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SOME SOLUTIONS FOR A CLASS OF SINGULAR EQUATIONS
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Abstract. In this paper we obtain all solutions which depend only on r for a class of
partial differential equations of higher order with singular coefficients.
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1. Introduction

This paper deals with some particular solutions for a class of singular partial

differential equations of even order which include some well-known classical equations
such as Laplace equation, GASPT (Generalized Axially Symmetric Potential Theory)

equation and their iterated forms. There are numerous studies about these equations
and equations involving these equations which have a lot of applications in potential

theory. In [3], Elderly discussed singularities of the solutions which are regular in
some region and are even functions of y for the partial differential equation

(1.1) L(u) =
∂2u

∂x2
+
∂2u

∂y2
+
k

y

∂u

∂y
= 0

where x = x1, y = (x2
2 + . . .+ x2

n)
1
2 and k = n − 2. Then, in [4], Weinstein showed

that the stream function ψ(x, y) which is defined by the equations

ypϕx = ψy, ypϕy = −ψx (Generalized Stokes-Beltrami Equations)

satisfies equation (1.1) for k = −p. In [5], Weinstein studied a class of partial
differential equation of the type

(1.2) Lα1Lα2 . . . Lαmu = 0
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where

Lαk
=

∂2

∂y2
+
αk

y

∂

∂y
±

n−1∑

i=1

∂2

∂x2
i

, αk = constant.

He showed that if αm−k − 2k 6= αm−l − 2l for any l 6= k then the general solution

of (1.2) is given by u =
m−1∑
i=0

uαm−i−2i where uαk denotes a solution of Lαk
(u) = 0.

Later, in [8], Payne supposed that all αi are equal in (1.2) and showed that the

m times iterated equation Lm
α (u) = 0 admits the solutions u =

m−1∑
i=0

y2iuα+2i and,

provided α + 2j − 1 6= 0 for any integer j in the range 0 6 j 6 m − 2, the solution

u =
m−2∑
i=0

y2iuα+2(i−1)+y2(m−1)uα+2(m−1). In [6], Weinstein proved that the equation

which is known as the Weinstein or GASPT equation

(1.3) L(u) =
n∑

i=1

(
∂2u

∂x2
i

+
ki

xi

∂u

∂xi

)
= 0, −∞ < ki <∞

admits the solution

r2−n− � n
i=1 kiu

(x1

r2
, . . . ,

xn

r2

)

where r2 =
n∑

i=1

x2
i and u(x1, . . . , xn) is itself a solution of (1.3). In [7], Weinstein was

interested in some solutions of the equation

(1.4) Lk(u) = utt +
k

t
ut +X(u) = 0

where k is real or sometimes complex, t > 0 and X(u) denotes a sufficiently regular
linear differential operator which vanishes for u = 0. More recently , Altın in [1] and
[2] obtained a solution of a class of partial differential equations

(1.5)
(
Lq1

1 . . . Lqp
p

)
u = 0

where

(1.6) Lj =
n∑

i=1

(
∂2

∂x2
i

+
α

(j)
i

xi

∂

∂xi

)
±

s∑

i=1

(
∂2

∂y2
i

+
β

(j)
i

yi

∂

∂yi

)
+
γj

r2

and

(1.7) Lj =
n∑

i=1

[
∂2

∂x2
i

+
1
xi

(
ajr

2 ∂
3

∂x3
i

+ b
(j)
i

∂

∂xi

)]
+
cj
r2
,
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respectively. In (1.6), α(j)
i , β

(j)
i and γj are real parameters and r2 =

n∑
i=1

x2
i ±

s∑
i=1

y2
i .

In (1.7), aj , b
(j)
i and cj are arbitrary real parameters and r is the Euclidean distance.

In this study, using a method similar to that given in [1] and [2] we will obtain
solutions of type rm for the equations of the form

(1.8)

( p∏

j=1

L
qj

j

)
u =

(
Lq1

1 . . . Lqp
p

)
u = 0

where p, q1, . . . , qp are positive integers and

Lj = r2
n∑

i=1

{
λja

6
i r

2

(xi − x0
i )2

∂4

∂x4
i

+
[
µja

4
i

xi − x0
i

− λja
6
i r

2

(xi − x0
i )3

]
∂3

∂x3
i

}
(1.9)

+
n∑

i=1

(
a2

i

∂2

∂x2
i

+
α

(j)
i

xi − x0
i

∂

∂xi

)
+
γj

r2
.

