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Abstract. In this paper, the boundedness of the Riesz potential generated by gener-
alized shift operator Iα

Bk
from the spaces Ba = (Lpm,ν( � k

n), am) to the spaces Ba′ =
(Lqm,ν( � k

n), a
′
m) is examined.
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1. Introduction

A new class of function spaces, denoted by Ba, was introduced by X. Ding and
P. Luo in [5]. This class of spaces is a very natural generalization of the classical

Lp spaces and also includes some important Orlicz spaces, Orlicz-Sobolev spaces,
etc. In the past few years, many results have been obtained pertaining to Ba spaces

and have been used in both classical analysis and other branches of mathematics
(see [3]–[7]). The boundedness of the Riesz potential in Ba spaces was investigated

by Y. Deng, W. Chang and Y. Li [7]. The Riesz potential generated by generalized
shift operator was introduced by I. A. Aliev and A.D. Gadzhiev [8], where weighted

Lp estimates were obtained for Iα
Bk
.

The aim of this paper is to prove the boundedness of the Riesz potential generated
by a generalized shift operator Iα

Bk
from the spaces Ba = (Lpm,ν( � k

n ), am) to the
spaces Ba′ =

(
Lqm,ν( � k

n ), a′m
)
.
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2. Ba spaces and Riesz potential generated by

a generalized shift operator

Let B = {B1, . . . , Bm, . . .} be a sequence of Banach function spaces and a =
{a1, a2, . . . , am, . . .} be a sequence of non-negative real numbers. Let ϕ(z) =
∞∑

m=1
amzm be an entire function. For f ∈

∞⋂
m=1

Bm, we form a power series as

follows

I(f, λ) =
∞∑

m=1

am‖f‖m
Bm

λm,

where ‖ · ‖Bm is the Bm-norm of f . Let Rf denote the radius of convergence of the

series I(f, λ) and Ba denote the following function set

Ba =
{
f : f ∈

∞⋂

m=1

Bm, Rf > 0
}
.

The set Ba is proved to be a Banach space when we define the norm of an element

f ∈ Ba by

‖f‖Ba = inf
λ>0

{ 1
λ

: I(f, λ) 6 1
}
,

(see, for details, [5]).

In this paper we will confine ourselves to the Banach spaces

Bm = Lpm,ν( � k
n ) =

{
f : ‖f‖Lpm,ν ≡

(∫
�

k
n

|f(x)|pm

k∏

j=1

x
2νj

n−k+j dx

)1/pm

< ∞
}

,

where νj > 0, j = 1, 2, . . . , k are fixed parameters, 1 < pm < ∞ (m = 1, 2, . . .), and
� k

n = {x : x = (x1, x2, . . . , xn), xn−k+1 > 0, . . . , xn > 0, 1 6 k 6 n}.
For simplicity, we will denote ‖ · ‖Lp,ν by ‖ · ‖p,ν .

The generalized shift operator is defined by

T yf(x) = cνj

∫  
0

. . .

∫  
0

f
[
x′ − y′,

√
x2

n−k+1 + y2
n−k+1 − 2xn−k+1yn−k+1 cosα1, . . . ,

√
x2

n + y2
n − 2xnyn cosαk

] k∏

j=1

[sin2νj−1 αj dαj ],

where

cνj = π−k/2
k∏

j=1

Γ(νj + 1
2 )

Γ(νj)
,
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x = (x′, xn−k+1, . . . , xn), y = (y′, yn−k+1, . . . , yn), and x′, y′ ∈ � n−k . We remark

that T y is closely connected with the Bessel differential operator

Br =
∂2

∂r2

2ν

r

∂

∂r
, r > 0.

Let ∆Bk
denote the Laplace-Bessel operators,

∆Bk
=

n∑

j=1

∂2

∂x2
j

+
k∑

j=1

2νj

xn−k+j

∂

∂xn−k+j
, 1 6 k 6 n, νj > 0 (j = 1, . . . , k).

The shift T y generates the corresponding convolution (“B-convolution”)

(f1 ∗ f2)(y) =
∫
�

k
n

f1(x)[T xf2(y)] x2ν
n dx.

We note that this convolution satisfies the property f1 ∗ f2 = f2 ∗ f1 (see [1], [2],
[9]–[11]).

