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Dedicated to the memory of Karim Seddighi

Abstract. Let {β(n)}∞n=0 be a sequence of positive numbers and 1 6 p < ∞. We consider
the space Hp(β) of all power series f(z) =

∞	
n=0

f̂(n)zn such that
∞	

n=0
|f̂ (n)|pβ(n)p < ∞. We

investigate strict cyclicity of H∞
p (β), the weakly closed algebra generated by the operator

of multiplication by z acting on Hp(β), and determine the maximal ideal space, the dual
space and the reflexivity of the algebra H∞

p (β). We also give a necessary condition for a
composition operator to be bounded on Hp(β) when H∞

p (β) is strictly cyclic.

Keywords: the Banach space of formal power series associated with a sequence β,
bounded point evaluation, strictly cyclic maximal ideal space, Schatten p-class, reflexive
algebra, semisimple algebra, composition operator
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Introduction

First, in the following we generalize the definitions from [4].

Let {β(n)} be a sequence of positive numbers with β(0) = 1 and 1 6 p < ∞. We
consider the space of sequences f = {f̂(n)}∞n=0 such that

‖f‖p = ‖f‖p
β =

∞∑

n=0

|f̂(n)|pβ(n)p < ∞.

The notation f(z) =
∞∑

n=0
f̂(n)zn shall be used whether or not the series converges for

any value of z. These are called formal power series. LetHp(β) denote the space of all
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such formal power seires. These are reflexive Banach spaces with the norm ‖·‖β ([3])

and the dual of Hp(β) is Hq
(
βp/q

)
where 1/p+1/q = 1 and βp/q =

{
β(n)p/q

}
n
([5]).

Also if g(z) =
∞∑

n=0
ĝ(n)zn ∈ Hq

(
βp/q

)
, then ‖g‖q =

∞∑
n=0

|ĝ(n)|qβ(n)p. The Hardy,

Bergman and Dirichlet spaces can be viewed in this way when p = 2 and respectively
β(n) = 1, β(n) = (n + 1)−1/2 and β(n) = (n + 1)1/2. If lim

n
β(n + 1)/β(n) = 1 or

lim inf
n

β(n)1/n = 1, thenHp(β) consists of functions analytic on the open unit disc U .

It is convenient and helpful to introduce the notation 〈f, g〉 to stand for g(f) where

f ∈ Hp(β) and g ∈ Hp(β)∗. Note that 〈f, g〉 =
∞∑

n=0
f̂(n)ĝ(n)β(n)p.

Let f̂k(n) = δk(n). So fk(z) = zk and then {fk}k is a basis such that ‖fk‖ = β(k).
Clearly Mz, the operator of multiplication by z on Hp(β), shifts the basis {fk}k.

A function ϕ in Hp(β) that maps the unit disc U into itself induces a composition
operator Cϕ on Hp(β) defined by Cϕf = f ◦ ϕ.

We denote the set of multipliers {ϕ ∈ Hp(β) : ϕHp(β) ⊆ Hp(β)} by H∞
p (β) and

the linear transformation of multiplication by ϕ on Hp(β) byMϕ. The space H∞
p (β)

is a commutative Banach algebra under the norm ‖ϕ‖∞ = ‖Mϕ‖ and also H∞
p (β) is

equal to the weakly closed algebra generated by Mz.

Let X be a Banach space. We denote by B(X ) the set of all bounded operators
on X . A subalgebra A of B(X ) is cyclic if A x0 is dense in X for some x0 in X .
A is strictly cyclic if A x0 = X . The vector x0 is called cyclic for A in the former

case and strictly cyclic in the latter case. We say that Mz is strictly cyclic on Hp(β)
if H∞

p (β) is strictly cyclic. In this case f0 (f0 = 1) is a strictly cyclic vector and
H∞

p (β) = Hp(β). This implies that Mz is strictly cyclic if and only if fg ∈ Hp(β)
for all f and g in Hp(β).
Remember that a complex number λ is said to be a bounded point evaluation

on Hp(β) if the functional of point evaluation at λ, eλ, is bounded. The functional

of evaluation of the j-th derivative at λ is denoted by e
(j)
λ .

