=0$, 2 -colours occupy altogether $6+6=12$ positions in the $\{1,2, i\}$-rows. By Claim 2, the number of places in A occupied by 2-colours is at least $2(n+6)$, hence the $\{p, q\}$-rows are filled in with 2 -colours. Therefore, colours appearing in $\{p, q\} \times[7, n]$ are there twice, i.e., $r_{p, q}=n-6 \leqslant 4$ (Claim 4) so that $n=9$ (Claim 26) and $r_{p, q}=3$. Thus, the set of colours missing in both $\{p, q\}$-rows is of cardinality $2 n+a+1-\left(2 n-t_{p, q}\right)=t_{p, q}+2=r_{p, q}+2=5$. However, any colour of that set must have two exemplars in $\{1,2, i\} \times S_{p, q}=\{1,2, i\} \times[7,9]$, a contradiction.

Now, suppose that $(*)$ is not fulfilled. Then any S_{α}-column with $\alpha \in R_{i, j}$ contains at most two colours of R_{k} (and if two, one of them is in the k-row), and so $r_{k} \leqslant$ $2+2=4$. Analogously, analyzing the situation of a colour $\beta \in R_{i, k}$, we obtain $r_{j} \leqslant 4$. On the other hand, by Claim $5,4 \leqslant r_{l, j}+r_{l, k}, l=1,2$ and, consequently, $8 \leqslant\left(r_{1, j}+r_{1, k}\right)+\left(r_{2, j}+r_{2, k}\right)=r_{j}+r_{k} \leqslant 8$, hence $r_{j}=r_{k}=r_{l, j}+r_{l, k}=4, l=1,2$. Furthermore, if $S_{\alpha}=\{p, q\}$, all of the following four sets contain exactly two colours of $R_{k}:[1,2] \times S_{\alpha},\{k\} \times S_{\alpha},\{1,2, k\} \times\{p\}$, and $\{1,2, k\} \times\{q\}$. Similarly, if $S_{\beta}=\{x, y\}$, exactly two colours of R_{j} are present in the sets $[1,2] \times S_{\beta},\{j\} \times S_{\beta},\{1,2, j\} \times\{x\}$ and $\{1,2, j\} \times\{y\}$. Thus, $S_{\alpha} \cap S_{\beta} \subseteq S_{i, j} \cap S_{i, k}=\emptyset:$ an $\left(S_{i, j} \cap S_{i, k}\right)$-column should contain at least one colour of each of the sets $R_{i, j}, R_{i, k}$ and exactly two colours of each of the sets R_{j}, R_{k}, which is impossible. By Claim 20, $\bar{w}(K(k))=r_{j}+r_{i, j}=4+r_{i, j} \geqslant 6$, hence $r_{i, j} \geqslant 2$ and, analogously, $r_{i, k} \geqslant 2$.

Let us show that $r_{i, j}=r_{i, k}=2$. Indeed, if e.g. $r_{i, j} \geqslant 3$, then, according to the above considerations, $s_{i, j} \leqslant 4$: with $s_{i, j} \geqslant 5$ we would have $r_{k} \geqslant 5$. Connections $R_{1, j} / R_{2, k}$ and $R_{1, k} / R_{2, j}$ (note that $r_{1, j} r_{2, k}>0$ and $r_{1, k} r_{2, j}>0$) can be realized (since $S_{i, j} \cap S_{i, k}=\emptyset$ and $r_{i, j} \geqslant 3$) only in $S_{i, j}$-columns and connections β / R_{j} in $S_{\beta^{-}}$ columns. Therefore, for any colour $\mu \in R_{j}$ with μ_{1} in $[1,2] \times S_{\beta}, \mu_{2}$ is in $\{j\} \times S_{i, j}$, and the number of such colours is at most $s_{i, j}-r_{i, j} \leqslant 4-r_{i, j}$. The number of colours of R_{j} with an exemplar in $\{j\} \times S_{\beta}$ is at most 2 , hence $r_{j} \leqslant\left(4-r_{i, j}\right)+2=6-r_{i, j} \leqslant 3$, a contradiction.