The Riesz potential Iα is defined by

(Iαf)(x) = r(α)
∫
�

n

f(y)
|x− y|n−α

dy, 0 < α < n,

where f ∈ Lp( � n ) and r(α) =
[
πn/22αΓ( 1

2α)/Γ( 1
2 (n − α))

]−1
(see [12]). It is well-

known that, for p ∈ (1, n/α), Iα is bounded operator from Lp to Lq , with 1/q =
1/p − α/n, i.e., there exists a constant A(p) such that ‖Iαf‖q 6 A(p)‖f‖p. In [7],
the boundedness of Riesz potential Iα in Ba spaces were investigated by Y. Deng,

W. Chang and Y. Li
Now let T y be the generalized shift operator. The Riesz potential generated by

generalized shift operator is defined by

(2.1) (Iα
Bk

f)(x) = c(α)
∫
�

k
n

f(y)T y
(
|x|α−n−2|ν|)

k∏

j=1

y
2νj

n−k+j dy, 0 < α < n + 2|ν|,

where f(x) belongs to the space of test functions, denoted by Z+( � k
n ) = Z+, and

c(α) = 2α−kπ(k−n)/2Γ
(
|ν|+ n− α

2

)[
Γ
(α

2

) k∏

j=1

Γ
(
νj +

1
2

)]−1

.

The Riesz potential generated by generalized shift operator Iα
Bk
is a bounded

operator from Lp,ν( � k
n ) to Lq,ν( � k

n ) with 1 < p < q < ∞, 1/q = 1/p− α/(n + 2|ν|),
i.e., there exists some constant Aα(p, q, ν) such that for all f ∈ Lp( � k

n ) (see [8])

(2.2) ‖Iα
Bk

f‖q,ν 6 Aα(p, q, ν)‖f‖p,ν .
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It is natural to expect that Iα
Bk
is bounded from Ba = (Lpm,ν( � k

n ), am) to Ba′ =
(Lqm,ν( � k

n ), a′m), where 1/qm = 1/pm − α/(n + 2|ν|), m = 1, 2, . . .. However, this is
not true in general. Indeed, we have

Theorem 2.1. Let 0 < α < n + 2|ν| and let 1 < pm < (n + 2|ν|)/α. Then

the Riesz potential generated by generalized shift operator Iα
Bk
is bounded from

Ba = (Lpm,ν( � k
n ), am) to Ba′ = (Lqm,ν( � k

n ), a′m) if and only if there exist two positive
constant β and γ such that

(2.3) 1 < β < pm < γ <
n + 2|ν|

α
for all am 6= 0.

To prove of this theorem we first give the following two lemmas.

Lemma 2.2.

∫

{u∈ � k
n : |u|>ε}

|u|α−n−2|ν|[T uf(x)]
k∏

j=1

u
2νj

n−k+j du = cν

∫

|x̃−ỹ|>ε

|x̃− ỹ|α−n−2|ν|

× f
(
y′,

√
y2

n−k+1 + y2
n−k+2, . . . ,

√
y2

n+k−1 + y2
n+k

) k∏

j=1

|yn−k+2j |2νj−1 dỹ,

where cν = π−k/22k
k∏

j=1

Γ(νj + 1
2 )/Γ(νj) and x̃ = (x′, xn−k+1, . . . , xn, 0, . . . , 0︸ ︷︷ ︸

k-terms

), x′ =

(x1, . . . , xn−k), ỹ = (y′, yn−k+1, . . . , yn, yn+1, . . . , yn+k).
!#"%$&$('

. We denote the first part by I ,

I = π−
k
2 2k

k∏

j=1

Γ(νj + 1
2 )

Γ(νj)

∫

|u|>ε

|u|α−n−2|ν|

∫  
0

. . .

∫  
0

f
(
x′ − u′,

√
x2

n−k+1 + u2
n−k+1 − 2xn−k+1un−k+1 cosα1, . . . ,

√
x2

n + u2
n − 2xnun cosαn

) k∏

j=1

[u2νj

n−k+j sin2νj−1 αj dαj ] du

= π−
k
2 2k

k∏

j=1

Γ(νj + 1
2 )

Γ(νj)

∫

|u|>ε

|u|α−n−2|ν|
∫  

0

. . .

∫  
0

f
(
x′ − u′,

√
x2

n−k+1 − 2xn−k+1un−k+1 cosα1 + (un−k+1 cosα1)2 + (un−k+1 sinα1)2, . . . ,

√
x2

n − 2xnun cosαk + (un cosαk)2 + (un sinαk)2
) k∏

j=1

[u2νj

n−k+j sin2νj−1 αj dαj ] du
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= cν

∫

|s|>ε

|u|α−n−2|ν|
∫  

0

. . .

∫  
0

f
(
x′ − u′,

√
(xn−k+1 − un−k+1 cosα1)2 + (un−k+1 sin α1)2, . . . ,

√
(xn − un cosαk)2 + (un sin αk)2

) k∏

j=1

[u2νj

n−k+j sin2νj−1 αj dαj ] du.