If Ω is a bounded domain in the complex domain 
 , then by H(Ω) and H∞(Ω) we
mean respectively the set of all analytic functions and the set of all bounded analytic
functions on Ω. By ‖ · ‖Ω we denote the supremum norm on Ω.

Main results

In this section we investigate strict cyclicity of the operator Mz and characterize

the maximal ideal space and the dual space of H∞
p (β) and study the reflexivity

of H∞
p (β). Also a sufficient condition for a composition operator to be bounded

on Hp(β) will be given.
Note that the spectral radius of Mz is denoted by r(Mz).
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Lemma 1. If Mz is strictly cyclic on Hp(β), then lim inf
n

β(n)1/n = r(Mz).

�
�������
. It follows from the fact that Ω1 =

{
z : |z| < lim inf

n
β(n)1/n

}
is the

largest open disc such that Hp(β) ⊂ H(Ω1) and Ω2 = {z : |z| < r(Mz)} is the
largest open disc such that H∞

p (β) ⊂ H∞(Ω2) (see Theorems 1 and 3 in [6]). �

Proposition 2. If Mz is strictly cyclic on Hp(β), then for all f(z) =
∞∑

n=0
f̂(n)zn

in Hp(β), ‖f‖p 6 ‖f‖∞ 6 c‖f‖p and
∞∑

n=0
|f̂(n)|(r(Mz))n 6 c‖f‖p for some c > 0.

�
�������
. Since Mz is strictly cyclic, Hp(β) = H∞

p (β)f0 = H∞
p (β). Let % :

H∞
p (β) −→ Hp(β) be the map %(Mf ) = Mff0. Then clearly ‖%‖ 6 ‖f0‖ = 1 and
so % is continuous and ‖f‖p 6 ‖f‖∞. Since % is bijective, by the Inverse Mapping

Theorem %−1 is bounded and so for some constant c > 0, ‖f‖∞ 6 c‖f‖p. Thus
indeed ‖f‖p 6 ‖f‖∞ 6 c‖f‖p. Now let |λ0| = r(Mz). We show that the functional
of evaluation at λ0 is bounded. Let s be a polynomial. From theorem (3) in [6],
|s(λ0)| 6 ‖Ms‖. But ‖Ms‖ = ‖s‖∞ and as we saw ‖s‖∞ 6 c‖s‖p. Thus for all
polynomials s, |s(λ0)| 6 c‖s‖p. Since polynomials are dense in Hp(β), the point
evaluation at λ0, eλ0 , is bounded and

‖eλ0‖q =
∞∑

n=0

|λ0|nq

β(n)q
=

∞∑

n=0

(r(Mz))nq

β(n)q
< ∞,

where 1/p + 1/q = 1 ([5]). Now by the Hölder inequality we have

∣∣∣∣
∞∑

n=0

f̂(n)r(Mz)n

∣∣∣∣ 6
( ∞∑

n=0

|f̂(n)|β(n)p

)1/p( ∞∑

n=0

(r(Mz))nq

β(n)q

)1/q

= ‖f‖p‖eλ0‖.

This completes the proof. �

Theorem 3. Suppose that Mz is strictly cyclic. Then a linear functional L

on H∞
p (β) is multiplicative if and only if L is the functional of point evaluation at

some point of {z ∈ 
 : |z| 6 r(Mz)}.
�
�������

. Let L be multiplicative and put L(f1) = λ1 (f1(z) = z1), hence L(fn) =
λn

1 for all n and so L(p) = p(λ1) for all polynomials p. Since L is bounded and the

polynomials are dense in Hp(β), if follows that λ1 is a bounded point evaluation
on Hp(β) and indeed L = eλ1 .
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Conversely, let λ ∈ {z : |z| 6 r(Mz)}. Then
∞∑

n=0

|λ|nq

β(n)q
6

∞∑

n=0

(r(Mz))nq

β(n)q
< ∞.

