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Abstract. In this paper some infinitely based varieties of groups are constructed and
these results are transferred to the associative algebras (or Lie algebras) over an infinite
field of an arbitrary positive characteristic.
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Specht’s problem [1] about the finite basing of any system of identities is well
known in the associative algebra theory. This problem was affirmatively solved by

A.A. Kemer [2] for the case of null characteristic of the basic field. If the basic field’s
characteristic is positive, Specht’s problem has negative solution. Essentially using

results of the paper [3] A. I. Belov constructed in [4] infinitely based varieties of asso-
ciative algebras over an infinite field of an arbitrary positive characteristic. (We re-

mark that the methods of V.V. Shigolev’s proofs [3] are based on direct combinatorial
reasoning with algebra polynomials.) In [5] the author constructed infinite indepen-

dent systems of identities of associative algebras (or Lie algebras) over an infinite field
of characteristic 2, using methods completely different from those in [3]. In this paper

the results from [5] are generalized to the case of an arbitrary positive characteristic.

We denote a commutator in an algebra by (a, b) = ab − ba, a commutator in a
group by [a, b] = a−1b−1ab, the conjugation of an element b through an element a in

a group by ba = a−1ba. We will also use the notation

(a1, . . . , ak−1, ak) = ((a1, . . . , ak−1), ak),

[a1, . . . , ak−1, ak] = [[a1, . . . , ak−1], ak].
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Let F be an infinite field of positive characteristic p and let Cp denote the variety

of associative F -algebras defined by the identities

(1) (x, y, z) = 0, xp2
= 1, [x, y]p = 1, [xp, y] = 1.

B is the variety of associative F -algebras defined by the identity

(2) ((x1, x2, x3), (x4, x5, x6), (x7, x8)) = 0,

N3 is the variety of nilpotent Lie F -algebras of index not more than 3, D is the

variety of Lie F -algebras defined by the identity

(3) ((x1x2 · x3)(x4x5 · x6))(x7x8) = 0.

We also denote

µk = ((x, y, z), (x1, x2), (x3, x4), . . . , (x4k−1, x4k), (x, y, z));

νk = (((((xy)z)(x1x2))(x3x4)) . . . (x4k−1x4k))((xy)z).

It is proved that in the variety B ∩ CpCp the system of identities {µk = 0: k =
1, 2, . . .} is independent, i.e. no identity of this system follows from the other identities
of the system (Theorem 1). We obtain as a consequence that the variety B ∩ CpCp

contains a continuum of different not finitely based subvarieties and that in B∩CpCp

there exist algebras with the unsolvable problem of words equality. It follows from
the second identity in (1) that the algebras of the variety CpCp are nil-algebras of

index p4. This is the answer to V. V. Shigolev’s question [3, p. 144] about the existence
of an infinite basis of the associative algebra’s identities such that the degree in each

variable is bounded in the aggregate.
From Theorem 1 it also follows that the system of identities {νk = 0: k = 1, 2, . . .}

is independent in the variety D∩N3N3. The identity of solvability of index 4 follows
from (3). It gives the negative answer to A.M. Slinko’s question [6, question 1.129]

about a finitely based variety of solvable Jordan algebras in the case of a solvable
variety of index 4 of special Jordan algebras over an infinite field of characteristic 2.

The varieties B ∩ CpCp and D ∩N3N3 are locally finite and locally nilpotent. As
the last statement is concerned it should be mentioned that it is easy to show that

any nilpotent variety of algebras (not necessarily associative) has a finite basis of
identities.

Let A be an associative algebra with the identity element 1 and let B be its
subalgebra satisfying the identity

(4) xm = 0.
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Then the set of elements 1 − B = {1 − b : b ∈ B} forms a group and (1 − b)−1 =
1 + b+ b2 + . . .+ bm−1.

