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Abstract. We prove that any infinite-dimensional non-archimedean Fréchet space E is
homeomorphic to D

�
where D is a discrete space with card(D) = dens(E). It follows

that infinite-dimensional non-archimedean Fréchet spaces E and F are homeomorphic if
and only if dens(E) = dens(F ). In particular, any infinite-dimensional non-archimedean
Fréchet space of countable type over a field � is homeomorphic to the non-archimedean
Fréchet space �

�
.
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1. Introduction

In this paper all linear spaces are over a non-archimedean non-trivially valued
field � which is complete under the metric induced by the valuation | · | : � → [0,∞).
For fundamentals of locally convex Hausdorff spaces (lcs) and normed spaces we refer
to [3], [6] and [5].

Any finite-dimensional lcs E is linearly homeomorphic to the Banach space � dim E

and any infinite-dimensional Banach space of countable type is linearly homeomor-
phic to the Banach space c0 of all sequences in � converging to zero (with the
sup-norm) ([5], Theorem 3.16). Nevertheless, there exist Fréchet spaces of countable
type without a Schauder basis ([7]).

Van Rooij proved that any infinite-dimensional Banach space E is homeomorphic

to D
�
where D is a discrete space with card(D) = dens(E) ([4], Theorem 3.8 (ii)).

In this note we extend this result to infinite-dimensional Fréchet spaces:

Any infinite-dimensional Fréchet space E is homeomorphic to D
�
where D is a

discrete space with card(D) = dens(E) (Theorem 3).
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It follows that infinite-dimensional Fréchet spaces E and F are homeomorphic if

and only if dens(E) = dens(F ) (Corollary 4). In particular, any infinite-dimensional
Fréchet space of countable type (over � ) is homeomorphic to the Fréchet space �

�

of all sequences in � with the topology of pointwise convergence (Corollary 5).
On the other hand any finite-dimensional Fréchet space E (over � ) with E 6= {0}

is homeomorphic to � (Proposition 6) (see also [4], Theorem 3.8 (i)).
Finally, we show that any non-compact absolutely convex open subset U in a

Fréchet space E is homeomorphic to E (Proposition 9).

2. Preliminaries

�
is the set of all positive integers. The cardinality of a set D is denoted

by card(D). The smallest of the cardinalities of the dense subsets of a topological
space X is denoted by dens(X). The smallest among the cardinalities of the linearly
dense subsets of a lcs E is denoted by t(E). If topological spaces X and Y are
homeomorphic we write X ∼ Y .
A subset U in a lcs E is absolutely convex if αx + βy ∈ U for all x, y ∈ U and

α, β ∈ � with |α|, |β| 6 1.
Any open absolutely convex subset in a lcs E is a closed subgroup of E. Hence

for any two open absolutely convex subsets A and B in a lcs E with A ⊃ B 6= ∅ the
topological quotient group (A/B) is discrete.
Any metrizable lcs E possesses a decreasing sequence (Un) of absolutely convex

open subsets which forms a base of neighborhoods of zero in E.

A metrizable lcs is of countable type if t(E) 6 ℵ0. A Fréchet space is a metrizable
complete lcs.

Let (xn) be a sequence in a Fréchet space F . The series
∞∑

n=1
xn is convergent in F

if and only if limxn = 0.
For all α, β ∈ � we have |αβ| = |α||β| and |α + β| 6 max{|α|, |β|}; if |α| < |β|

then |α + β| = |β|. The set J = {α ∈ � : |α| 6 1} is a subring of � and I = {α ∈
� : |α| < 1} is a maximal ideal in J . The field k = (J/I) is the residue class field
of � .
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3. Results

We will need two lemmas.

Lemma 1. Let E be a Fréchet space and let (Un) be a decreasing sequence of
open absolutely convex subsets of E which forms a base of neighborhoods of zero

in E. Then E is homeomorphic to the product space
∞∏

n=0
(Un/Un+1) where U0 = E.

���������
. Let n > 0. Denote by πn the quotient map Un → (Un/Un+1) and let

ψn : (Un/Un+1) → Un be a map with πn(ψn(z)) = z for any z ∈ (Un/Un+1). Put
Vn = ψn(Un/Un+1). Clearly,

(∗) ∀x, y ∈ Vn : [(x− y) ∈ Un+1 ⇒ x = y].

It follows that the set Vn is discrete, so it is homeomorphic to (Un/Un+1).
Let x ∈ U0. Since ∀n > 0 ∀y ∈ Un ∃z ∈ Vn : (y − z) ∈ Un+1, we can construct

inductively a sequence (ϕx
n) ∈

∞∏
n=0

Vn with
(
x−

k∑
n=0

ϕx
n

)
∈ Uk+1 for any k > 0.

