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Abstract. We introduce the concepts of an annihilator and a relative annihilator of a
given subset of a BCK-algebra A . We prove that annihilators of deductive systems of
BCK-algebras are again deductive systems and moreover pseudocomplements in the lattice
D(A) of all deductive systems on A . Moreover, relative annihilators of C ∈ D(A) with
respect to B ∈ D(A) are introduced and serve as relative pseudocomplements of C w.r.t. B
in D(A).
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1. Introduction

BCK-algebras are important tools for recent investigations in algebraic logic. They

are algebras arising as an algebraic counterpart of purely implicational logics (see
[2]) containing only a logical connective implication→ and the constant 1 considered
as the value “true”, in which the formulas

(p → q) → ((q → r) → (p → r)),(B)

(p → (q → r)) → (q → (p → r))(C)

and

(K) p → (q → p)

are theorems. Here (B) or (C) means transitivity or commutativity, respectively.
BCK algebras were treated from various points of view, see e.g. [7], [8] or [9].

We will start with a formal definition of a larger class of algebras called BCC-
algebras ([6]):
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Definition. An algebra A = (A, ·, 1) with a binary operation · and a nullary
operation 1 is called a BCC-algebra if it satisfies the following axioms:
(BCC1) (z · x) · [(y · z) · (y · x)] = 1,
(BCC2) x · x = 1,
(BCC3) x · 1 = 1,
(BCC4) 1 · x = x,

(BCC5) x · y = 1 & y · x = 1 ⇒ x = y.

As usual, a congruence Θ on a BCC-algebra A is every compatible eqivalence on

A, its equivalence block [1]Θ containing the element 1 is called the kernel of Θ. The
set ConA of all congruences on A forms a lattice with respect to set inclusion. A

BCC-algebra satisfying the identity

x · (y · z) = y · (x · z)

is a BCK-algebra, see e.g. [7], [8]. Left distributive BCK-algebras, i.e. those in which

the identity
x · (y · z) = (x · y) · (x · z)

is valid, are called Hilbert algebras ([5]). The notion of a deductive system in a
BCK-algebra was introduced in [8]:

Definition. A subset D ⊆ A of a BCK-algebraA = (A, ·, 1) is called a deductive
system of A if
(D1) 1 ∈ D,

(D2) x · y ∈ D and x ∈ D imply y ∈ D.

Denote Ded A the set of all deductive systems of A . Since Ded A is closed under

arbitrary intersections, (Ded A ,⊆) is a complete algebraic lattice. For M ⊆ A let
D(M) denotes the deductive system generated by M .

In [8] it is shown that deductive systems of BCK-algebras are in a 1-1 correspon-
dence with their congruence kernels, namely we have

Lemma 1. Let A = (A, ·, 1) be a BCK-algebra, Θ, Ψ ∈ Con A , D ∈ Ded A .

Then

(1) [1]Θ is a deductive system of A
(2) the relation ΘD on A defined by 〈x, y〉 ∈ ΘD iff x · y, y · x ∈ D is a congruence

on A with [1]ΘD = D,

(3) each congruence is completely determined by its kernel, i.e. [1]Θ = [1]Ψ implies
Θ = Ψ.

Moreover, assignments (1) and (2) are isomorphisms between the lattices ConA

and Ded A .
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It can be easily checked that the relation 6 defined on a BCK-algebraA = (A, ·, 1)
by

x 6 y if and only if x · y = 1

is a partial order on A with 1 as the greatest element. This order relation is called
a natural ordering on A .

Example. It is known that every partially ordered set (P, 6, 1) with the greatest
element 1 can be regarded as a BCK-algebra if one defines the operation · on P as
follows:

x · y = 1 for x 6 y and x · y = y otherwise.

In fact such an algebra is a Hilbert one and its natural ordering coincides with the
given order 6.

Moreover, the operation · is compatible with the natural ordering in the following
sense:

Lemma 2. Let A = (A, ·, 1) be a BCK-algebra, 6 its natural ordering and
x, y, z ∈ A. Then x 6 y implies z · x 6 z · y and y · z 6 x · z.
���������

. Follows easily from (BCC1). �

Hilbert algebras were introduced in the 50-ties by L. Henkin and T. Skolem for

investigations in intuitionistic and other non-classical logics. In [3] it has been shown
that for a Hilbert algebra A the lattice Ded A is distributive and algebraic, hence

also pseudocomplemented and relatively pseudocomplemented (in spite of Lemma 1
the same holds also for the lattice Con A ). In [4] the description of pseudocomple-

ments or relative pseudocomplements, respectively, is given by means of the so-called
annihilators or relative annihilators.

The aim of this paper is to find a similar description for a larger class of all
BCK-algebras.