Lemma 1. Let A be an associative algebra with the identity element 1 and let
B be its subalgebra satisfying the identity (4). Then

[1− u, 1− v] = 1 + (1 + u+ . . .+ um−1)(1 + v + . . .+ vm−1)(u, v)

for u, v ∈ B.
	�
�����

. We have [1 − u, 1 − v] = (1 − u)−1(1 − v)−1(1 − u)(1 − v) = (1 −
u)−1(1 − v)−1(1 − u)(1 − v) − (1 − u)−1(1 − v)−1(1 − v)(1 − u) + 1 = 1 + (1 −
u)−1(1− v)−1((1−u)(1− v)− (1− v)(1−u)) = 1+(1−u)−1(1− v)−1(1−u, 1− v) =
1 + (1 − u)−1(1 − v)−1(u, v) = 1 + (1 + u + . . . + um−1)(1 + v + . . . + vm−1)(u, v).
Lemma is proved. �

Let G be an arbitrary group, FG its group algebra over the field F . We recall
that FG is a free F -module with the basis {g : g ∈ G} and for elements of this basis
the product is defined as their product in the group G. If H is a subgroup of the
group G, then we denote by ωH the left ideal of the group algebra FG generated by

all the elements 1− h (h ∈ H). If H = G, then ωG is called the augmentation ideal
of the group algebra FG.

Lemma 2 [7]. Let H be a subgroup of the group G. Then
(1) if the elements hi generate the subgroup H , then the elements 1− hi generate

the right ideal ωH ;

(2) if h ∈ G, then 1− h ∈ ωH if and only if h ∈ H ;
(3) H is a normal subgroup in G if and only if ωH is a two-sided ideal of the

algebra ωG;

(4) if H is a normal subgroup of the group G, then F (G/H) ∼= FG/ωH ;

(5) ωG =
{ ∑

g∈G

λgg :
∑

g∈G

λg = 0
}
;

(6) the augmentation ideal ωG is generated as an F -module by elements of the form

1− g (g ∈ G).

Lemma 3 [7]. Let G be a locally finite p-group and let F be a field of charac-
teristic p. Then the augmentation ideal ωG is locally nilpotent.

Following the ideas from [8] we consider the groups An, Bn and Cn. The group An

has the representation An = 〈a1, a2, . . . , a4n : ap
i = 1, [ai, aj , ak] = 1 for all i, j, k〉

where p is any natural number.
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The identities

(5) [xy, z] = [x, z][x, z, y][y, z], [x, yz] = [x, z][x, y][x, y, z]

hold in any group. Then, using induction on the words length relative to the variables

a1, a2, . . . , a4n, it is easy to show that the group An is nilpotent of class 2. It follows
that the derived group A′

n lies in the centre of An. Let us now show that the identity

(6) [u1, u2]p = 1

holds in the group An. We will prove it by induction. We have [ap
i , aj ] = 1. Further,

it follows from (5) that [u1, u2]p = [up
1, u2]. Suppose that u1 = u2u3 and that

[up
3, u2] = [up

4, u2] = 1. Then [up
1, u2] = [u1, u2]p = [u3u4, u2]p = [u3, u2]p[u4, u2]p =

[up
3, u2][u

p
4, u2] = 1, i.e. the identity (6) is proved. It follows from (6) that the derived

group A′
n is an elementary abelian p-group. As An/A

′
n is also an elementary abelian

p-group, the group An has the exponent p2 and is finite, for it is the extension of a

finite group with help of a finite group.
Now if u ∈ A′

n, then by (5) u can be written uniquely as the product

∏

16i<j64n

[ai, aj ]
βij ,

where βij = 0, 1, . . . p− 1. Consider the expression
∏

16i<j64n

(1 + xij)
βij .

Suppose that the polynomial obtained after opening the parentheses contains the

monomials αixi1i2xi3i4 . . . xi4n−1i4n , where {i1, i2, . . . , i4n} = {1, 2, . . . , 4n}. Let
si denote the number of inversions in the permutation i1, i2, . . . , i4n, %(u) =∑
i

(−1)siαi (mod p).

If u ∈ An, let u denote the image of u under the homomorphism An → An/A
′
n.