Now, we pass to the new variables x̃ = (x′, xn−k+1, . . . , xn, 0, . . . , 0), ỹ =
(y′, yn−k+1, . . . , yn, yn+1, . . . , yn+k): x′ − u′ = y′, yn−k+(2j−1) = xn−k+j − un−k+j ×
cosαj , |yn−k+2j | = un−k+j sin αj , 0 6 αj < π and un−k+j > 0, j = 1, 2, . . . , k. Since
the Jacobian of the transformation is equal to (un−k+1 · un−k+2 . . . un)−1 we have

I = cν

∫

|x̃−ỹ|>ε

|x̃− ỹ|α−n−2|ν|f
(
y′,

√
y2

n−k+1 + y2
n−k+2, . . . ,

√
y2

n+k−1 + y2
n+k

)

×
k∏

j=1

|yn−k+2j |2νj−1 dỹ.

�

Lemma 2.3.

∫
�

k
n

f(u)
k∏

j=1

u
2νj

n−k+j du = cν

∫
� k

n+k

f
(
y′,

√
y2

n−k+1 + y2
n−k+2, . . . ,

√
y2

n+k−1 + y2
n+k

)

×
k∏

j=1

|yn−k+2j |2νj−1 dy dyn+1 . . . dyn+k,

where cν = π−k/22k
k∏

j=1

Γ(νj + 1
2 )/Γ(νj).

The proof is straightforward by substituting y′ = u′, yn−k+(2j−1) = un−k+j cosαj ,
yn−k+2j = un−k+j sin αj , 0 6 αj < π and un−k+j > 0, j = 1, 2, . . . , k.
!#"%$&$('

of Theorem 2.1. If β < p < γ then there exists a K > 0 such that
Aα(p, q, ν) 6 K by the continuity. Now suppose that (2.3) holds, then we have

Aα(pm, qm, ν) 6 K, m = 1, 2, . . .. By the definition of the Ba-norm, for all f ∈ Ba =
(Lpm,ν( � k

n ), am), we have

I
(
f,

1
‖f‖Ba

)
=

∞∑

m=1

am

‖f‖m
pm,ν

‖f‖m
Ba

6 1,
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so

I
(
Iα
Bk

f,
1

K‖f‖Ba

)
=

∞∑

m=1

am

‖Iα
Bk
‖m

qm,ν

(K‖f‖Ba)m

6
∞∑

m=1

amAm
α (pm, qm, ν)

‖f‖m
pm,ν

(K‖f‖Ba)m
6 1.

This implies

‖Iα
Bk

f‖Ba′ = inf
λ>0

{1/λ : I(Iα
Bk

f, λ) 6 1} 6 K‖f‖Ba,

and the sufficiency is thus proved.
We now proceed to prove the necessity of condition (2.3). We need some estimates

concerning the functions fl and gl defined by

fl(x) =

{
1, x ∈ I = {x : |x| 6 l, xn−k+j > 0 (j = 1, 2, . . . , k)},
0, otherwise.

and

gl(x) =

{
|x|−α log(1/|x|)−α(n+2|ν|)−1(1+ε), x ∈ I,

0, otherwise.

First, we claim that there exists some constant Bα(p, q, ν), which depends only on p

and Bα(p, q, ν) →∞ as p → 1+, such that

(2.4)
‖Iα

Bk
fl‖q,ν

‖fl‖p,ν
> Bα(p, q, ν)

holds for all p near 1, where 1/q = 1/p− α(n + 2|ν|)−1. For any y ∈ I and x /∈ I , if

we use Lemma 2.2 we have

(Iα
Bk

fl)(x) = c(α)
∫
�

k
n

fl(y)T y
(
|x|α−n−2|ν|)

k∏

j=1

y
2νj

n−k+j dy

= c(α)
∫
�

k
n

|y|α−n−2νT yfl(x)
k∏

j=1

y
2νj

n−k+j dy

= c(α)
∫
� k

n+k(ỹ)

|x̃− ỹ|α−n−2|ν|fl

(
y′,

√
y2

n−k+1 + y2
n−k+2, . . . ,

√
y2

n+k−1 + y2
n+k

)

×
k∏

j=1

|yn−k+2j |2νj−1 dỹ.
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Since |x| > l, |ỹ| 6 l and, |x̃| = x, it follows that |x̃ − ỹ| 6 |x̃|+ |ỹ| 6 |x|+ l 6 2|x|.
Thus, for any x /∈ I ,

(Iα
Bk

fl)(x)

> c(α)
∫

� k
n+k(ỹ)

(2|x|)α−n−2|ν|fl

(
y′,

√
y2

n−k+1 + y2
n−k+2, . . . ,

√
y2

n+k−1 + y2
n+k

)

×
k∏

j=1

y
2νj−1
n−k+2j dỹ.

