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Abstract. This paper gives some new characterizations of completeness for trellises by
introducing the notion of a cycle-complete trellis. One of our results yields, in partic-
ular, a characterization of completeness for trellises of finite length due to K. Gladstien
(see K. Gladstien: Characterization of completeness for trellises of finite length, Algebra
Universalis 3 (1973), 341–344).
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1. Introduction

A reflexive and antisymmetric binary relation E on a set A is called a pseudo-
order on A. A pseudo-ordered set or a psoset 〈A; E〉 consists of a nonempty set A

and a pseudo-order E on A. For a, b ∈ A, if a E b and a 6= b, then we write a C b.
For a subset B of A, the notions of a lower bound, an upper bound, the greatest

lower bound (GLB or meet, denoted by
∧

B), the least upper bound (LUB or join,
denoted by

∨
B), a minimal element, a maximal element, the minimum (or the least)

element and the maximum (or the greatest) element are defined analogously to the
corresponding notions in a poset. As in the case of posets (see [1]), for the empty

set Φ,
∨

Φ exists in A if and only if
∧

A exists or equivalently A has the minimum
element 0 and

∨
Φ =

∧
A = 0. By a trellis (also called a T -lattice in [2] and a

weakly associative lattice in [3]) we mean a poset any two of whose elements have a
GLB and a LUB. A trellis in which every subset has a GLB and a LUB is called a

complete trellis. The notion of a trellis as a nonassociative generalization of a lattice
is due to E. Fried [2] and H. L. Skala [6].
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Define a relation @B on a subset B of a psoset 〈A; E〉 by setting b @B b′ for two

elements b and b′ of B if there exists a finite sequence (b1, . . . , bn) of elements of B
such that b C b1 C . . . C bn C b′. If b E b1 E . . . E bn E b′ then we write b vB b′. If
for each pair of elements b and b′ of B at least one of the relations b vB b′ or b′ vB b

holds, then B will be called a pseudo-chain or a p-chain. If both these relations hold
for each pair of elements, B is said to be a cycle. A one-element cycle is called a

trivial cycle. It is known that a cycle having a maximum element is a trivial cycle
(see [4]). The empty set Φ is also regarded as a cycle. A p-chain C = {ai | i =
1, 2, . . .} of elements of a psoset 〈A; E〉 is said to be a descending p-chain in A if
a1 B a2 B . . . A psoset 〈A; E〉 is said to satisfy the descending p-chain condition

if there is no infinite descending p-chain of elements of A. A p-chain satisfying
the descending p-chain condition is called an ascending well-ordered p-chain. An

ascending p-chain, ascending p-chain condition and descending well-ordered p-chain
are defined similarly.

It is proved in our paper [5] that a trellis A is complete if and only if every

ascending well-ordered p-chain in A has a join. In this paper, using the notion of
a cycle-complete trellis, we obtain some new characterizations of completeness for

trellises, one of which yields, in particular, a result of K. Gladstien [4] for trellises of
finite length.

2. Definitions and results

Let 〈A; E〉 be a psoset and H a nonempty subset of A. Define an equivalence

relation ∼ on H by, for a, b ∈ H , a ∼ b if there exists a cycle C of elements of H such
that a, b ∈ C. For a ∈ H , let [a]H denote the equivalence class in H containing a

with respect to the equivalence relation ∼, i.e. [a]H = {x ∈ H | x ∼ a}. Clearly
[a]H is a maximal cycle (with respect to set inclusion) in H containing a. Let

H∗ = {[a]H | a ∈ H}. Then the binary relation E∗ on H∗ defined for [a]H , [b]H ∈ H∗

by [a]H E∗ [b]H if a vH b, is clearly a partial order on H∗.

Let 〈A; E〉 be a psoset. We call a subset S of A join-closed if, whenever T is a

subset of S such that
∨

T exists in A, then
∨

T ∈ S. We call a subset S of A up-
directed if every pair of elements of S has an upper bound in S. If any two-elements

of A have a LUB, then it is clear that any join-closed subset of A is up-derected.

Remark 1. We make the following observations.
(i) If H is a nonempty up-directed subset of a psoset 〈A; E〉, then 〈H∗; E∗〉 is an
up-directed poset.