We define now the group Bn. It has the representation

Bn =
〈
bu, ck : u ∈ An, k ∈ An/A

′
n

〉
,

where b /∈ An and Bn satisfies the relations

(bu)p = (ck)p = 1,(7)

[bu, bv] = 1 if u 6= v,

[bu, bv] = (cu)%(uv−1) if u = v,

[bu, ck] = 1,
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for all u, v ∈ An, k ∈ An/A
′
n. We will show later that %(u) is not zero for some

u ∈ A′
n and so Bn = 〈bu : u ∈ An〉, B′

n =
〈
ck : k ∈ An/A

′
n

〉
and B′

n lies in the centre
of Bn.

The group Bn is homomorphic image of the group B?
n = 〈bu : u ∈ An, (bu)p = 1,

[bu1 , bu2 , bu3 ] = 1, for all u1, u2, u3 ∈ An〉. The derived group of B?
n is an elementary

abelian p-group and the elements [bu, bv] form an independent generating set for it
satisfying only the relations

[bu, bv] = 1, [bu, bv] = [bv, bu]−1.

Now, if u = v, then uv−1 ∈ A′
n, therefore uv

−1 = (vu−1)−1 and (cu)%(uv−1) =
(cv)(−%(vu−1)). We also have %(1) = 0, consequently the relations of the group Bn

[bu, bv] = 1 if u 6= v and [bu, bv] = (cu)%(uv−1) if u = v do not impose any restrictions

on the group
〈
ck : k ∈ An/A

′
n

〉
. Therefore B′

n is an elementary abelian p-group and
the elements ck, where k ∈ An/A

′
n, form a set of independent generators for B

′
n.

Moreover, the group Bn is finite and has exponent p2.

Define the action of An on Bn as follows. Let (bu)v = buv for all u, v ∈ An and let
(ck)u = cku for all k ∈ An/A

′
n and all u ∈ An. It is straightforward to check that this

action determines a monomorphism of the group An into the group of automorphisms
of the group Bn. Form the semidirect product Cn of An and Bn. Since An, Bn are

finite and of exponent p2, Cn is finite of exponent p4. Let γ3 denote the subgroup
of Cn generated by all commutators of the form [u1, u2, u3] of the group Cn. We
have γ3(Cn) ⊆ Bn, therefore [γ3(Cn), γ3(Cn)] ⊆ B′

n = 〈ck〉 which is centralized by
A′

n and by Bn and hence by C ′
n. Therefore Cn satisfies the identity

(8) α(x1, x2, . . . , x8) = [[x1, x2, x3], [x4, x5, x6], [x7, x8]] = 1.

Let us now show that the inequality

(9) [[b, a1, a2, a3], [a1, a2], [a3, a4], . . . , [a4n−1, a4n], [b, a1, a2]] 6= 1

is true in the group Cn.

The group Bn is nilpotent of class 2, hence it follows from the identities (5) that
for any t1, t2, t3 ∈ Bn,

[t1t2, t3] = [t1, t3][t2, t3], [t1, t2t3] = [t1, t2][t1, t3].

We will use this fact without further reference.
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Let � p be the ring of integers modulo p, let � pA
′
n be the group ring of the

group A′
n over the ring � n. If k ∈ � pA

′
n then k = α1u1 + α2u2 + . . . + αrur,

where α1, α2, . . . , αr ∈ � p, u1, u2, . . . , ur ∈ A′
n. Then we define

[tk1 , t2] = [(tu1
1 )α1 , t2][(tu2

1 )α2 , t2] . . . [(tur
1 )αr , t2]

= [tu1
1 , t2]α1 [tu2

1 , t2]α2 . . . [tur
1 , t2]αr .

We remark that this definition does not lead to a contradiction, as B ′
n is an elemen-

tary abelian p-group. If k1, k2 ∈ � pA
′
n, t1, t2 ∈ Bn, then [tk1+k2

1 , t2] = [tk1
1 , t2][t

k2
1 , t2].

