Czechoslovak Mathematical Journal

Ján Jakubík
 On varieties of pseudo $M V$-algebras

Czechoslovak Mathematical Journal, Vol. 53 (2003), No. 4, 1031-1040

Persistent URL: http://dml.cz/dmlcz/127858

Terms of use:

© Institute of Mathematics AS CR, 2003

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz

ON VARIETIES OF PSEUDO $M V$-ALGEBRAS

JÁn Jakubík, Košice

(Received March 12, 2001)

Abstract. In this paper we investigate the relation between the lattice of varieties of pseudo $M V$-algebras and the lattice of varieties of lattice ordered groups.

Keywords: pseudo $M V$-algebras, lattice ordered group, unital lattice ordered group, variety

MSC 2000: 06D35

1. INTRODUCTION AND PRELIMINARIES

The notion of pseudo $M V$-algebra has been introduced by Georgescu and Iorgulescu [4], [5] and by Rachůnek [8] (in [8], the term 'generalized $M V$-algebra' has been used).

We denote by \mathscr{V}_{1} and \mathscr{V}_{2} the collection of all varieties of pseudo $M V$-algebras and the collection of all varieties of lattice ordered groups, respectively. Under the set-theoretical inclusion, \mathscr{V}_{1} and \mathscr{V}_{2} are lattices.

In this paper we describe an injective mapping φ of \mathscr{V}_{2} into \mathscr{V}_{1} such that for any $Z_{1}, Z_{2} \in \mathscr{V} 2$ we have

$$
Z_{1} \subseteq Z_{2} \Leftrightarrow \varphi\left(Z_{1}\right) \subseteq \varphi\left(Z_{2}\right)
$$

If G is a lattice ordered group with a strong unit u, then the pair (G, u) is called a unital lattice ordered group.

We will apply a result of Dvurečenskij [2] on the relations between pseudo MValgebras and unital lattice ordered groups.

We define the notion of the regular class of unital lattice ordered groups and we denote by \mathscr{U} the collection of all such classes. We consider the partial order on \mathscr{U} defined by the class-theoretical inclusion.

Our method is as follows. First, we prove some auxiliary results concerning neutral ideals of and congruence relations on pseudo $M V$-algebras.

Then we construct an isomorphism of \mathscr{U} onto \mathscr{V}_{1}. Finally, we describe an injective order-preserving mapping of \mathscr{V}_{2} into \mathscr{U}.

For the results and for the bibliography concerning the varieties of $M V$-algebras cf. Chapter 8 of the monograph Cignoli, D'Ottaviano and Mundici [1].

2. Preliminaries

For the sake of completeness, we recall the definition of a pseudo $M V$-algebra.
Let $\mathscr{A}=(A ; \oplus, \neg, \sim, 0,1)$ be an algebra of type $(2,1,1,0,0)$. For $x, y \in A$ we put

$$
y \odot x=\sim(\neg x \oplus \neg y) .
$$

Assume that \mathscr{A} satisfies the following identities:
(A1) $x \oplus(y \oplus z)=(x \oplus y) \oplus z$;
(A2) $x \oplus 0=0 \oplus x=x$;
(A3) $x \oplus 1=1 \oplus x=1$;
(A4) $\sim 1=0 ; \neg 1=0$;
(A5) $\sim(\neg x \oplus \neg y)=\neg(\sim x \oplus \sim y)$;
(A6) $x \oplus \sim x \odot y=y \oplus \sim y \odot x=x \odot \neg y \oplus y=y \odot \neg x \oplus x$;
(A7) $x \odot(\neg x \oplus y)=(x \oplus \sim y) \oplus y$;
(A8) $\sim(-x)=x$.
Then \mathscr{A} is called a pseudo $M V$-algebra.
Let (G, u) be a unital lattice ordered group. Further, let A be the interval $[0, u]$ of G. For $x, y \in A$ we put

$$
x \oplus y=(x+y) \wedge u, \quad \neg x=u-x, \quad \sim x=-x+u, \quad 1=u
$$

Then the algebraic structure

$$
\Gamma(G, u)=(A ; \oplus, \neg, \sim, 0, u)
$$

is a pseudo $M V$-algebra.
Dvurečenskij [2] proved that for each pseudo $M V$-algebra \mathscr{A} there exists a unital lattice ordered group (G, u) such that $\mathscr{A}=\Gamma(G, u)$.