So the functionals of point evaluation at λ, eλ, are bounded for all λ in {z : |z| 6
r(Mz)} and eλ(fg) = (fg)(λ) = eλ(f)eλ(g). Thus eλ is multiplicative. �

In the following we denote the spectrum of ϕ by σ(ϕ). Recall that the maximal
ideal space of H∞

p (β) is the set of all nonzero homomorphisms of H∞
p (β) −→ 
 with

w∗ topology.

Corollary 4. Suppose that Mz is strictly cyclic. Then the maximal ideal space

of H∞
p (β) is the set {eλ : λ ∈ Ω} where Ω = {z : |z| < r(Mz)}. Also for ϕ ∈ H∞

p (β),
σ(ϕ) = ϕ(Ω) and so ϕ is a cyclic vector for Mz if and only if ϕ never vanishes on Ω.
�
�������

. The first part follows immediately from the above theorem and for the
second part, by Theorem 8.6 of Chapter VII in [1], we have

σ(ϕ) = {h(ϕ) : h is a nonzero homomorphism}
= {eλ(ϕ) : λ ∈ Ω} = {ϕ(λ) : λ ∈ Ω} = ϕ(Ω).

Finally we note that ϕ is cyclic if and only if it is invertible in H∞
p (β). This completes

the proof. �

Theorem 5. Let lim inf
n

β(n)1/n = 1, Mz be strictly cyclic on Hp(β) and the

function ϕ inHp(β) be such that ‖ϕ‖U < 1. Then the composition operator onHp(β)
induced by ϕ, Cϕ, is bounded.
�
�������

. By the above corollary the spectrum of each element ϕ of the Banach
algebra H∞

p (β) is equal to ϕ(Ω) where Ω =
{
z : |z| 6 lim inf

n
β(n)1/n = 1

}
= U .

But the spectrum of ϕ as an element of H∞
p (β) is the same as the spectrum of the

multiplication operator Mϕ on Hp(β), so we have

lim
n
‖Mn

ϕ‖1/n = r(Mϕ) = sup{|λ| : λ ∈ ϕ(Ω)} = ‖ϕ‖U < 1.

Now let f =
∞∑

n=0
f̂(n)fn ∈ Hp(β), then Cϕf = f ◦ ϕ =

∞∑
n=0

f̂(n)ϕn and since

‖ϕn‖β = ‖Mϕnf0‖ 6 ‖Mϕn‖, we have
∞∑

n=0

|f̂(n)| ‖ϕn‖β 6
∞∑

n=0

|f̂(n)| ‖Mn
ϕ‖ 6

( ∞∑

n=0

|f̂(n)|pβ(n)p

)1/p( ∞∑

n=0

‖Mn
ϕ‖q

β(n)q

)1/q

= ‖f‖p

( ∞∑

n=0

‖Mn
ϕ‖q

β(n)q

)1/q

.
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But by the Root Test
∞∑

n=0
‖Mn

ϕ‖q/β(n)q converges and so Cϕf ∈ Hp(β) for all f

in Hp(β) and Cϕ is bounded. �

For the definition of the Schatten p-class for p > 0 see [2].

Corollary 6. If ϕ satisfies the conditions of the Theorem, then the operator Cϕ

is in every Schatten p-class of Hp(β).
�
�������

. Let ‖ϕ‖U < α < 1 and put h = αf1. Then h belongs to every

Hp(β) space. Also Chfn = hn = αnfn and {αn} ∈ `p for all p. Thus Ch is in every
Schatten p-class of Hp(β) which we denote by sp(β). Let g = α−1ϕ. Then g belongs

to the given space Hp(β) and ‖g‖U = ‖ϕ‖U/α < 1. So by the above theorem Cg is
bounded on Hp(β) and since ϕ = h ◦ g, we have Cϕ = CgCh. But Cg is bounded

and Ch ∈ sp(β) for all p. Thus indeed Cϕ is in sp(β) for all p. �

Lemma 7. Mz is strictly cyclic on Hp(β) if and only if the dual space of H∞
p (β)

is exactly
{
Lg : g ∈ Hq

(
β

p
q
)
, Lg(f) = 〈f, g〉

}
.