For u ∈ A′
n, t1, t2 ∈ Bn we also have [t1, u, t2] = [tu−1

1 , t2].
Extend % : A′

n → � p linearly to the function % : � pA
′
n → � p. Then for u, v ∈ An,

k ∈ � pA
′
n we have [buk, bv] = 1, if u 6= v and [buk, bv] = (cu)%(ukv−1), if u = v.

Further we have

[b, [ai1 , ai2 ], [ai3 , ai4 ], . . . , [ai4n−1 , ai4n ], b]

= [b([ai1 ,ai2 ]−1),([ai3 ,ai4 ]−1)...([ai4n−1 ,ai4n ]−1), b].

But (1+xi1i2−1)(1+xi3i4−1) . . . (1+xi4n−1i4n−1) = xi1i2xi3i4 . . . xi4n−1i4n , therefore,
if s denotes the number of inversions in the permutation i1, i2, . . . , i4n, then

%([ai1 , ai2 ]− 1)([ai3 , ai4 ]− 1) . . . ([ai4k−1 , ai4k
]− 1)

=

{
(−1)s if k = n and{i1, i2, . . . , i4n} = {1, 2, . . . , 4n},
0 otherwise.

Consequently, we obtain from (7) that

[b, [ai1 , ai2 ], [ai3 , ai4 ], . . . , [ai4n−1 , ai4n ], b]

=

{
c(−1)s

if k = n and {i1, i2, . . . , i4n} = {1, 2, . . . , 4n},
0 otherwise.

Further, [b, a1] = b−1ba1 and [b, a1, a2] = b−a1bb−a2ba1a2 , therefore

[[b, a1, a2], [a1, a2], [a3, a4], . . . , [a4n−1, a4n], [b, a1, a2]]

= [b−a1bb−a2ba1a2 , [a1, a2], [a3, a4], . . . , [a4n−1, a4n], b−a1bb−a2ba1a2 ]

= [b, [a1, a2], [a3, a4], . . . , [a4n−1, a4n], b]−a1 [b, [a1, a2], [a3, a4], . . . ,

[a4n−1, a4n], b][b, [a1, a2], [a3, a4], . . . , [a4n−1, a4n], b]−a2

× [b, [a1, a2], [a3, a4], . . . , [a4n−1, a4n], b]a1a2

= c−a1cc−a2ca1a2 .

Earlier we have shown that {cu : u ∈ An} is a set of independent generators for B′
n,

therefore c−a1cc−a2ca1a2 6= 1. Consequently, the inequality (7) is proved.
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Lemma 4. Let ti, tj , tr, t1, t2, . . ., tk ∈ Bn, u1, u2, . . . , uk ∈ A′
n. Then

[titj , u1, u2, . . . , uk, tr] = [ti, u1, u2, . . . , uk, tr][tj , u1, u2, . . . , uk, tr],(10)

[ti, u1t1, u2t2, . . . , uktk, tj ] = [ti, u1, u2, . . . , uk, tj ].(11)

	�
�����
. The subgroup Bn is normal in Cn, therefore for t ∈ Bn, w ∈ Cn we

have [t, w] = t−1tw ∈ Bn and it is nilpotent of class 2, therefore [titj , tr] = [tjti, tr].
Then

[titj , u1, u2, . . . , uk, tr] = [(titj)(u1−1)(u2−1)...(uk−1), tr]

= [(ti)(u1−1)(u2−1)...(uk−1), tr][(tj)(u1−1)(u2−1)...(uk−1), tr]

= [ti, u1, u2, . . . , uk, tr][tj , u1, u2, . . . , uk, tr],

i.e. the equality (10) is proved.

Further, by (5),

[ti, u1t1, tj ] = [[ti, t1][ti, u1][ti, u1, t1], tj ]

= [ti, t1, tj ][ti, u1, tj ][ti, u1, t1, tj ] = [ti, u1, tj ].