(ii) An up-directed psoset 〈A; E〉 has the maximum element a if and only if the
poset 〈A∗; E∗〉 has the maximum element [a]A where [a]A = {a}.
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For brevity, a trellis 〈A; E〉 is said to be cycle-complete if every cycle in A has a

join. It is clear that any lattice with a minimum element is a cycle-complete trellis.
The following theorem gives some characterizations of completeness for trellises in
terms of cycle-completeness.

Theorem 1. For a trellis 〈A; E〉, the following statements are equivalent.
(1) A is complete.

(2) A is cycle-complete and for every join-closed subset S of A, the poset S∗ has a

maximum element.

(3) A is cycle-complete and for every subset H of A, the poset (H∇)∗ has a maxi-
mum element, where H∇ denotes the set of all lower bounds of H in A.

���������
. (1) ⇒ (2): Clearly A is cycle-complete by (1). Also, for any join-closed

subset S of A,
∨

S = a exists in A and a ∈ S. Hence a is the maximum element
of S. This implies S∗ has the maximum element [a]S = {a} by (ii) of Remark 1.

(2) ⇒ (3): Follows by noting that H∇ in join-closed.

(3) ⇒ (1): To show that A is complete it is enough to show that for any subset H

of A,
∧

H exists in A (see [6]). Let H be a subset of A. Then H∇ 6= Φ as 0 =
∨

Φ
exists in A and therefore 0 ∈ H∇ since H∇ is join-closed. By (3), (H∇)∗ has the
maximum, say [a]H∇ . Then [a]H∇ , being a cycle inH∇, is also a cycle in A. Therefore∨

[a]H∇ = x exists in A and x ∈ H∇. Now [x]H∇ ∈ (H∇)∗ and [a]H∇ E∗ [x]H∇ as
a E x. But [a]H∇ is the maximum of (H∇)∗. Thus [a]H∇ = [x]H∇ , consequently
x is the maximum of the cycle [a]H∇ . Hence [a]H∇ = {x} so that a = x. Therefore

by (ii) of Remark 1, H∇ has the maximum element a and hence a =
∧

H . Thus A is
complete. �

Let 〈P ; 6〉 be a poset and S the set of all ascending well-ordered chains in P . Define
a binary relation 6 on S for C, D ∈ S by C 6 D if C = D or C = {x ∈ D | x < d}
for some d ∈ D. Then 〈S; 6〉 is a poset and, by using Zorn’s lemma, it follows that
〈S; 6〉 has a maximal element (see [1]). Any maximal element of the poset 〈S; 6〉 is
called a maximal ascending well-ordered chain in P .

Remark 2. Let P be an up-directed poset. Then it is clear that the following

statements are equivalent.

(i) P has the maximum element.

(ii) Every subchain of P has an upper bound.

(iii) Every ascending well-ordered chain in P has an upper bound.

(iv) Every maximal ascending well-ordered chain in P has an upper bound (or equiv-
alently has the maximum).

(v) P has a maximal element.
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In (2) of Theorem 1, we note that S∗ is an up-directed poset by (i) of Remark 1.

Therefore replacing P by S∗ in the above remark, some equivalent formulations of (2)
can be obtained. We make similar observations for (3) of Theorem 1 since H∇ is
join-closed.

Lemma 1. A psoset 〈A; E〉 satisfies the ascending p-chain condition if and only

if it satisfies the following conditions.

(1) All cycles of A are finite.

(2) The poset 〈A∗; E∗〉 satisfies the ascending chain condition.
���������

. (⇒): (1) If C is an infinite cycle in A, then we can find infinitely
many elements a0, a1, a2, . . . in C. Then a0 @c a1 @c a2 @c . . .. This implies, for

each i > 0, that there exists an integer ni > 0 and aij ∈ C for 0 6 j 6 ni such
that ai = ai0 E ai1 E . . . E aini

= ai+1. These elements aij of C form an infinite

ascending p-chain in A, which is a contradiction to the hypothesis.

(2) If 〈A∗; E∗〉 does not satisfy the ascending chain condition, then in A∗ there
exists an infinite chain of the form [a0]A C∗ [a1]A C∗ . . .. This implies ai @A ai+1

for i > 0. Now, arguing as in (1), we obtain an infinite ascending p-chain, which is
a contradiction to the hypothesis.