The domain of the operator Lj is the set of all real-valued functions u (x1, . . . , xn)
of class C4(D) where D is a regularity domain of u in � n . The iterated operators

L
qj

j are defined by the relations

Lk+1
j (u) = Lj

[
Lk

j (u)
]
, k = 1, . . . , qj − 1.

In (1.9), xi, ai 6= 0 (i = 1, . . . , n) are any real constants, λj , µj , γj , and α
(j)
i

(i = 1, . . . , n, j = 1, . . . , p) are any real parameters and r is given by

(1.10) r =
[ n∑

i=1

(
xi − x0

i

ai

)2] 1
2

, r > 0.

Note that if we set ai = 1 (i = 1, . . . , n) in (1.10), we get the Euclidean distance. In
that case our solutions can be called as radial type solutions.

2. Solution of type rm

In this section we will find a solution for equation (1.8) of type rm which means
the solution depends on rm where m is any real or complex parameter.

Now, we first establish the following lemma.
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Lemma 1. Let p and q1, . . . , qp be arbitrary positive integers and m a real or
complex parameter. Then

(2.1)

( p∏

j=1

L
qj

j

)
(rm) =

p∏

j=1

qj−1∏

k=0

ϕj (m− 2 [Q(p)−Q(j)]− 2k) rm−2Q(p)

where Q(j) = q1 + . . .+ qj , 1 6 j 6 p and ϕj(m) is a fourth degree polynomial given
by

(2.2)

ϕj(m) = λjm
4 + (5nλj − 12λj + µj)m3

+ (44λj − 30nλj + 3nµj − 6µj + 1)m2

+ (40nλj − 48λj − 6nµj + 8µj + n− 2 + %j)m+ γj

with %j =
n∑

i=1

α
(j)
i /a2

i .

����� �"!
. From the definitions of Lj and r, for any real or complex parameter m,

it is easily seen by direct calculation that

(2.3) Lj (rm) = ϕj (m) rm−2.

Applying the operator Lj repeatedly q − 1 times on both sides of (2.3), we obtain

(2.4) Lq
j (rm) =

{q−1∏

k=0

ϕj (m− 2k)
}
rm−2q .

Replacing q in (2.4) by qj we then have

(2.5) L
qj

j (rm) =
{qj−1∏

k=0

ϕj (m− 2k)
}
rm−2qj .

Now we will establish (2.1) by induction on p. Hence, for j = 1, (2.5) can be written
as

(2.6) Lq1
1 (rm) =

{q1−1∏

k=0

ϕ1 (m− 2k)
}
rm−2q1

and considering the relation Q(j) = q1 + . . .+ qj , 1 6 j 6 p, we can write (2.6) as

( 1∏

j=1

L
qj

j

)
(rm) =

1∏

j=1

qj−1∏

k=0

ϕj (m− 2 [Q(1)−Q(j)]− 2k) rm−2Q(1).
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Therefore, (2.1) is true for p = 1. Now assume that (2.1) is valid for p− 1, that is,

(2.7)

(p−1∏

j=1

L
qj

j

)
(rm) =

p−1∏

j=1

qj−1∏

k=0

ϕj (m− 2 [Q(p− 1)−Q(j)]− 2k) rm−2Q(p−1).

We set j = p in (2.5), obtaining

(2.8) Lqp
p (rm) =

{qp−1∏

k=0

ϕp (m− 2k)
}
rm−2qp .

Applying the linear operator
p−1∏
j=1

L
qj

j on both sides of (2.8), we then find

(2.9)

(p−1∏

j=1

L
qj

j

) (
Lqp

p (rm)
)

=
qp−1∏

k=0

ϕp (m− 2k)
(p−1∏

j=1

L
qj

j

(
rm−2qp

))
.

If we replace m in (2.7) by m− 2qp, then (2.9) can be written as
(2.10)

( p∏

j=1

L
qj

j

)
(rm) =

(qp−1∏

k=0

ϕp (m− 2k)
)

×
(p−1∏

j=1

qj−1∏

k=0

ϕj (m− 2qp − 2 [Q(p− 1)−Q(j)]− 2k)
)
rm−2qp−2Q(p−1).