Let $\operatorname{Con} \mathscr{A}$ and $\operatorname{Con} G$ be the lattice of all congruence relations on \mathscr{A} and on G, respectively. For $\varrho \in \operatorname{Con} G$ we denote by $\psi_{0}(\varrho)$ the equivalence on A defined by

$$
\begin{equation*}
a_{1} \psi_{0}(\varrho) a_{2} \quad \text { iff } a_{1} \varrho a_{2}, \tag{1}
\end{equation*}
$$

where $a_{1}, a_{2} \in A$.

The relations between Con \mathscr{A} and $\operatorname{Con} G$ for the particular case when \mathscr{A} is an $M V$-algebra have been dealt with in [6, Section 1]; cf. also Cignoli, D'Ottaviano and Mundici [1, Chapter 7].

Let us now consider the case when \mathscr{A} is a pseudo $M V$-algebra. Then G need not be abelian. In this case we have to modify the method from [6] in the following two points:

1) Let $\varrho_{1} \in \operatorname{Con} \mathscr{A}$ and $0\left(\varrho_{1}\right)=\left\{a^{\prime} \in A: 0 \varrho_{1} a^{\prime}\right\}$. Further, let X_{0} be the convex ℓ-subgroup of G generated by the set $0\left(\varrho_{1}\right)$. We apply Theorem 6.10 from [3] to obtain the fact that X_{0} is an ℓ-ideal of G.
2) The expressions

$$
t=\neg\left(a_{2} \oplus \neg a_{3}\right), \quad t \varrho_{1}\left(a_{2} \oplus \neg a_{2}\right)
$$

in the proof of 1.5 in [6] are to be replaced by

$$
t=\neg\left(a_{2} \oplus \sim a_{3}\right), \quad t \varrho_{1} \neg\left(a_{2} \oplus \sim a_{2}\right) .
$$

The remaining arguments and the results of Section 1 in [6] remain valid for the pseudo $M V$-algebra \mathscr{A}. Thus we have
2.1. Lemma. The mapping ψ_{0} is an isomorphism of the lattice Con G onto the lattice Con \mathscr{A}.

Let ϱ be as above; put $\varrho_{1}=\psi_{0}(\varrho)$. For $g \in G$ we denote by \bar{g} the congruence class in ϱ containing the element g. Further, we construct in the usual way the factor structure $G / \varrho=\bar{G}$ which has the underlying set $\{\bar{g}: g \in G\}$. Then (\bar{G}, \bar{u}) is a unital lattice ordered group.

Similarly we can construct the factor structure $\overline{\mathscr{A}}^{1}=\mathscr{A} / \varrho_{1}$; its underlying set is $\left\{\bar{a}^{1}: a \in A\right\}$, where \bar{a}^{1} is the congruence class in ϱ_{1} containing the element a of A. Hence $\overline{\mathscr{A}}^{1}$ is a factor pseudo $M V$-algebra of \mathscr{A}.

In view of $[6,1.5$ and 1.8$]$, for each $a \in A$ we have

$$
\begin{equation*}
\bar{a}^{1}=A \cap \bar{a} . \tag{2}
\end{equation*}
$$

For each $a \in A$ we put

$$
\tau\left(\bar{a}^{1}\right)=\bar{a}
$$

Then in view of (2), τ is a correctly defined mapping of the set \bar{A}^{1} onto the interval $[\overline{0}, \bar{u}]$ of \bar{G}. Clearly $\tau\left(\overline{0}^{1}\right)=\overline{0}, \tau\left(\bar{u}^{1}\right)=\bar{u}$.