(⇐): Assume that (1) and (2) hold for 〈A; E〉. If there exists an infinite ascending
p-chain in 〈A; E〉, say a0 C a1 C . . ., then [a0]A E∗ [a1]A E∗ . . . in the poset 〈A∗; E∗〉.
By (2), this implies that there exists n > 0 such that [an]A = [an+i]A for every i > 1.
This implies an+i ∈ [an]A for every i > 1. Thus [an]A is an infinite cycle in A, a
contradiction to (1). Therefore 〈A; E〉 satisfies the ascending p-chain condition. �

We now obtain a useful corollary of Theorem 1.

Corollary 1. A trellis 〈A; E〉 satisfying the ascending p-chain condition is com-

plete if and only if it is cycle-complete.

���������
. (⇒): Obvious.

(⇐): We verify the second part of the condition (2) of Theorem 1. Let S be a

join-closed subset of A. Then S 6= Φ since
∨

Φ = 0 exists in A so that 0 ∈ S.
Also, S satisfies the ascending p-chain condition since A satisfies the same condition.
Then S∗ is nonempty and S∗ satisfies the ascending chain condition by Lemma 1.

Therefore S∗ has a maximal element. But then S∗ has the maximum by Remark 2.
Hence 〈A; E〉 is complete by Theorem 1. �

According to K. Gladstien [4], a psoset A is of finite length if there exists a finite
p-chain in A such that the number of its elements is the maximum possible.
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Corollary 2 (Theorem 2 in [4]). A trellis 〈A; E〉 of finite length is complete if
and only if every cycle has a GLB and a LUB.
���������

. Follows from Corollary 1, by noting that any trellis of finite length
satisfies the ascending p-chain condition. �

It is proved in [5] that a trellis A is complete if and only if every ascending well-
ordered p-chain in A has a join. However, if A is cycle-complete this statement can
be simplified as in Theorem 2 below. First we state a lemma, the proof of which is

similar to that of Lemma 2.1 of [5].

Lemma 2. Let 〈A; E〉 be a psoset and let A� denote the set of all acyclic
ascending well-ordered p-chains in A. Define a relation 6 on A� by setting C 6 D

for C, D ∈ A�. If C = D or C = {x ∈ D \ x @D d} for some d ∈ D. Then
〈
A�; 6

〉

is a poset and has a maximal element.

Theorem 2. A trellis 〈A; E〉 is complete if and only if it is cycle-complete and
every acyclic ascending well-ordered p-chain in A has a join.
���������

. (⇒): Obvious.
(⇐): Let H be any subset of A. It is enough to show that

∧
H exists in A. Let

H∇ be the set of all lower bounds of H and P the set of all acyclic ascending well-

ordered p-chains in H∇. An application of Lemma 2 yields that the poset 〈P ; 6〉
has a maximal element M . By hypothesis

∨
M = a exists in A. Since H∇ is

join-closed, a ∈ H∇. Clearly M ∪ {a} ∈ P . If a /∈ M , then M < M ∪ {a} as
M = {x ∈ M ∪ {a} | x @M∪{a} a}, a contradiction to the maximality of M . Thus
a is the maximum of M . Now [a]H∇ , being a cycle in A,

∨
[a]H∇ = t exists in A and

t ∈ H∇.

Claim. t = a.

If t 6= a, then t B a. But then M ∪ {t} is clearly an ascending well-ordered
p-chain in H∇. Further, M ∪ {t} is acyclic. For otherwise, it would contain a
nontrivial cycle C containing t. This implies C ∪ {a} is a nontrivial cycle in M ∪{t}
containing a. But then C ∪ {a} ⊆ [a]H∇ since C ∪ {a} ⊆ H∇. Hence t ∈ [a]H∇
so that t is the maximum of [a]H∇ and [a]H∇ = {t}. Thus a = t, a contradiction.

ThereforeM ∪{t} ∈ P . NowM < M ∪{t}, a contradiction to the maximality ofM .
Therefore t = a.

We claim that a =
∧

H . For otherwise, there would exist an element b ∈ H∇ such
that b � a. Then a∨ b ∈ H∇ and a∨ b B a. Now it follows thatM ∪{a∨ b} ∈ P and

M < M ∪ {a ∨ b}, a contradiction to the maximality of M . Thus a =
∧

H . Hence
A is complete. �
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