Since 2qp + 2Q(p− 1) = Q(p), (2.10) gives formula (2.1). Thus Lemma is proved.
�

We turn to formula (2.1) and write the algebraic polynomial equation

(2.11)
p∏

j=1

qj−1∏

k=0

ϕj (m− 2 [Q(p)−Q(j)]− 2k) = 0

which is of degree 4Q(p). The number of real or complex roots of equation (2.11) is
4Q(p) for all λj 6= 0 (1 6 j 6 p).

Now using Lemma 1, we can prove the following theorem.
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Theorem 1. Let the algebraic polynomial equation (2.11) have distinct real roots
c1, . . . , cM having multiplicity ξ1, . . . , ξM , respectively, and distinct complex roots

α1 ± iβ1, . . . , αN ± iβN having multiplicity τ1, . . . , τN , respectively. Then solutions

of type rm of the equation (1.8) are given by the formula

u(r) =
M∑

w=1

ξw−1∑

k1=0

Awk1r
cw (lnr)k1(2.12)

+
N∑

s=1

τs−1∑

k2=0

rαs (lnr)k2 [Bsk2 cos (βslnr) + Csk2 sin (βslnr)]

where Awk1 , Bsk2 and Csk2 are arbitrary constants.����� �"!
. According to the hypothesis, (2.11) has the following factors which

concern its real and complex roots:

M∏

w=1

(m− cw)ξw and
N∏

s=1

(
m2 − 2αsm+ α2

s + β2
s

)τs
.

Therefore, (2.1) can be written as

( p∏

j=1

L
qj

j

)
(rm) =

{ p∏

j=1

λ
qj

j

M∏

w=1

(m− cw)ξw(2.13)

×
N∏

s=1

(
m2 − 2αsm+ α2

s + β2
s

)τs

}
rm−2Q(p)

where
M∑

w=1
ξw + 2

N∑
s=1

τs = 4Q(p) is the order of equation (1.8).

On the other hand, the following equalities are well known:

∂k

∂mk

[( p∏

j=1

L
qj

j

)
(rm)

]
=

( p∏

j=1

L
qj

j

) (
∂krm

∂mk

)

=
( p∏

j=1

L
qj

j

) [
rm (lnr)k

]
, k ∈ N,

(2.14)

rαs±iβs = rαsr±iβs = rαse±iβslnr = rαs [cos (βslnr)± i sin (βslnr)] .(2.15)

Now consider again (2.13). It is obvious that the right-hand side of (2.13) has factors
(m− cw)ξw , w = 1, . . . ,M which vanish for m = cw, w = 1, . . . ,M together with

their derivatives with respect to m

dk1

dmk1
(m− cw)ξw , k1 = 1, . . . , ξw − 1, w = 1, . . . ,M.
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Thus, the function rcw and by virtue of (2.14), each of the functions

∂k1rm

∂mk1

∣∣∣
m=cw

= rcw (lnr)k1 , k1 = 1, . . . , ξw − 1, w = 1, . . . ,M

satisfy equation (1.8). Since the given equation is linear, by the superposition prin-
ciple the sum

(2.16)
M∑

w=1

ξw−1∑

k1=0

Awk1r
cw (lnr)k1

also satisfies (1.8). Similarly, the factors of (2.13)

(
m2 − 2αsm+ α2

s + β2
s

)τs = [m− (αs + iβs)]
τs [m− (αs − iβs)]

τs , s = 1, . . . , N

and the expressions

dk2

dmk2
[m− (αs ± iβs)]

τs , k2 = 1, . . . , τs − 1, s = 1, . . . , N

are zero for m = αs ± iβs. Hence by (2.14) and (2.15), for k2 = 0, 1, . . . , τs − 1,
s = 1, . . . , N each of the functions

∂k2rm

∂mk2

∣∣∣
m=αs±iβs

= rαs±iβs (lnr)k2 = rαs (lnr)k2 [cos (βslnr)± i sin (βslnr)]

and their superposition

(2.17)
N∑

s=1

τs−1∑

k2=0

rαs (lnr)k2 [Bsk2 cos (βslnr) + Csk2 sin (βslnr)]

satisfy (1.8). Therefore, the sum of (2.16) and (2.17) gives (2.12). Thus the theorem
is proved. �

Remark. If k1 = 0 and cw, w = 1, . . . ,M are even natural numbers in (2.16),
then we obtain polynomial solutions which are analytic everywhere including the

singularity hyperplanes xi = x0
i .