Consider the pseudo $M V$-algebras $\overline{\mathscr{A}}^{1}$ and $\Gamma(\bar{G}, \bar{u})$. Let $x, y \in A$. Then we have

$$
\begin{aligned}
\bar{x} \oplus \bar{y} & =(\bar{x}+\bar{y}) \wedge \bar{u}=\overline{(x+y) \wedge u}, \\
\bar{x}^{1} \oplus \bar{y}^{1} & =\overline{x \oplus y}^{1}=\overline{(x+y) \wedge u}^{1},
\end{aligned}
$$

whence $\tau\left(\bar{x}^{1} \oplus \bar{y}^{1}\right)=\bar{x} \oplus \bar{y}$.
Similarly we can verify the relations

$$
\tau\left(\neg \bar{x}^{1}\right)=\neg \bar{x}, \quad \tau\left(\sim \bar{x}^{1}\right)=\sim \bar{x} .
$$

Summarizing, we obtain
2.2. Lemma. The mapping τ is an isomorphism of the pseudo $M V$-algebra $\overline{\mathscr{A}}^{1}$ onto the pseudo $M V$-algebra $\Gamma(\bar{G}, \bar{u})$.

For the related result concerning $M V$-algebras cf. Theorem 7.4.2 in [1].
2.3. Lemma. Let G_{0} be a lattice ordered group and let $\emptyset \neq X \subseteq G_{0}^{+}$. Assume that the following conditions are valid:
(i) X is closed with respect to the operation +;
(ii) X is a sublattice of the lattice G_{0}^{+};
(iii) $x+X=X+x$ for each $x \in X$;
(iv) if $x_{1}, x_{2} \in X$ and $x_{1} \leqslant x_{2}$, then $-x_{1}+x_{2} \in X$ and $x_{2}-x_{1} \in X$.

Put $Y=\left\{x_{1}-x_{2}: x_{1}, x_{2} \in X\right\}$. Then Y is an ℓ-subgroup of G_{0} and $Y^{+}=X$.
Proof. a) Let $y, y^{\prime} \in Y$. Hence there are $x_{1}, x_{2}, x_{1}^{\prime}, x_{2}^{\prime} \in X$ such that $y=$ $x_{1}-x_{2}, y^{\prime}=x_{1}^{\prime}-x_{2}^{\prime}$. Then

$$
y+y^{\prime}=x_{1}-x_{2}+x_{1}^{\prime}-x_{2}^{\prime} .
$$

In view of (iii) there is $x_{1}^{\prime \prime} \in X$ such that $-x_{2}+x_{1}^{\prime}=x_{1}^{\prime \prime}-x_{2}$, whence according to (i) we have

$$
y+y^{\prime}=\left(x_{1}+x_{1}^{\prime \prime}\right)-\left(x_{2}^{\prime}+x_{2}\right) \in Y .
$$

Further, $-y=x_{2}-x_{1} \in Y$. Hence Y is a subgroup of the group G_{0}.
b) Let $y \in Y, y \geqslant 0$. Under the notation as above we have $x_{1} \geqslant x_{2}$. Then in view of (iv), $y \in X$.
c) Let y and y^{\prime} be as in a). Denote $z=-x_{2}-x_{2}^{\prime}$. Hence $y \geqslant z, y^{\prime} \geqslant z$. Then in view a) and b) we obtain $y-z \in X, y^{\prime}-z \in X$. Thus according to (ii) we have

$$
(y-z) \vee\left(y^{\prime}-z\right)=v \in X
$$

By applying a) we get $v+z \in Y$, whence $y \vee y^{\prime} \in Y$. Analogously we obtain the relation $y \wedge y^{\prime} \in Y$. Hence Y is an ℓ-subgroup of G_{0}. Further, from $X \subseteq G_{0}^{+}$and from b) we conclude that $Y^{+}=X$.