By Lemma 2.3

Iα
Bk

f(x) > c(α)
∫
�

k
n

(2|x|)α−n−2|ν|fl(u)
k∏

j=1

u
2νj

n−k+j du

= c(α)(2|x|)α−n−2|ν|
∫

|u|6l

fl(u)
k∏

j=1

u
2νj

n−k+j du

= c(α)2α−n−2|ν||x|α−n−2|ν|c
ln+2|ν|

n + 2|ν| .

By a simple computation we see that

‖Iα
Bk

fl‖q,ν

‖fl‖p,ν
>

(∫

|x|>l

∣∣Iα
Bk

fl(x)
∣∣q

k∏

j=1

x
2νj

n−k+j dx

)1/q

(
c

ln+2|ν|

n + 2|ν|
)1/p

>
c(α)2α−n−2|ν|c

ln+2|ν|

n + 2|ν|

c1/p
l(n+2|ν|)/p

(n + 2|ν|)1/p

(∫

|x|>l

|x|(α−n−2|ν|)q
k∏

j=1

x
2νj

n−k+j dx

)1/q

= c(α)2α−n−2|ν|
( c

n + 2|ν|
)1−1/p

ln+2|ν|−(n+2|ν|)/p

×
(

c′
∫ ∞

l

r(α−n−2|ν|)q+n+2|ν|−1 dr

)1/q

= c(α)2α−n−2|ν|
( c

n + 2|ν|
)1−1/p

ln+2|ν|−(n+2|ν|)/p(c′)1/q

×
[

l(α−n−2|ν|)q+n+2|ν|

q(n + 2|ν| − α)− (n + 2|ν|)

] 1
q

=
c(α)2α−n−2|ν|

( c

n + 2|ν|
)1−1/p

(c′)1/q

[
q(n + 2|ν| − α)− (n + 2|ν|)

]1/q
.

585



Thus we obtain (2.4) by taking

Bα(p, q, ν) =
c(α)2α−n−2|ν|

( c

n + 2|ν|
)1−1/p

(c′)1/q

[q(n + 2|ν| − α) − (n + 2|ν|)]1/q
,

where Bα(p, q, ν) is independent of l and, Bα(p, q, ν) →∞ as p → 1+ as desired.
Next, we assert that if l < 1

2 , then

(2.5)
‖Iα

Bk
gl‖q,ν

‖gl‖p,ν
> Cα(p, q, ν)

holds for all p sufficiently near (n + 2|ν|)/α, where Cα(p, q, ν) is independent of l

and Cα(p, q, ν) →∞ as p →
(
(n + 2ν)/α

)−
. In fact, if it is not the case, then there

exists some K, which is independent of p, such that

(2.6)

(∫

|x|6l

∣∣Iα
Bk

gl(x)
∣∣q

k∏

j=1

x
2νj

n−k+j dx

)1
q

6 ‖Iα
Bk

gl‖q,ν 6 K‖gl‖p,ν .

Now q →∞ as p →
(
(n + 2ν)/α

)−
, and by a similar argument as in [7], [12], it is

easy to see that

‖gl‖p,ν =
(∫

|x|6l

{
|x|−α

∣∣∣log
1
|x|

∣∣∣
− α

n+2|ν| (1+ε)}p k∏

j=1

x
2νj

n−k+j dx

)1
p

6
(∫

|x|6l

{
|x|−α

∣∣∣log
1
|x|

∣∣∣
−(1+ε)}p k∏

j=1

x
2νj

n−k+j dx

)1
p

< ∞.

However, (Iα
Bk

gl)(x) is essentially unbounded near the origin since

(Iα
Bk

gl)(x) = c(α)
∫

|y|6l

1
|y|−α

(
log

1
|y|

)− α
n+2|ν| (1+ε)

× T y
(
|x|−α−n−2|ν|)

k∏

j=1

y
2νj

n−k+j dy

is infinity at the origin as long as α(n + 2|ν|)−1(1 + ε) 6 1.
Now let us suppose that there exists a constant A, independent of f , such that for

all f ∈ Ba,

(2.7) ‖Iα
Bk

fl‖Ba′ 6 A‖f‖Ba.
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It follows from (2.4) and (2.7) that