2. Annihilators and relative annihilators in BCK-algebras

In what follows suppose that A = (A, ·, 1) is a BCK-algebra. First we will focus
on properties of the lattice Ded A .
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Lemma 3. Let A = (A, ·, 1) be a BCK-algebra. The lattice Ded A is a dis-

tributive algebraic lattice, hence pseudocomplemented and relatively pseudocomple-

mented.
���������

. By Lemma 1 we know that lattices Ded A and Con A are isomorphic

and, moreover, each congruence is completely determined by its kernel. Hence to
prove distributivity of ConA it is enough to prove that for any triple Θ, Ψ, ϕ ∈
ConA the inclusion

[1]Θ∩(Ψ∨ϕ) ⊆ [1](Θ∩Ψ)∨(Θ∩ϕ)

holds (the converse inclusion is valid trivially). For this suppose x ∈ [1]Θ∩(Ψ∨ϕ),
hence there exist c1, . . . , cn ∈ A such that 1Θx and 1 = c1Ψc2ϕc3 . . . cn−1Ψcn = x.

Applying the substitution property we get

x = (1 · x)Ψ(c2 · x)ϕ(c3 · x) . . . (cn−1 · x)Ψ(x · x) = 1,

1 = (ci · 1)Θ(ci · x) and (ci−1 · x)Θ(ci · x) for all i ∈ 1, . . . , n. Altogether we have

x = (1 · x)(Ψ ∩Θ)(c2 · x)(ϕ ∩Θ)(c3 · x) . . . (cn−1 · x)(Ψ ∩Θ)(x · x) = 1

proving x ∈ [1](Θ∩Ψ)∨(Θ∩ϕ). Algebraicity of Ded A simply follows from algebraicity

of ConA . The fact that every distributive algebraic lattice is pseudocomplemented
is well-known. �

Now we are ready to describe pseudocomplements in Ded A . For the case of

commutative BCK-algebras, i.e. those which are join semilattices with respect to a
natural order, this was already done in [1]. In the general case we need to know

which pairs of deductive systems have trivial intersection.

Lemma 4. Let A = (A, ·, 1) be a BCK-algebra and A, B ∈ Ded A . Then

(1) A ∩ B = {(b · a) · a ; a ∈ A, b ∈ B},
(2) A ∩ B = {1} iff b · a = a for each a ∈ A and b ∈ B.
���������

. (1) DenoteM = {(b·a)·a ; a ∈ A, b ∈ B} and suppose y = (b·a)·a ∈ M .

We have a · [(b · a) · a] = (b · a) · (a · a) = (b · a) · 1 = 1 ∈ A and since a ∈ A, applying
(D2) we get (b · a) · a ∈ A. Analogously,

b · [(b · a) · a] = (b · a) · (b · a) = 1 ∈ B.

Using the same argument we obtain (b ·a) ·a ∈ B and altogether y = (b ·a) ·a ∈ A∩B.

Conversely, let z ∈ A ∩ B. Then setting a = b = z yields

z = 1 · z = (z · z) · z ∈ M

and proves the converse inclusion.
(2) easily follows from (1). �
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The foregoing result motivates us to introduce the following concepts.

Definition. Let B, C be subsets of a BCK-algebra A = (A, ·, 1). The subset

〈C〉 = {x ∈ A ; x · c = c for each c ∈ C}

is called an annihilator of C. The subset

〈C, B〉 = {x ∈ A ; (x · c) · c ∈ B for each c ∈ C}

is called a relative annihilator of C with respect to B. If C = {c} is a singleton, we
will write briefly 〈c〉 instead of 〈{c}〉.

One can easily prove the following properties of annihilators.

Lemma 5. Let A = (A, ·, 1) be a BCK-algebra, B, C ⊆ A.

(1) If B ⊆ C then 〈C〉 ⊆ 〈B〉,
(2) C ⊆ 〈〈C〉〉,
(3) 〈1〉 = A and 〈A〉 = {1},
(4) 〈C〉 =

⋂{〈x〉 ; x ∈ C}.

Theorem 1. Let A = (A, ·, 1) be a BCK-algebra. Then for each c ∈ A the

annihilator 〈c〉 is a deductive system of A and hence if C ∈ Ded A , the annihilator

〈C〉 is a pseudocomplement of C in Ded A .

���������
. Let us prove that 〈c〉 is a deductive system of A . Evidently, 1 ∈ 〈c〉.

Suppose further x · y, x ∈ 〈c〉 for some x, y ∈ A, i.e. x · c = c and (x · y) · c = c.
Applying (BCC1) we obtain

1 = (y · c) · [(x · y) · (x · c)] = (y · c) · [(x · y) · c] = (y · c) · c.

This means (y · c) 6 c and since the converse inequality is valid trivially, we get the
desired equality y · c = c.