Suppose that the equality (11) is true for all numbers smaller than k. Then by the
induction hypothesis and (10)

[ti, u1t1, u2t2, . . . , uktk, tj ] = [[ti, u1t1], u2, . . . , uk, tj ]

= [[ti, t1][ti, u1][ti, u1, t1], u2, . . . , uk, tj ]

= [[ti, t1], u2, . . . , uk, tj ][[ti, u1], u2, . . . , uk, tj ]

× [[ti, u1, t1], u2, . . . , uk, tj ]

= [ti, u1, u2, . . . , uk, tj ],

i.e. the equality (11) is also proved. �

Lemma 5. Let t1, t2 ∈ Bn. Then

[t1, [ai, aj ], [ai, ak], t2] = 1

and

[t1, [ai, aj ], [ak, al], t2] = [t1, [ak, aj ], [ai, al], t2]−1

for any i, j, k, l.
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	�
�����
. By (10) the expression [t1, [ai, aj ], [ai, ak], t2] is a product of factors of

the form

[bu, [ai, aj ], [ai, ak], bv] = [bu([ai,aj ]−1)([ai,ak]−1), bv]

=

{
1 if u 6= v,

(cu)%(u([ai,aj ]−1)([ai,ak]−1)v−1) if u = v.

Obviously, in order to prove the equality [t1, [ai, aj ], [ai, ak], t2] = 1 it is enough
to show that %(([ai, aj ] − 1)([ai, ak] − 1)u) = 0 for any u ∈ A′

n. Suppose that
u =

∏
[ar, as]βrs . Consider the expression (1 +xij − 1)(1 +xik − 1)

∏
(1+xrs)βrs . It

is obvious that any polynomial’s monomial, obtained after opening the parentheses
contains the product xijxik . Then %(([ai, aj ]− 1)([ai, ak]− 1)u) = 0.
By analogy, in order to prove the second equality it is enough to show that

%(([ai, aj ]− 1)([ak, al]− 1)u) = − %(([ak, aj ]− 1)([ai, al]− 1)u)(12)

for every u ∈ A′
n.

Let u =
∏

[ar, as]βrs . We have (1 + xij − 1)(1 + xkl − 1)(
∏

(1 + xrs)βrs =
xkjxil

∏
(1+xrs)βrs and (1+xkj−1)(1+xil−1)

∏
(1+xrs)βrs = xkjxil

∏
(1+xrs)βrs .

As {i, j, k, l} = {k, j, i, l} and these permutations differ by an odd number of in-
versions, both the expressions have the same number of terms of the form xi1i2 ×
xi3i4 . . . xi4n−1i4n , where {i1, i2, . . . , i4n} = {1, 2, . . . , 4n} and %(([ai, aj ]−1)([ak, al]−
1)u) = −%(([ak, aj ]−1)([ai, al]−1)u) by the definition of the mapping %. The lemma
is proved. �

Lemma 6. Let t1, t2 ∈ Bn and h, u,m ∈ A′
n. Then

[t1, [u, hm], t2] = [t1, [u, h], t2][t1, [u,m], t2].

	�
�����
. We will prove the lemma by induction on the sum of the lengths

of the words u, h, m written as products of the elements ai. The result is

trivial if this sum does not exceed 2. Further, taking in consideration (5), we
have [t1, [hm], t2] = [t1, [u, h][u,m], t2] = [[t1, [u,m]][t1, [u, h]][t1, [u, h], [u,m]], t2] =
[[t1, [u,m], t2][t1, [u, h], t2][t1, [u,m], [u, h], t2]. Therefore, in order to prove the lemma,
it is enough to show that

[t1, [u,m], [u, h], t2] = 1.