Now let us suppose that G_{0} is a lattice ordered group with a strong unit u and that \mathscr{A}_{1} is a subalgebra of the pseudo $M V$-algebra $\Gamma\left(G_{0}, u\right)$. Let A_{1} be the underlying set of \mathscr{A}_{1}. Hence $A_{1} \subseteq G_{0}^{+}$.

We will apply some results of Section 2 of [2]. We denote by X the set of all elements $g \in G_{0}$ which can be expressed in the form

$$
g=a_{1}+a_{2}+\ldots+a_{n} \quad\left(a_{1}, a_{2}, \ldots, a_{n} \in A_{1}, \quad n \geqslant 1\right) .
$$

Then X satisfies the condition (i) from 2.3. Further, from Proposition 3.7 and Proposition 3.8 in [2] we conclude that the conditions (ii), (iii) and (iv) from 2.3 are satisfied as well. Let Y be as in 2.3; thus Y is an ℓ-subgroup of G_{0}.

We denote by $[0, u]_{2}$ the interval with the endpoints 0 and u in Y.
2.4. Lemma. $[0, u]_{2}=A_{1}$.

Proof. Let $a \in A_{1}$. Then $0 \leqslant a \leqslant u$. Further, $a \in X \subseteq Y$, whence $a \in[0, u]_{2}$. Conversely, let $t \in[0, u]_{2}$. Then $0 \leqslant t \leqslant u$ and $t \in Y$. Thus in view of $2.3, t \in X$. Hence there are $a_{1}, a_{2}, \ldots, a_{n} \in A_{1}$ with $t=a_{1}+\ldots+a_{n}$. Because $t \leqslant u$, by considering the pseudo $M V$-algebra $\Gamma\left(G_{0}, u\right)$ we conclude that we have

$$
\begin{equation*}
t=a_{1} \oplus \ldots \oplus a_{n} \tag{*}
\end{equation*}
$$

in $\Gamma\left(G_{0}, u\right)$. Since \mathscr{A}_{1} is a subalgebra of $\Gamma\left(G_{0}, u\right)$, the equality $(*)$ holds in \mathscr{A}_{1} as well. Therefore $t \in A_{1}$.

In view of $2.3,2.4$ and of the fact that \mathscr{A}_{1} is a subalgebra of $\Gamma\left(G_{0}, u\right)$ we obtain
2.5. Lemma. Under the notation as above, $\mathscr{A}_{1}=\Gamma(Y, u)$.

3. Regular classes of unital lattice ordered groups

We denote by \mathscr{G}_{0} the class of all unital lattice ordered groups. Let $\left(G_{i}, u_{i}\right)_{i \in I}$ be an indexed system of elements of \mathscr{G}_{0}. Consider the direct product

$$
G^{0}=\prod_{i \in I} G_{i}
$$

For $g \in G^{0}$ and $i \in I$ we denote by $g\left(G_{i}\right)$ the component of the element g in G_{i}. There exists $u^{0} \in G^{0}$ such that $u^{0}\left(G_{i}\right)=u_{i}$ for each $i \in I$. Let G^{1} be the convex
ℓ-subgroup of G^{0} which is generated by the element u^{0}. Then u^{0} is a strong unit of G^{1}, whence $\left(G^{1}, u^{0}\right) \in \mathscr{G}_{0}$. We denote

$$
G^{1}=\prod_{i \in I}^{1} G_{i}
$$

Assume that $\left(G_{1}, u_{1}\right)$ belongs to \mathscr{G}_{0} and let φ be a homomorphism of G_{1} into a lattice ordered group G_{2}. Then $\varphi\left(u_{1}\right)$ is a strong unit of $\varphi\left(G_{1}\right)$, hence $\left(\varphi\left(G_{1}\right), \varphi\left(u_{1}\right)\right) \in$ \mathscr{G}_{0}. We say that $\left(\left(\varphi\left(G_{1}\right), \varphi\left(u_{1}\right)\right)\right.$ is a homomorphic image of $\left(G_{1}, u_{1}\right)$ (under the homomorphism φ).