Lemma 5(4) then yields that 〈C〉 is also a deductive system for each C ⊆ A. It is

an easy exercise to verify that 〈C〉 is a pseudocomplement of C ∈ Ded A . �

Now, we are interested in determining conditions under which a set and the de-
ductive system generated by this set have the same annihilators.
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Theorem 2. Let A = (A, ·, 1) be a BCK-algebra. The following conditions are
equivalent:

(1) 〈M〉 = 〈D(M)〉 for each M ⊆ A,

(2) for each b, c ∈ A, b · c = c if and only if c · b = b.
���������

. (1) ⇒ (2) Let b, c ∈ A be such that b · c = c, i.e. b ∈ 〈c〉. Then
we have b ∈ 〈D(c)〉 by (1). Since (c · b) · b ∈ D(c), we have b ∈ 〈(c · b) · b〉 and
1 = (c · b) · (b · b) = b · [(c · b) · b] = (c · b) · b, and finally, c · b = b.

(2) ⇒ (1) Let b, c ∈ A. By the definition of an annihilator,

b ∈ 〈c〉 if and only if c ∈ 〈b〉

for every b, c ∈ A.

First, we prove the required equality for every singleton M = {c}. By Lemma
5(4), 〈D(c)〉 =

⋂{〈x〉 ; x ∈ D(c)}. We need only to show that 〈c〉 ⊆ 〈D(c)〉 since the
opposite inclusion follows from Lemma 5 (1). Consider z ∈ 〈c〉. Then c ∈ 〈z〉 and,
by Theorem 1, 〈z〉 is a deductive system of A , whence D(c) ⊆ 〈z〉. Suppose now
x ∈ D(c). Then x ∈ 〈z〉 and again z ∈ 〈x〉, i.e.

z ∈
⋂
{〈x〉 ; x ∈ D(c)} = 〈D(c)〉.

Now let M ⊆ A. As was already proved, we have

〈M〉 =
⋂
{〈m〉 ; m ∈ M} = {〈D(m)〉 ; m ∈ M}.

If y ∈ 〈m〉 for each m ∈ M , then (2) implies m ∈ 〈y〉 which gives D(M) ⊆ 〈y〉. By
Lemma 5 we have y ∈ 〈〈y〉〉 ⊆ 〈D(M)〉 finishing the proof. �

Theorem 3. Let B, C be deductive systems of a BCK-algebra A = (A, ·, 1).
Then the relative annihilator 〈C, B〉 is a deductive system of A and it is a relative

pseudocomplement of C with respect to B in the lattice Ded A .
���������

. First, let us prove that for B, C ∈ Ded A , 〈C, B〉 is a deductive system
of A . It is immediate that 1 ∈ 〈C, B〉. To prove (D2) suppose x · y, x ∈ 〈C, B〉 for
some x, y ∈ A. This means

(x · c) · c ∈ B and ((x · y) · c) · c ∈ B

for each c ∈ C. We already know that x · c ∈ C, hence also

[(x · y) · (x · c)] · (x · c) ∈ B

1006



for each c ∈ C. Set u = (y ·c) · (x ·c). According to (BCC1), (y ·c) · ((x ·y) · (x ·c)) = 1
which is equivalent to (y ·c) 6 (x ·y) ·(x ·c). Applying Lemma 2 to the last inequality
we get

u = (y · c) · (x · c) > [(x · y) · (x · c)] · (x · c) ∈ B,

hence u ∈ B. Let us denote further v = (y · c) · c and prove that x · c = ((x · c) · c) · c.
The equality

(x · c)[((x · c) · c) · c] = [(x · c) · c)] · [(x · c) · c] = 1

yields x · c 6 ((x · c) · c) · c. Substituting y = (x · c) · c into the inequality (y · c) 6
(x · y) · (x · c) we obtain

((x · c) · c) · c 6 [x · ((x · c) · c)] · (x · c) = [(x · c) · (x · c)] · (x · c) = x · c,

proving the converse inequality. Finally we compute

[(x · c) · c] · [(y · c) · c] = (y · c) · [((x · c) · c) · c] = (y · c) · (x · c) ∈ B.

However, by the assumption also (x ·c) ·c ∈ B and since B is a deductive system of

A , also (y · c) · c ∈ B completing the proof of 〈C, B〉 ∈ Ded A . An easy computation
shows that C∩〈C, B〉 ⊆ B. Let us prove that 〈C, B〉 is the greatest deductive system
with the above property. Indeed, let F ∈ Ded A be such that C ∩ F ⊆ B. For each
c ∈ C and f ∈ F the element (f · c) · c ∈ C ∩ F ⊆ B, hence f ∈ 〈C, B〉 proving
F ⊆ 〈C, B〉. �
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