By the induction hypothesis [t1, [u,m], [u, h], t2] is a product of factors of the form

[t1, [u, h], [u, ai], t2] = [t([u,h]−1)([h,ai]−1)
1 , t2]

= [t([u,a1]−1)([u,h]−1)
1 , t2] = [t1, [u, ai], [u, h], t2].
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Again by the induction hypothesis, the last expression is a product of factors of

the form [t1, [u, ai, ], [u, aj ], t2]. Let u = ai1ai2 . . . air . Once again by the induction
hypothesis

[t1, [u, ai], [u, aj ], t2] =
∏

16s,t6r

[t1, [ais , ai], [ait , aj ], t2]

=
∏

16s6r

[t1, [ais , ai], [ais , aj ], t2]

×
∏

16s,t6r

[t1, [ais , ai], [ait , aj ], t2]× [t1, [ait , ai], [ais , aj ], t2] = 1

by Lemma 5. The lemma is proved. �

Lemma 7. Let t1, t2 ∈ Bn and ui = [wi1 , wi2 ], where wij ∈ An, i = 1, 2, . . . , 2k.
Then

[t1t2, u1, u2, . . . u2k, t1t2] = [t1, u1, u2, . . . u2k, t1][t2, u1, u2, . . . u2k, t2].

	�
�����
. Taking in consideration (10) it is sufficient to show that

(13) [t1, u1, u2, . . . u2k, t2] = [t2, u1, u2, . . . u2k, t1]−1.

We will use the fact that A′
n centralizes B

′
n. Hence we have [tu1 , t2] = [tu1 , t2]

u−1
=

[t1, tu
−1

2 ] for u ∈ A′
n. The group Bn is nilpotent of class 2, consequently [t1, u1, t2] =

[t−1
1 tu1 , t2] = [t−1

1 , t2][tu1 , t2] = [t1, t2]−1[t1, tu
−1

2 ] = [t1, t−1
2 ][t1, tu

−1

2 ] = [t1, t−1
2 tu

−1

2 ] =
[t1, [t2, u−1]] = [t2, u−1, t1]−1. Further, by induction we obtain that

[t1, u1, u2, . . . , u2k, t2] = [t2, u−1
2k , . . . , u

−1
2 , u−1

1 , t1]−1.

By Lemmas 4, 6 the left- and right-hand sides of the last equality can be represented

as products of factors of the form

[bu, [ai1 , ai2 ], [ai3 , ai4 ], . . . , [ai4n−1 , ai4n ], bv]

and

[bu, [ai4n−1 , ai4n ]−1, . . . , [ai3 , ai4 ]
−1, [ai1 , ai2 ]

−1, bv]

= [bv, [ai4n , ai4n−1 ], . . . , [ai4 , ai3 ], [ai2 , ai1 ], b
u]−1,

respectively, where u, v ∈ An.
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Now it is obvious that in order to prove the equality (13) it is enough to show that

%(([ai4n , ai4n−1 ]− 1) . . . ([ai4 , ai3 ]− 1)([ai2 , ai1 ]− 1)u)

= %(([ai1 , ai2 ]− 1)([ai3 , ai4 ]− 1) . . . [ai4n−1 , ai4n ]− 1)u)

for any u ∈ An. This equality is proved similarly to (12), just taking into account
that the permutations i1, i2, . . . , i4k and i4k, i4k−1, . . . , i1 differ by an even number

of inversions. �

Lemma 8. The identities

βk = βk(x, y, z, u;x1, x2, . . . , x4k)(14)

= [[x, y, z], [x1, x2], [x3, x4], . . . , [x4k−1, x4k ], [u, y, z]]

× [[u, y, z], [x1, x2], [x3, x4], . . . , [x4k−1, x4k], [x, y, z]] = 1,

γk = γk(x, y, z, u;x1, x2, . . . , x4k)(15)

= [[x, y, z], [x1, x2], [x3, x4], . . . , [x4k−1, x4k ], [x, y, u]]

× [[x, y, u], [x1, x2], [x3, x4], . . . , [x4k−1, x4k], [x, y, z]] = 1,

δk = δk(x, y, z;x1, x2, . . . , x4k)(16)

= [[x, y, z], [x1, x2], [x3, x4], . . . , [x4k−1, x4k ], [x, y, z]] = 1

are true in the group Cn for k 6= n.