Clearly, x =
∞∑

n=0
ϕx

n. By induction one can show easily that ∀n > 0: xn = ϕx
n for

any (xn) ∈
∞∏

n=0
Vn with

∞∑
n=0

xn = x. Thus the map ϕ : U0 →
∞∏

n=0
Vn, x 7→ (ϕx

n) is a

bijection.

Let n ∈ �
and x, y ∈ U0, (x − y) ∈ Un. Then

k∑
i=0

(ϕx
i − ϕy

i ) ∈ Uk+1 for k =

0, 1, . . . , n − 1. Using (∗) we obtain in turn ϕx
0 = ϕy

0 , . . ., ϕ
x
n−1 = ϕy

n−1. Thus the

map ϕ is continuous.

If n ∈ �
, x, y ∈ U0 and ϕx

k = ϕy
k for k = 0, 1, . . . , n− 1, then (x− y) ∈ Un. Hence

ϕ−1 is continuous.

We have proved that the spaces E and
∞∏

n=0
(Un/Un+1) are homeomorphic. �

Lemma 2. Let S1, S2, . . . , S be infinite discrete topological spaces with

card(Sn) 6 card(Sn+1), n ∈ �
, and card(S) = sup

n
card(Sn). Then the product

spaces
∞∏

n=1
Sn and S

�
are homeomorphic.

���������
. Let Φ:

� → S1 be an injective map such that Φ(
�
) 6= S1. The sets

(S1 \ Φ(
�
)) ×

∞∏
n=2

Sn and {Φ(i)} ×
i+2∏
k=2

{sk} ×
∞∏

n=i+3

Sn for i ∈
�
, (s2, . . . , si+2) ∈

S2 × . . . × Si+2 form an open covering of the space
∞∏

n=1
Sn. These sets are pairwise
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disjoint and each of them is homeomorphic to
∞∏

n=1
Sn, since (S1\Φ(

�
))×S2 ∼ S1×S2

and Si+3 ∼ S1×. . .×Si+3, i ∈
�
. The cardinality of this covering is equal to card(S),

because
∞∑

n=1
card(Sn) = card(S). It follows that

∞∏
n=1

Sn ∼ S ×
∞∏

n=1
Sn.

Since
∞∏

n=1
Sn ∼

∞∏
n=1

(S1× . . .×Sn) ∼
∞∏

n=1
S
�
n ∼

( ∞∏
n=1

Sn

)�
, it follows that

∞∏
n=1

Sn ∼
(
S ×

∞∏
n=1

Sn

)�
∼ S

�
×

( ∞∏
n=1

Sn

)�
∼ S

�
×

∞∏
n=1

Sn ∼
∞∏

n=1
(S × Sn) ∼ S

�
. �

Now we can prove our main result.

Theorem 3. Any infinite-dimensional Fréchet space E is homeomorphic to D
�

where D is a discrete space with card(D) = dens(E).
���������

. Since E is not locally compact, there exists a decreasing sequence of
open absolutely convex subsets of E which forms a base of neighborhoods of zero

in E such that card(Un/Un+1) > ℵ0 for any n > 0 (where U0 = E).

Let n > 0 and (αk) ⊂ � with |αk| → ∞. Then E =
∞⋃

k=1

αkUn. If A is a dense

subset of Un, then {αka : k ∈ �
, a ∈ A} is dense in E. Thus dens(E) 6 ℵ0 dens(Un).

We have sup
m>n

card(Un/Um) = dens(E) for any n > 0. Indeed,

sup
m>n

card(Un/Um) 6 dens(Un) 6 dens(E) 6 ℵ0 dens(Un) = dens(Un)

6
∑

m>n

card(Un/Um) 6 ℵ0 sup
m>n

card(Un/Um) = sup
m>n

card(Un/Um).

Let D be a discrete space with card(D) = dens(E).
If ∀n > 0 ∃m > n : card(Un/Um) = dens(E), then there is an increasing sequence

(nk) ⊂ �
such that card(Unk

/Unk+1) = dens(E) for all k > 0 and n0 = 0. Thus, by
Lemma 1, E is homeomorphic to D

�
.

If ∃n > 0 ∀m > n : card(Un/Um) < dens(E), then there exists an increasing
sequence (nk) ⊂ �

with sup
k

card(Unk
/Unk+1) = dens(E) such that the sequence

(card(Unk
/Unk+1))

∞
k=1 is increasing. Using Lemmas 1 and 2 we get E ∼ (U0/Un1)×

∞∏
k=1

(Unk
/Unk+1) ∼ (U0/Un1)×D

�
∼ D

�
, since (U0/Un1)×D ∼ D. �

Because dens(A
�

) = card(A) for any infinite discrete space A, we obtain

Corollary 4. Infinite-dimensional Fréchet spaces E and F are homeomorphic if
and only if dens(E) = dens(F ).