Let X_{0} be the kernel of φ and let ϱ be the congruence relation on G_{1} determined by the ℓ-ideal X_{0}. For $x \in G_{1}$ we denote by \bar{x} the class of the partition of G_{1} corresponding to ϱ such that $x \in \bar{x}$. Hence \bar{u}_{1} is a strong unit of $G_{1} / \varrho=\bar{G}_{1}$ and $\left(\bar{G}_{1}, \bar{u}_{1}\right)$ is isomorphic to $\left(\varphi\left(G_{1}\right), \varphi\left(u_{1}\right)\right)$.
3.1. Definition. A nonempty subclass Y of \mathscr{G}_{0} is called regular if it satisfies the following conditions:
(i) Let $\left(H_{1}, u_{1}\right) \in Y$ and let H_{2} be an ℓ-subgroup of H_{1} such that $u_{1} \in H_{2}$. Then $\left(H_{2}, u_{1}\right) \in Y$.
(ii) The class Y is closed with respect to homomorphisms.
(iii) Assume that $\left(G_{i}, u_{i}\right)_{i \in I}$ is an indexed system of elements of Y. Let u^{0} and G^{1} be as above. Then $\left(G^{1}, u^{0}\right) \in Y$.

Let $X \in \mathscr{V}_{1}$. Each element $\mathscr{A} \in X$ can be written as $\mathscr{A}=\Gamma(G, u)$ with $(G, u) \in \mathscr{G}_{0}$. We denote by Y the class of all such (G, u).
3.2. Lemma. The class Y satisfies the condition (i) from 3.1.

Proof. Assume that H_{1}, H_{2} and u_{1} are as in the condition (i) of 3.1. There exists $\mathscr{A}_{1} \in X$ with $\mathscr{A}_{1}=\Gamma\left(H_{1}, u_{1}\right)$.

The element u_{1} is a strong unit of H_{2}, hence we can construct the pseudo $M V$ algebra $\mathscr{A}_{2}=\Gamma\left(H_{2}, u_{1}\right)$.

Let us denote by \oplus_{i}, \neg_{i} and \sim_{i} the corresponding operations in $\mathscr{A}_{i}(i=1,2)$. If ,+- and \wedge are the operations in H_{1}, then from the fact that H_{2} is an ℓ-subgroup of H_{1} we conclude that for $h, h^{\prime} \in H_{2}$ we have

$$
\begin{gathered}
h \oplus_{1} h^{\prime}=\left(h+h^{\prime}\right) \wedge u_{1}=h \oplus_{2} h^{\prime} \\
\neg_{1} h=u_{1}-h=\neg_{2} h, \quad \sim_{1} h=-h+u_{1}=\sim_{2} h .
\end{gathered}
$$

Hence \mathscr{A}_{2} is an subalgebra of \mathscr{A}_{2}. Since $\mathscr{A}_{1} \in X$, we get $\mathscr{A}_{2} \in X$. Thus $\left(H_{2}, u_{1}\right) \in Y$.
3.3. Lemma. The class Y satisfies the condition (ii) from 3.1.

Proof. Let $(G, u) \in Y$ and let $(\varphi(G), \varphi(u))$ be a homomorphic image of (G, u). Then without loss of generality we can assume that $(\varphi(G), \varphi(u))=(\bar{G}, \bar{u})$, where $\bar{G}=G / \varrho$ for some congruence relation ϱ on G. Thus in view of $2.2, \Gamma(\bar{G}, \bar{u})$ is isomorphic to a pseudo $M V$-algebra $\overline{\mathscr{A}}^{1}=\Gamma(G, u) \in X$. Then $\overline{\mathscr{A}}^{1} \in X$, whence $(\bar{G}, \bar{u}) \in Y$.
3.4. Lemma. The class Y satisfies the condition (iii) from 3.1.