Thus, by Claim 2, $r_{j, k}=c_{2}-r_{j}-r_{k}-\left(r_{i, j}+r_{i, k}\right)=c_{2}-4-4-4 \geqslant(n+6)-12$. From Claim 4 it follows that $4 \geqslant r_{j, k} \geqslant n-6$, hence $n=9$ and $r_{j, k} \geqslant 3$, so that $r_{j, k}=r_{3,4}$ and $w=r_{i, j}+r_{i, k}+r_{j, k}=r_{3,4}+4$. By Claim 22 we have $w \leqslant 7$, hence $w=7$ (Claim 9), $r_{3,4}=3, c_{2}=15$ and $c_{3}=c_{3+}=5$. As $n=9=w(K(j))=w(K(k))$, the $\{j, k\}$-rows are filled in with 2-colours; three colours of $R_{j, k}$ appear there twice and the remaining twelve colours just once. Therefore, $c_{3}=r_{1,2, i}$ and then $s_{j, k} \geqslant 4$ since the colours of $R_{1,2, i}$ need at least ten places in $\{1,2, i\} \times S_{j, k}$. We have $S_{i, j} \cap S_{j, k}=\emptyset$: if $\mu \in R_{i, j}, \nu \in R_{j, k}$ and both μ, ν are in a common $\left(S_{i, j} \cap S_{j, k}\right)$-column, that column should contain μ, ν, two colours of R_{k} and at least two colours of $R_{1,2, i}$ (as $r_{1,2, i}=5$). Similarly, $S_{i, k} \cap S_{j, k}=\emptyset$, and so using $S_{i, j} \cap S_{i, k}=\emptyset$ we obtain $s_{j, k} \leqslant 9-s_{i, j}-s_{i, k} \leqslant 5$.

If $s_{j, k}=5$, consider colours $\gamma, \delta \in R_{k}$ present in $[1,2] \times S_{\alpha}$ and colours $\varepsilon, \zeta \in R_{j}$ present in $[1,2] \times S_{\beta}$. From $s_{i, j}=r_{i, j}=2=s_{i, k}=r_{i, k}$ it follows that $S_{i, j}=S_{\alpha}$, $S_{i, k}=S_{\beta}$, hence the sets $\{j\} \times S_{\alpha}$ and $\{k\} \times S_{\beta}$ are filled in with colours of $R_{i, j}$ and $R_{i, k}$, respectively. That is why γ_{2} and δ_{2} are in $\{k\} \times\left([1,9]-S_{\alpha}-S_{\beta}\right)$, while ε_{2} and ζ_{2} are in $\{j\} \times\left([1,9]-S_{\alpha}-S_{\beta}\right)$. Moreover, as $s_{j, k}=5, \gamma_{2}, \delta_{2}, \varepsilon_{2}$ and ζ_{2} cover four ([1, 9]-S $S_{\alpha}-S_{\beta}$)-columns. Because of connections $\{\gamma, \delta\} /\{\varepsilon, \zeta\}$, there is $l \in[1,2]$ such that $\gamma_{1}, \delta_{1}, \varepsilon_{1}$ and ζ_{1} share the l-row. If η, ϑ are colours of R_{k} in $\{k\} \times S_{\alpha}$ and ι, κ are colours of R_{j} in $\{j\} \times S_{\beta}$, then, because of connections $\{\varepsilon, \zeta\} /\{\eta, \vartheta\}$ and $\{\gamma, \delta\} /\{\iota, \kappa\}$, $\eta_{2}, \vartheta_{2}, \iota_{2}$ and κ_{2} must occur in $[1,2] \times\left([1,9]-S_{\alpha}-S_{\beta}\right)$. On the other hand, the number of colours of $R_{1,2, i}$ that appear in only two $S_{j, k}$-columns is at most 3 (only the colours of $R_{1,2, i}$ in the unique column with two colours of $R_{j, k}$ can have this property), and the total number of places occupied by $R_{1,2, i}$ in $S_{j, k}$-columns is at least $3 \cdot 2+2 \cdot 3=12$; this is a contradiction since $\left|\{1,2, i\} \times\left([1,9]-S_{\alpha}-S_{\beta}\right)\right|=15<12+\left|\left\{\eta_{2}, \vartheta_{2}, \iota_{2}, \kappa_{2}\right\}\right|$.