�
�������
. This follows from the fact that (Hp(β))∗ = Hq

(
βp/q

)
. �

If Mz is strictly cyclic, then H∞
p (β)f0 = Hp(β) and so for all x in Hp(β) there

exists fx ∈ H∞
p (β) such that Mfxf0 = x (in fact, fx = x). So in this case we can

consider H∞
p (β) as the set {Mf : f ∈ Hp(β)} and the linear functional Lg that is

defined in the lemma as Lg(Mf ) = 〈f, g〉.

Lemma 8. Let Mz be strictly cyclic on Hp(β). Then there is a g in Hq
(
βp/q

)

such that M∗
f g = 〈f, g〉 g for every f in Hp(β).

�
�������
. Since Hp(β) = H∞

p (β) and H∞
p (β) is a commutative Banach algebra

with identity, there is a nonzero multiplicative linear functional F on H∞
p (β). So

F ∈ H∞
p (β)∗ =

{
Lg : g ∈ Hq

(
βp/q

)}
. Thus there is a g in Hq

(
βp/q

)
such that

F = Lg. Now for f and h in Hp(β) we have

〈
h, M∗

f g
〉

= 〈Mfh, g〉 = 〈hf, g〉 = Lg(Mhf )

= Lg(MhMf ) = Lg(Mh)Lg(Mf )

= 〈h, g〉 〈f, g〉 = 〈h, 〈f, g〉 g〉

for all h in Hp(β). So M∗
f g = 〈f, g〉 g for all f in Hp(β). �

For g ∈ Hq
(
βp/q

)
we denote by [g] the closed linear subspace of Hq

(
βp/q

)
gener-

ated by g.
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Corollary 9. IfMz is strictly cyclic and Lg is multiplicative where g ∈ Hq
(
βp/q

)
,

then M∗
f [g] ⊆ [g] for every f in Hp(β).

�
�������
. This is an immediate consequence of the Lemma. �

Remember that a subaglebra A of bounded operators on a Banach space is called

reflexive if Lat A ⊆ LatB implies that B ∈ A . Also a commutative Banach alge-
bra A is semisimple if for every f in A , there is a multiplicative linear functional L

on A such that L(f) 6= 0.

Theorem 10. If Mz is strictly cyclic and H∞
p (β) is semisimple, then H∞

p (β) is
reflexive.
�
�������

. It is easy to see that the algebra H∞
p (β) is reflexive if and only if the

algebra B = {M∗
f : f ∈ Hp(β)} is reflexive. We show that B is reflexive. Put

N =
{
g ∈ Hq

(
βp/q

)
: Lg is multiplicative

}
.

Since H∞
p (β) is semisimple, N spans Hq

(
βp/q

)
. Now let g ∈ N , A ∈

B
(
Hq

(
βp/q

))
and LatB ⊆ LatA. Since Lg is multiplicative, by Corollary 9,

M∗
f [g] ⊆ [g] for every f in Hp(β). Thus A[g] ⊆ [g] for all g in N . Therefore

Ag = λg and M∗
f g = λfg and so

AM∗
f g = A(λf g) = λf λg = λM∗

f g = M∗
f (λg) = M∗

f Ag.

Since g is arbitrary, thus AM∗
f = M∗

f A. But since Mz is strictly cyclic, H∞
p (β) is an

abelian Banach algebra with identity which is maximal and so B is also a maximal
abelian algebra. Thus A ∈ B. This says that B and so H∞

p (β) is reflexive. �
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