Proof. Suppose that the assumptions of the condition (iii) of 3.1 are satisfied. For each $i \in I$ there exists $\mathscr{A}_{i} \in X$ with $\mathscr{A}_{i}=\Gamma\left(G_{i}, u_{i}\right)$. Put

$$
\mathscr{A}=\Gamma\left(G^{1}, u^{0}\right) .
$$

From the relation

$$
G^{1}=\prod_{i \in I}^{1} G_{i}
$$

we conclude that the interval $\left[0, u^{0}\right]$ of G^{1} can be written as a direct product

$$
\left[0, u^{0}\right]=\prod_{i \in I}\left[0, u_{i}\right]
$$

Thus in view of the results of [6], the pseudo $M V$-algebra \mathscr{A} is isomorphic to the direct product of the pseudo $M V$-algebras $\mathscr{A}_{i}(i \in I)$. Therefore \mathscr{A} belongs to the variety X. This yields that $\left(G^{1}, u^{0}\right)$ is an element of Y.

Under the notation as above we put $Y=\psi_{1}(X)$. Thus according to 3.2, 3.3 and 3.4 we have
3.5. Lemma. ψ_{1} is a mapping of the collection \mathscr{V}_{1} into \mathscr{U}.

Now let $Y_{1} \in \mathscr{U}$. We denote by X_{1} the class of all pseudo $M V$-algebras \mathscr{A} such that $\mathscr{A}=\Gamma(G, u)$ for some $(G, u) \in Y_{1}$.
3.6. Lemma. The class X_{1} is closed with respect to subalgebras.

Proof. Let $\mathscr{A} \in X_{1}$. Thus there is $(G, u) \in Y_{1}$ with $\mathscr{A}=\Gamma(G, u)$. Let \mathscr{A}_{1} be a subalgebra of \mathscr{A}. In view of 2.5 there exists an ℓ-subgroup G_{1} of G such that u is a strong unit of G_{1} and $\mathscr{A}_{1}=\Gamma\left(G_{1}, u\right)$. Then we have $\left(G_{1}, u\right) \in Y_{1}$, whence $\mathscr{A}_{1} \in X_{1}$.
3.7. Lemma. The class X_{1} is closed with respect to homomorphic images.

Proof. Let $\mathscr{A} \in X_{1}$. It suffices to verify that, whenever ϱ_{1} is a congruence relation on \mathscr{A}, then $\mathscr{A} / \varrho_{1}$ belongs to X_{1}.

Let (G, u) be as in the proof of 3.6 and let ϱ_{1} be a congruence relation on \mathscr{A}. Put $\mathscr{A} / \varrho_{1}=\overline{\mathscr{A}}^{1}$. Let (\bar{G}, \bar{u}) be as in 2.2. Since Y_{1} is closed with respect to homomorphisms, we get $(\bar{G}, \bar{u}) \in Y_{1}$ and hence $\Gamma(\bar{G}, \bar{u}) \in X_{1}$. Then according to 2.2 we obtain that $\mathscr{A} / \varrho_{1}$ belongs to X_{1}.
3.8. Lemma. The class X_{1} is closed with respect to direct products.

Proof. Let $(\mathscr{A})_{i \in I}$ be an indexed system of elements of X_{1}. For each $i \in I$ there exists $\left(G_{i}, u_{i}\right) \in Y_{1}$ with $\Gamma\left(G_{i}, u_{i}\right)=\mathscr{A}_{i}$. Put

$$
\begin{equation*}
\mathscr{A}=\prod_{i \in I} \mathscr{A}_{i} . \tag{*}
\end{equation*}
$$

Further, let $\left(G^{1}, u^{0}\right)$ be as above. Since $Y_{1} \in \mathscr{U}$ and $\left(G_{i}, u_{i}\right) \in Y_{1}$ we get $\left(G^{1}, u^{0}\right) \in$ Y_{1}. The relation $(*)$ yields that $\mathscr{A}=\Gamma\left(G^{1}, u^{0}\right)$. Thus $\mathscr{A} \in X_{1}$.