Thus, $s_{j, k}=4$. There are two colours $\gamma, \delta \notin R_{j, k}$ having an exemplar in $\{j, k\} \times$ $S_{j, k}$. Evidently, γ_{1} and δ_{1} are in independent positions; we may suppose without loss of generality that γ_{1} is in the j-row and δ_{1} in the k-row. Because of connections β / γ and $\alpha / \delta, \gamma_{2}$ must be in an S_{β}-column and δ_{2} must be in an S_{α}-column. That is why (note that the sets $S_{i, j}, S_{i, k}, S_{j, k}$ are pairwise disjoint) γ_{2} and δ_{2} must share an l-row, $l \in[1,2]$. Since (*) is not fulfilled, we can replace α by $\alpha^{\prime} \in R_{i, j}-\{\alpha\}$ and/or β by $\beta^{\prime} \in R_{i, k}-\{\beta\}$ and repeat the above analysis. Therefore, if ε and ζ are colours in (j, m) and (k, m), respectively, where m is the unique element of the set $[1,9]-S_{\alpha}-S_{\beta}-S_{j, k}$, there are only the following three possibilities: $\varepsilon \in R_{i, j}$ and $\zeta \in R_{k}, \varepsilon \in R_{j}$ and $\zeta \in R_{i, k}, \varepsilon \in R_{j}$ and $\zeta \in R_{k}$.

If $\varepsilon \in R_{j}$, then, because of connections $\varepsilon /\{\beta, \delta\}, \varepsilon_{2}$ must be in $\{l\} \times S_{\beta}$. As $w(K(l))=4$, at least one of the two colours of R_{k} appearing in $\{k\} \times S_{\alpha}$ has its second exemplar in the $(3-l)$-row, and so misses at least one of connections with γ and ε.

If $\zeta \in R_{k}$, then, analogously, there is a colour of R_{j} in $\{j\} \times S_{\beta}$ missing at least one of connections with δ and ζ.

Claim 28. $r_{3,4}=3$.
Proof of Claim 28. By Claims 26 and 4 , we have $r_{3,4} \leqslant 4$. If $r_{3,4}=4$, Claims 22 and 23 yield $n-2 \geqslant w \geqslant\left\lceil\frac{1}{3}(n+14)\right\rceil \geqslant \frac{1}{3}(n+14)$, hence $n \geqslant 10$, even $n \geqslant 11$ (Claim 26), and $w \geqslant 9$, so that $r_{3,5} \in[3,4]$.

Suppose first that $r_{3,5}=4$. We know that $r_{4} \geqslant 1$ and $r_{5} \geqslant 1$ (Claim 27). On the other hand, by Claim 21, $r_{1,4} r_{2,5}=r_{1,5} r_{2,4}=0$, hence there is $l \in[1,2]$ such that $r_{l, 4} r_{l, 5}>0$ and $r_{3-l, 4}=r_{3-l, 5}=0$. As $r_{3-l, l}=0$, with help of Claims 26, 5 and 4 we obtain $r_{3-l, 3}=4$ so that, by the choice of $K(1,2), w=8+r_{4,5}>$ $w(K(3-l, 3))=r_{l, 4}+r_{l, 5}+r_{4,5}+4, r_{l, 4}+r_{l, 5} \leqslant 3$ and, by Claim $5, r_{l, 3} \geqslant 1$. By Claim 20, $\bar{w}(K(3))=r_{l, 4}+r_{l, 5}+r_{4,5} \geqslant 6$, hence $r_{4,5} \geqslant 6-\left(r_{l, 4}+r_{l, 5}\right) \geqslant 3$. However, the inequalities $r_{4,5} \geqslant 3$ and $r_{l, 3}+r_{3-l, 3} \geqslant 1+4=5$ are in contradiction with Claim 12.