∞∑

m=1

am[Bα(pm, qm, ν)‖fl‖pm,ν ]m

(A‖fl‖Ba)m
6

∞∑

m=1

am‖Iα
Bk

fl‖m
qm,ν

‖Iα
Bk

fl‖Ba′
= 1

In particular,

(2.8)
a
1/m
m Bα(pm, qm, ν)‖fl‖pm,ν

A‖fl‖Ba
6 1, or

a
1/m
m ‖fl‖pm,ν

‖fl‖Ba
6 A

Bα(pm, qm, ν)
,

where Bα(pm, qm, ν) →∞ as pm → 0+. So if β in (2.3) does not exist, then there is

a pm′ > 1 such that

(2.9) a1/m
m

‖fl‖pm,ν

‖fl‖Ba
<

1
2
for pm ∈ (1, pm′ ] and l ∈ (0,∞).

Without loss of generality, we assume there is am′′ such that am′′ 6= 0, pm′′ < pm′

and

(2.10) 0 < a
1/m′′

m′′
‖fl‖pm′′

‖fl‖Ba
<

1
2
.

Now let us choose l0 large enough such that cl
n+2|ν|
0 (n + 2|ν|)−1 > 1 and

M

(
c

l
n+2|ν|
0

n + 2|ν|

)1/pm′

< a
1/m′′

m′′

(
c

l
n+2|ν|
0

n + 2|ν|

)1/pm′′

,

where M = sup(a1/m′′

m′′ : m = 1, 2, . . .) < ∞. Then we have for any pm > pm′

a1/m
m

(
c

l
n+2|ν|
0

n + 2|ν|

)1/pm

6 M

(
c

l
n+2|ν|
0

n + 2|ν|

)1/pm′

6 a
1/m′′

m′′

(
c

l
n+2|ν|
0

n + 2|ν|

)1/pm′′

.

Thus by using (2.10) and the fact ‖fl0‖p,ν =
(
cl

n+2|ν|
0 (n + 2|ν|)−1

)1/p
, we have for

any pm > pm′ ,

(2.11) a1/m
m

‖fl0‖pm,ν

‖fl0‖Ba
6 a

1/m′′

m′′
‖fl0‖pm′′ ,ν

‖fl0‖Ba
<

1
2
.

This together with (2.9) gives

∞∑

m=1

am

‖fl0‖m
pm

‖fl0‖m
Ba

<

∞∑

m=1

(1
2

)m

= 1
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which contradicts the definition of the Ba-norm since I(fl0 , 1/‖fl0‖}Ba) = 1. We
have thus proved that β > 1. Next we prove γ < (n + 2|ν|)/α. Using (2.5) and (2.7),
we obtain ∞∑

m=1

am

(
Cα(pm, qm, ν)‖gl‖pm,ν

)m

(
A‖gl‖Ba

)m 6 1.

So a
1/m
m ‖gl‖pm,ν/‖gl‖Ba 6 A/Cα(pm, qm, ν). Note that Cα(pm, qm, ν) →∞ as pm →(

(n + 2|ν|)/α
)−
. Thus if γ does not exist, we can find pm′ large enough such that

(2.12) a1/m
m

‖gl‖pm,ν

‖gl‖Ba
6 1

2
for pm ∈

[
pm′ ,

n + 2|ν|
α

)
and l ∈ (0,∞).

Similarly we may assume there exists a m′′ such that pm′′ > pm′ and

(2.13) 0 < a
1/m′′

m′′
‖gl‖pm′′ ,ν

‖gl‖Ba
<

1
2
for l ∈ (0,∞).

Now choose l1 small enough such that 1/ε(− log l1)ε < 1 and

M

[
C1

ε(− log l1)ε

]1/pm′

< a
1/m′′

m′′

[
C1

ε(− log l1)ε

]1/pm′′

;

then for any pm < pm′ ,

a1/m
m

[
C1

ε(− log l1)ε

]1/pm

6 M

[
C1

ε(− log l1)ε

]1/pm′

< a
1/m′′

m′′

[
C1

ε(− log l1)ε

]1/pm′′

,

thus by using (2.12) and the fact that ‖gl1‖p,ν 6 [C1/ε(− log l1)ε]1/p, we have

(2.14) a1/m
m

‖gl1‖pm,ν

‖gl1‖Ba
6 a

1/m′′

m′′
‖gl1‖pm′′ ,ν

‖gl1‖Ba
6 1

2
for pm < pm′ .

From the equations (2.12) and (2.14) we see that

∞∑

m=1

a1/m
m

‖gl1‖pm,ν

‖gl1‖Ba
6 1.

So we again have a contradiction to the definition of the Ba-norm, and the theorem
is proved.
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