In view of $3.6,3.7$ and 3.8 we have
3.9. Lemma. The class X_{1} is a variety of pseudo $M V$-algebras.

Let us put $X_{1}=\chi_{1}\left(Y_{1}\right)$ for each $Y_{1} \in \mathscr{U}$. From the definitions of ψ_{1} and χ_{1} we immediately obtain

3.10. Lemma.

(i) $\chi_{1}=\psi_{1}^{-1}$.
(ii) If $X_{1}, X_{2} \in \mathscr{V}_{1}$ and $Y_{1}, Y_{2} \in \mathscr{U}$, then

$$
\begin{aligned}
X_{1} \subseteq X_{2} & \Leftrightarrow \psi_{1}\left(X_{1}\right) \subseteq \psi_{1}\left(X_{2}\right) \\
Y_{1} \subseteq Y_{2} & \Leftrightarrow \chi_{1}\left(Y_{1}\right) \subseteq \chi_{1}\left(Y_{2}\right) .
\end{aligned}
$$

Hence we get as a corollary
3.11. Theorem. ψ_{1} is an isomorphism of the partially ordered set \mathscr{V}_{1} onto the partially ordered collection \mathscr{U}.

4. The relation between \mathscr{U} and \mathscr{V}_{2}

Assume that Z is a variety of lattice ordered groups. We denote by Y the class of all unital lattice ordered groups (G, u) such that G belongs to Z.
4.1. Lemma. The class Y is regular.

Proof. It is obvious that Y is nonempty. We have to verify that the conditions (i), (ii) and (iii) from 3.1 are satisfied.

The validity of (i) and of (ii) is obvious. Let $\left(G_{i}, u_{i}\right)_{i \in I}, u^{0}$ and G^{1} be as in the condition (iii) of 3.1. Further, let G^{0} be as above. Then $G_{i} \in Z$ for each $i \in I$, hence $G^{0} \in Z$ and thus G^{1} belongs to Z as well. Also, u^{0} is a strong unit of G^{1}. Therefore $\left(G^{1}, u^{0}\right) \in Y$. Thus the condition (iii) from 3.1 is satisfied.

If Z and Y are as above, then we write $Y=\psi_{2}(Z)$. Hence ψ_{2} is a mapping of \mathscr{V}_{2} into \mathscr{U}. It is clear that if Z_{1}, Z_{2} are elements of \mathscr{V}_{2}, then

$$
Z_{1} \subseteq Z_{2} \Rightarrow \psi_{2}\left(Z_{1}\right) \subseteq \psi_{2}\left(Z_{2}\right)
$$

4.2. Lemma. Let $Z_{1}, Z_{2} \in \mathscr{V}_{2}$. Assume that Z_{1} is not a subclass of Z_{2}. Then $\psi_{2}\left(Z_{1}\right)$ is not a subclass of $\psi_{2}\left(Z_{2}\right)$.

Proof. By way of contradiction, assume that

$$
\begin{equation*}
\psi_{2}\left(Z_{1}\right) \subseteq \psi_{2}\left(Z_{2}\right) \tag{1}
\end{equation*}
$$

Since the varieties can be defined by identities and since the relation $Z_{1} \subseteq Z_{2}$ fails to be valid we conclude that there exists an identity

$$
\begin{equation*}
p\left(x_{1}, \ldots, x_{n}\right)=q\left(x_{1}, \ldots, x_{n}\right) \tag{2}
\end{equation*}
$$

where p and q are terms constructed by the operations $+,-, \wedge, \vee$ such that
(i) the identity (2) is valid for Z_{2},
(ii) the identity (2) fails to be valid for Z_{1}.