Now, assume that $r_{3,5}=3$. If there is $l \in[1,2]$ with $r_{l, 5} \geqslant 1$ and $r_{3-l, 4}=0$, then $r_{3-l, 3}+r_{3-l, 5} \geqslant 4$ (Claim 5), $r_{3-l, 3} \leqslant 2$ (Claim 13), $r_{3-l, 5} \geqslant 2, r_{l, 4} \geqslant 1$ (Claim 27) and so $r_{l, 4}+r_{3-l, 5}+r_{3,4}+r_{3,5} \geqslant 1+2+4+3=10$ in contradiction with Claim 21. Thus, we know that $r_{l, 5} \geqslant 1$ implies $r_{3-l, 4} \geqslant 1$ for $l=1,2$; moreover, allowing for symmetry, we may suppose that, in the case $r_{4,5}=r_{3,5}=3, r_{l, 5} \geqslant 1$ implies also $r_{3-l, 3} \geqslant 1$ for $l=1,2$.

By Claim 27, there is $l \in[1,2]$ such that $r_{l, 5} \geqslant 1$, hence $r_{3-l, 4} \geqslant 1$ and, by Claim 21, this is possible only if $r_{l, 5}=r_{3-l, 4}=1$. By the choice of $K(1,2)$, $w(K(l, 5))=1+\left(r_{3-l, 3}+1+4\right)<w=4+3+r_{4,5}, r_{3-l, 3} \leqslant r_{4,5}$ and $w(K(3-l))=$ $r_{3-l, 3}+1+r_{3-l, 5} \leqslant r_{4,5}+1+r_{3-l, 5}$. With respect to Claim $5, r_{3-l, 5}=0$ implies $r_{3-l, 3} \geqslant 3$ and, consequently, $r_{4,5}=r_{3-l, 3}=3$; in such a case, however, $r_{3,3-l}+r_{3,4}=7$ in contradiction with Claim 13 (as $r_{l, 5} \geqslant 1$). So, we may suppose that $r_{3-l, 5} \geqslant 1$.

If $r_{4,5}=3$, then by the above symmetry $r_{3-l, 5}=r_{l, 3}=1$ and $w(K(l))=r_{l, 4}+2$, $w(K(3-l))=r_{3-l, 3}+2$. Then Claim 5 yields $r_{l, 4} r_{3-l, 3}>0$ and $r_{l, 4}+r_{3-l, 3} \geqslant 4$, hence $r_{l, 4}+r_{3-l, 3}+r_{3,5}+r_{4,5} \geqslant 10$ in contradiction with Claim 21.

Finally, for $r_{4,5}=2$ we obtain $r_{3-l, 3} \leqslant 2, w(K(3-l, 5))=r_{3-l, 5}+\left(r_{l, 3}+r_{l, 4}+4\right)<$ $w=9, r_{3-l, 5}+r_{l, 3}+r_{l, 4} \leqslant 4, r_{l, 3}+r_{l, 4} \geqslant 3$ (Claim 5) and $\left(r_{l, 3}+r_{l, 4}\right)+r_{3,4} \geqslant 3+4=7$ in contradiction with Claim 13 (since $r_{3-l, 5} \geqslant 1$).

Now, the claim follows from Claim 19.
Put $d:=\sum_{l=1}^{2} \sum_{i=3}^{5} d(l, i)$, where $d(l, i):=w-w(K(l, i))$.
Claim 29. $d=7 w-3 c_{2}$.
Proof of Claim 29. If $\{i, j, k\}=[3,5]$, then $w(K(1, i))+w(K(2, i))=2 r_{j, k}+$ $\sum_{l=1}^{2} \sum_{m=3}^{5} r_{l, m}=2 r_{j, k}+c_{2}-w$, hence $-d(1, i)-d(2, i)=2 r_{j, k}+c_{2}-3 w$. Analogously,
$-d(1, j)-d(2, j)=2 r_{i, k}+c_{2}-3 w$ and $-d(1, k)-d(2, k)=2 r_{i, j}+c_{2}-3 w$. Summing the last three equalities we obtain $-d=2\left(r_{j, k}+r_{i, k}+r_{i, j}\right)+3 c_{2}-9 w=3 c_{2}-7 w$.