For any infinite-dimensional Fréchet space E of countable type we have dens(E) =
dens( � ) = dens( �

�
). Thus we get
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Corollary 5. Any infinite-dimensional Fréchet space E of countable type is home-
omorphic to �

�
.

For finite-dimensional Fréchet spaces we have the following (compare with [4],
Theorem 3.8 (i)).

Proposition 6. Any finite-dimensional Fréchet space E with E 6= {0} is homeo-
morphic to � . If � is locally compact, then it is homeomorphic to � × k

�
where k

is the residue class field of � . If � is not locally compact, then it is homeomorphic
to K

�
where K is a discrete space with card(K) = dens( � ).

���������
. First, assume that � is locally compact. Then the set I = {α ∈

� : |α| < 1} is compact. Let β ∈ � with |β| = max{|α| : α ∈ I}. Put Un = {α ∈
� : |α| 6 |β|n−1}, n ∈ �

. For any n ∈ �
the map

Φn : (Un/Un+1) → (U1/U2), α+ Un+1 7→ β1−nα+ U2

is a homeomorphism. By Lemma 1 we have � ∼ ( � /U1 )× (U1/U2)
�
. Since I = U2,

(U1/U2) is the residue class field k of � . Clearly, k is finite. Moreover, ( � /U1) ⊂
∞⋃

n=1
(β−nU1/U1) and card(β−nU1/U1) < ℵ0, n ∈ �

, so ( � /U1) ∼ �
. Thus � ∼

� × k
�
.

Next, assume that � is not locally compact. As in the proof of Theorem 3, we show
that � is homeomorphic toK

�
, whereK is a discrete space with card(K) = dens( � ).

It follows that any finite-dimensional Fréchet space E with E 6= {0} is homeomor-
phic to � , since E is linearly homeomorphic to � dim E . �

By Corollary 5 and Proposition 6 we get

Corollary 7. If � is not locally compact then any Fréchet space of countable
type is homeomorphic to � .

For any n ∈ �
the space {0, 1, . . . , n}

�
is homeomorphic to {0, 1}

�
(see [1]). Thus

we obtain the following (see [4], Theorem 3.8 (i)).

Corollary 8. If � is locally compact then it is homeomorphic to � × C, where

C is the Cantor set.

Finally we show
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Proposition 9. Let E be a Fréchet space with E 6= {0}. Then we have
(a) Any non-compact absolutely convex open subset U in E is homeomorphic to E.

(b) dens(E) = dens( � )t(E).
(c) If E is infinite-dimensional then dim(E) = card(E) = (dens(E))ℵ0 and E is

homeomorphic to the Banach space c0(D) where D is a discrete space with
card(D) = dens(E).

���������
. (a) If dimE > ℵ0 or � is not locally compact, then as in the proof

of Theorem 3 we show that U ∼ D
�
where D is a discrete space with card(D) =

dens(E). Hence U ∼ E.

If dim(E) < ℵ0 and � is locally compact, then U ∼ � × k
�
. Indeed, without

loss of generality we can assume that E = � m where m = dim(E). Put Un =
{(α1, . . . , αm) ∈ E : max

16i6m
|αi| 6 |β|n−1}, n ∈ �

, where β is defined in the proof of

Proposition 6. For any n ∈ �
the map

Φn : (Un/Un+1) → (U1/U2), (α1, . . . , αm) + Un+1 7→ β1−n(α1, . . . , αm) + U2

is a homeomorphism. For some t ∈ �
we have Ut ⊂ U . As in the proof of Lemma 1

we get U ∼ (U/Ut)×
∞∏

n=t
(Un/Un+1) ∼ (U/Ut) × (U1/U2)

�
. It is easy to check that

(U/Ut) ∼
�
and (U1/U2) ∼ km. Thus U ∼ � × k

�
. Hence U ∼ E.

(b) Let K be a dense subset of � with card(K) = dens( � ) and let X be a linearly
dense subset of E with card(X) = t(E).

Since the set A =
{ n∑

i=1

αixi : n ∈
�
, αi ∈ K, xi ∈ X

}
is dense in E, we see that

dens( � )t(E) = max{dens( � ), t(E)} 6 dens(E) 6 card(A) = dens( � )t(E).

(c) Since card( � ) 6 dim(E) ([2], Proposition 2.2), it follows that

dim(E) = card( � ) dim(E) = card(E).

By Theorem 3, card(E) = (dens(E))ℵ0 .

It is known that t(c0(D)) = card(D) ([4], Corollary 3.3). Using (b) we get
dens(c0(D)) = dens(E). By Corollary 4, c0(D) ∼ E. �
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