In view of (ii), there exists $G_{1} \in Z_{1}$ such that G_{1} does not satisfy the identity (2). Hence there are elements $g_{1}, g_{2}, \ldots, g_{n} \in G_{1}$ such that

$$
\begin{equation*}
p\left(g_{1}, \ldots, g_{n}\right) \neq q\left(g_{1}, \ldots, g_{n}\right) \tag{3}
\end{equation*}
$$

Put

$$
u=\left|g_{1}\right| \vee\left|g_{2}\right| \vee \ldots \vee\left|g_{n}\right|
$$

and let G_{1}^{\prime} be the convex ℓ-subgroup of G_{1} which is generated by the element u. Then u is a strong unit of G_{1}^{\prime}, whence

$$
\left(G_{1}^{\prime}, u\right) \in \psi_{2}\left(Z_{1}\right)
$$

Thus according to (1) we have $\left(G_{1}^{\prime}, u\right) \in \psi_{2}\left(Z_{2}\right)$. This yields that $G_{1}^{\prime} \in Z_{2}$ and then, in view of (i), G_{1}^{\prime} satisfies the identity (2). Since $g_{1}, g_{2}, \ldots, g_{n} \in G_{1}^{\prime}$, according to (3) we have arrived at a contradiction.

Summarizing, from 4.1 and 4.2 we conclude
4.3. Proposition. ψ_{2} is an injective mapping of \mathscr{V}_{2} into \mathscr{U} such that for $Z_{1}, Z_{2} \in$ \mathscr{V}_{2} we have

$$
Z_{1} \subseteq Z_{2} \Leftrightarrow \psi_{2}\left(Z_{1}\right) \subseteq \psi_{2}\left(Z_{2}\right)
$$

Hence according to 3.10 we obtain
4.4. Theorem. There exists an injective mapping φ of \mathscr{V}_{2} into \mathscr{V}_{1} such that for $Z_{1}, Z_{2} \in \mathscr{V}_{2}$ we have

$$
Z_{1} \subseteq Z_{2} \Leftrightarrow \varphi\left(Z_{1}\right) \subseteq \varphi\left(Z_{2}\right) .
$$

References

[1] R. Cignoli, M. I. D'Ottaviano and D. Mundici: Algebraic Foundations of many-valued Reasoning. Trends in Logic, Studia Logica Library, Vol. 7, Kluwer Academic Publishers, Dordrecht, 2000.
[2] A. Dvurečenskij: Pseudo $M V$-algebras are intervals in ℓ-groups. J. Austral. Math. Soc. (Ser. A) 72 (2002), 427-445.
[3] A. Dvurečenskij: States on pseudo $M V$-algebras. Studia Logica. To appear.
[4] G. Georgescu and A. Iorgulescu: Pseudo $M V$-algebras: a noncommutative extension of $M V$-algebras. In: The Proceedings of the Fourth International Symposium on Economic Informatics, Buchurest, Romania. 1999, pp. 961-968.
[5] G. Georgescu and A. Iorgulescu: Pseudo MV-algebras. Multiple-Valued Logic (a special issue dedicated to Gr. C. Moisil) 6 (2001), 95-135.
[6] J. Jakubik: Subdirect product decompositions of $M V$-algebras. Czechoslovak Math. J. 49 (1999), 163-173.
[7] J. Jakubik: Direct product decompositions of pseudo $M V$-algebras. Arch. Math. 37 (2001), 131-142.
[8] J. Rachionek: A non-commutative generalization of $M V$-algebras. Czechoslovak Math. J. 52 (2002), 255-273.
[9] J. Rachůnek: Prime spectra of non-commutative generalizations of $M V$-algebras. (Submitted).

Author's address: Matematický ústav SAV, Grešákova 6, 04001 Košice, Slovakia, e-mail: musavke@saske.sk.