Claim 30. $r_{3,5}=2$.
Proof of Claim 30. By Claim 28, we have $3=r_{3,4} \geqslant r_{3,5}$. Suppose that $r_{3,5}=$ 3. If $w=7$, then $c_{2}=15$ (Claim 23), $n=9$ (Claim 2) and $\min \{w(K(1)), w(K(2))\} \geqslant$ $4\left(\right.$ Claim 5). Therefore, $14=2 w \geqslant w(K(1,5))+w(K(2,5))=2 r_{3,4}+r_{3}+r_{4}+r_{5}=$ $6+w(K(1))+w(K(2)) \geqslant 14$ and $w(K(1,5))=w(K(2,5))=7$. By the choice of $K(1,2)$, we see that then necessarily $r_{1,5}=r_{2,5}=0$. Since $r_{4} \leqslant 3$ (Claim 7), we have $r_{3}=c_{2}-w-r_{4}-r_{5} \geqslant 15-7-3-0=5$ and $9 \geqslant w(K(3))=r_{3}+r_{3,4}+r_{3,5} \geqslant$ $5+3+3=11$, a contradiction.

If $w \geqslant 8$, then, by Claim 22, $n \geqslant 10$, hence $n \geqslant 11$ and $c_{2} \geqslant 17$ (Claim 2). Consider first the case $w=8$, i.e., $r_{4,5}=2$. From Claim 29 we know that $d=56-3 c_{2} \leqslant 5$. By the choice of $K(1,2), d(l, i)=0$ implies $r_{l, i}=0$. By Claim 27, at most three summands of d are 0 's, so $d \geqslant 3, c_{2}=17, n=11$ and $d=5$. There must be $l \in[1,2]$ and $i \in[3,5]$ with $d(l, i)=0=r_{l, i}$; let $\{i, j, k\}=[3,5]$. Claim 27 yields $r_{3-l, i} \geqslant 1$ so that $7 \geqslant w(K(3-l, i))=r_{3-l, i}+\left(r_{l, j}+r_{l, k}+r_{j, k}\right) \geqslant 1+\left(4+r_{j, k}\right)$ (Claim 5) and $r_{j, k}=2$. Thus, $8=w(K(l, i))=r_{3-l, j}+r_{3-l, k}+r_{j, k}=r_{3-l, j}+r_{3-l, k}+2$. With help of Claim $5, c_{2}=8+w(K(l))+w(K(3-l)) \geqslant 8+4+7=19$, a contradiction.

If $w=9$ (and $r_{4,5}=3$), then $r_{l, i} \in[0,2]$ for any $l \in[1,2]$ and $i \in[3,5]$. Indeed, the assumptions $r_{l, i} \geqslant 3$ and $\{i, j, k\}=[3,5]$ would lead, by Claim 21, to $r_{3-l, j}=$ $r_{3-l, k}=0$. Then $r_{3-l, i} \geqslant 4$ (Claim 5) and $r_{l, i}+r_{3-l, i} \geqslant 7$; since $r_{j, k}=3$, we have obtained a contradiction with Claim 12. By Claim 5, we know that at least one summand of the sum $r_{l, 3}+r_{l, 4}+r_{l, 5}$ is 2 for both $l=1,2$. If there are $i, j \in[3,5]$, $i \neq j$, such that $r_{1, i}=r_{2, j}=2$, we obtain an immediate contradiction with Claim 21.

Therefore, we may suppose that there is $j \in[3,5]$ with $r_{1, j}=r_{2, j}=2$, and the remaining summands in $\sum_{l=1}^{2} \sum_{m=3}^{5} r_{l, m}$ are 1's. Let $\{i, j, k\}=[3,5]$ and consider colours $\alpha, \gamma \in R_{1, j}, \beta \in R_{2, k}, \delta \in R_{2, i}$. By Claim 21, the connections α / β and α / δ cannot be realized in the same column: in such a column there would be α, β, δ and at least one colour of each of the sets $R_{i, j}, R_{i, k}, R_{j, k}$, a contradiction. Therefore, with help of the same claim, positions in $[3,5] \times S_{\alpha}$ are occupied by α, all three colours of $R_{i, k}$, one colour of $R_{i, j}$ and one colour of $R_{j, k}$. Similarly, places in [3,5] $\times S_{\gamma}$ are occupied by γ, all three colours of $R_{i, k}$, one colour of $R_{i, j}$ and one colour of $R_{j, k}$. As a consequence, $S_{\alpha} \cap S_{\gamma}=\emptyset$ (if $S_{\alpha} \cap S_{\gamma} \neq \emptyset$, then for at least one colour $\varepsilon \in\{\alpha, \gamma\}$ the set $\{j\} \times S_{\varepsilon}$ is filled in with α and γ), and at least one of connections $\beta /\{\alpha, \gamma\}$ is missing.