3. Solution of type u = u(r)

In this section we will show that all solutions for equation (1.8) which depend only
on r can be expressed by formula (2.12).
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Lemma 2. Let q be an arbitrary positive integer. Then for the function u = u(r)

(3.1) Lq
ju = e−2qt

{q−1∏

k=0

ϕj (D − 2k)
}
u

holds where D = d/dt, r = et and ϕj are given by (2.2).

����� �"!
. We will prove this lemma by induction on q. Noticing the definition of

r given by (1.10), if we apply operator Lj to u = u(r) we find

Lju = λjr
2 d4u

dr4
+ (5nλj − 6λj + µj) r

d3u

dr3
(3.2)

+ (15λj − 15nλj + 3nµj − 3µj + 1)
d2u

dr2

+ (15nλj − 15λj − 3nµj + 3µj + n− 1 + %j) r−1 du
dr

+
γju

r2
.

It is easy to see that Lj becomes an Euler type operator. We let r = et. Then we
have

d
dr

= e−tD,

d2

dr2
= e−2t

(
D2 −D

)
,

d3

dr3
= e−3t

(
D3 − 3D2 + 2D

)
,

d4

dr4
= e−4t

(
D4 − 6D3 + 11D2 − 6D

)
.

Thus, substituting into (3.2), we obtain

Lju = e−2t
[
λjD

4 + (5nλj − 12λ0j + µj)D3(3.3)

+ (44λj − 30nλj + 3nµj − 6µj + 1)D2

+ (40nλj − 48λj − 6nµj + 8µj + n− 2 + %j)D + γj

]
u

= e−2tϕj(D)u.

Hence, (3.1) is true for q = 1. Now we suppose that (3.1) is true for q − 1, that is,

(3.4) Lq−1
j u = e−2(q−1)t

{q−2∏

k=0

ϕj (D − 2k)
}
u.
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Applying the operator Lj on both sides of (3.4), we find

Lq
ju = Lj

(
e−2(q−1)t

{q−2∏

k=0

ϕj (D − 2k)
}
u

)
.

We know from (3.3) that Lj = e−2tϕj(D), therefore the right-hand side of the above
equality can be written as

(3.5) Lq
ju = e−2tϕj(D)

(
e−2(q−1)t

{q−2∏

k=0

ϕj (D − 2k)
}
u

)
.

From the theory of ordinary differential equations it is known that, for any two poly-

nomials of the operator D with constant coefficients G and H and for any constant
a, the following relation holds [1]:

(3.6) G (D)
{
e−atH (D)u

}
= e−atG (D − a)H (D) u.

Using this property, we can write (3.5) as

Lq
ju = e−2te−2(q−1)tϕj (D − 2 (q − 1))

q−2∏

k=0

ϕj (D − 2k)u

= e−2qt

{q−1∏

k=0

ϕj (D − 2k)
}
u.

Thus, the proof is complete. We remark that the product of the operators
∏
j

ϕj is

commutative.

Lemma 3. Let p and q1, . . . , qp be arbitrary positive integers. Then

(3.7)

( p∏

j=1

L
qj

j

)
u = e−2Q(p)t

p∏

j=1

qj−1∏

k=0

ϕj (D − 2 [Q(p)−Q(j)]− 2k)u.

Using (3.1), this is easily proved in a manner similar to the proof of Lemma 2.
Now, we will establish the following theorem.
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Theorem 2. All solutions for equation (1.8) of the type u = u(r) can be expressed
by formula (2.12).
����� �"!

. Equating (3.7) to zero, we find the following ordinary differential equa-
tion with constant coefficients and of order 4Q(p) = 4 (q1 + . . .+ qp):

(3.8)
p∏

j=1

qj−1∏

k=0

ϕj (D − 2 [Q(p)−Q(j)]− 2k)u = 0.

The characteristic equation of (3.8) is

p∏

j=1

qj−1∏

k=0

ϕj (m− 2 [Q(p)−Q(j)]− 2k) = 0.

This was obtained in Lemma 1. Therefore, from Theorem 1 we know that this
equation has the factors

M∏

w=1

(m− cw)ξw and
N∏

s=1

(
m2 − 2αsm+ α2

s + β2
s

)τs
.

Hence the solution of (3.8) is given by

u(t) =
M∑

w=1

ξw−1∑

k1=0

Awk1 t
k1ecwt(3.9)

+
N∑

s=1

τs−1∑

k2=0

eαsttk2 [Bsk2 cos (βst) + Csk2 sin (βst)] .

Since et = r, we set t = lnr in (3.9) arriving at formula (2.12). Thus the theorem is
proved. �
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