To conclude the proof of Theorem 3, we are left with the case $r_{3,5}=r_{4,5}=2$. By Claim 23, we have $7=w \geqslant\left\lceil\frac{1}{3}(n+12)\right\rceil \geqslant \frac{1}{3}(n+12)$, hence $n=9$. Claim 27 implies
$r_{5} \geqslant 1$, therefore, by the choice of $K(1,2), 14=2 w>w(K(1,5))+w(K(2,5))=$ $2 r_{3,4}+w(K(1))+w(K(2)) \geqslant 6+4+4=14$, where, for the last inequality, we have used Claim 5.

To resume the results of the analysis of the achromatic number of $K_{5} \times K_{n}$, recall that $I_{3}=\{1,6\}, I_{2}=\{2,4,5,7,8,10\}, I_{1}=\{3,9\} \cup[11,14], I_{0}=[15,24]$, and put $I_{-1}:=\{25\}, I_{-2}:=[26,28]$.

Theorem 4. Let n be a positive integer and $a \in[-2,3]$.

1. If $n \in I_{a}$, then $\operatorname{achr}\left(K_{5} \times K_{n}\right)=2 n+a$.
2. If $n \in[29,36]$, then $\operatorname{achr}\left(K_{5} \times K_{n}\right)=\left\lfloor\frac{3}{2} n\right\rfloor+12$.
3. If $n \in[37,42]$, then $\operatorname{achr}\left(K_{5} \times K_{n}\right)=\left\lfloor\frac{5}{3} n\right\rfloor+6$.
4. If $n \geqslant 43$, then $\operatorname{achr}\left(K_{5} \times K_{n}\right)=\left\lfloor\frac{9}{5} n\right\rfloor$.

References

[1] A. Bouchet: Indice achromatique des graphes multiparti complets et réguliers. Cahiers Centre Études Rech. Opér. 20 (1978), 331-340.
[2] N. P. Chiang and H. L. Fu: On the achromatic number of the Cartesian product $G_{1} \times G_{2}$. Australas. J. Combin. 6 (1992), 111-117.
[3] N. P. Chiang and H. L. Fu: The achromatic indices of the regular complete multipartite graphs. Discrete Math. 141 (1995), 61-66.
[4] K. Edwards: The harmonious chromatic number and the achromatic number. In: Surveys in Combinatorics 1997. London Math. Soc. Lect. Notes Series 241 (R. A. Bailey, ed.). Cambridge University Press, 1997, pp. 13-47.
[5] F. Harary, S. Hedetniemi and G. Prins: An interpolation theorem for graphical homomorphisms. Portug. Math. 26 (1967), 454-462.
[6] M. Horñák and Š. Pčola: Achromatic number of $K_{5} \times K_{n}$ for large n. Discrete Math. 234 (2001), 159-169.
[7] M. Horňák and J. Puntigán: On the achromatic number of $K_{m} \times K_{n}$. In: Graphs and Other Combinatorial Topics. Proceedings of the Third Czechoslovak Symposium on Graph Theory, Prague, August 24-27, 1982 (M. Fiedler, ed.). Teubner, Leipzig, 1983, pp. 118-123.
[8] M. Yannakakis and F. Gavril: Edge dominating sets in graphs. SIAM J. Appl. Math. 38 (1980), 364-372.

Authors' addresses: M. Hor ňák, Institute of Mathematics, P. J. Šafárik University, Jesenná 5, 04154 Košice, Slovak Republic, e-mail: hornak@science.upjs.sk; S. P Pčola, Novitech a.s., Moyzesova 58, 04001 Košice, Slovak Republic, e-mail: pcola_stefan@tax. novitech.sk.

[^0]: The first author was supported by the Grant VEGA $1 / 7467 / 20$ of the Slovak Republic.