	�
�����
. The subgroup Bn is normal in Cn, therefore we have [w1, w2] =

[u1, u2]t for any w1, w2 ∈ Cn and u1, u2 ∈ An, t ∈ Bn. Further, the group An

is nilpotent of class 2, hence γ3(Cn) ⊆ Bn. Therefore in order to prove (14),
(15) it is sufficient to show, by (10), that [t1, [u1, u2], [u3, u4], . . . , [u4k−1, u4k], t2] =
[t2, [u1, u2], [u3, u4], . . . , [u4k−1, u4k], t1]−1. This equality follows from (13).

By analogy, in order to prove the identity (16) it is sufficient to show that
[t1, [u1, u2], [u3, u4], . . . , [u4k−1, u4k], t1] = 1. By Lemmas 5 and 7 the left-hand side
of this equality is a product of factors of the form [bu, [ai1 , ai2 ], [ai3 , ai4 ], . . . , [ai4k−1 ,

ai4k
], bu] = [b, [ai1 , ai2 ], [ai3 , ai4 ], . . . , [ai4k−1 , ai4k

], b]u = 1 for k 6= n. The lemma is

proved. �

Let M denote the variety of groups, defined by the identity (8), let Np be the

variety of nilpotent groups of class at most 2 defined by the identity xp2
= 1. We

have shown above that Cn ∈ M ∩ NpNp. Hence we obtain directly from (8), (9),

(14)–(16) the following
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Proposition 1. The system of identities {δk = 1}, k = 1, 2, . . ., is independent
in the variety of groups M ∩NpNp.

We remark that the variety M ∩NpNp is locally nilpotent and locally finite. We
also remark that an analogous result was obtained in [8] for the case of p = 2.

Lemma 9. The identity δn = 1 is not a consequence of the system of identities
βk = 1, γk = 1, δk = 1 for k 6= n and α(x1, x2, . . . , x8) = 1 in the variety of groups
M ∩NpNp.

We will further assume that F is an infinite field of characteristic p > 0. The
group Cn is a finite p-group, therefore it follows from Lemma 3 that the augmentation

ideal of ωCn is nilpotent. Then, as was shown before Lemma 1, the set Cn = 1−ωCn

forms a group. Obviously, Cn ⊆ Cn. Then FCn ⊆ FCn and ωCn ⊆ ωCn. Using

item (6) of Lemma 2 it is easy to show that ωCn
∼= ωCn. The algebra ωCn is

nilpotent and F has characteristic p, so it is easy to show that the identity xpk

= 1
holds in the group Cn for some k, and it follows from Lemma 1 that the group Cn

is nilpotent. It follows from this that Cn contains a finite descending central series

(17) Cn = D1 ⊃ D2 ⊃ . . . ⊃ Dr+1 = 1,

which possesses the property that all the elements of its quotient group Di/Di+1

have order p. Therefore each group Di/Di+1 is a direct product of cyclic groups of

order p. We denote by diα those elements of the group Di whose images in Di/Di+1

are independent generators of the group Di/Di+1. Then each element g ∈ Cn is

uniquely written in the form

(18) g = d
j1
1α1

. . . d
jm

1αm
d

s1

2β1
. . . d

sl

2βl
. . . d

t1
nγ1

. . . d
tk

nγk
,

where 0 < j, s, t < p. We will assume that δ1 < δ2 < . . ., where δi = αi; βi; γi.

We denote d = 1− d. Then d ∈ ωCn. We will show that elements of the form

(19) g = dj1
aα1

. . . djm

1αm
ds1
2β1

. . . dsl

2βl
. . . dt1

nγ1
. . . dtk

nγk

form F -basis of the algebra ωCn. Indeed, the sequence u = (j1, . . . , jm, s1, . . . , sl,

t1, . . . , tk) will be called the defining vector of the element g. Suppose that the
defining vectors for elements g1, g2 ∈ ωCn are u and v. We graphically define them

in the following way. Suppose that a factor diα in one of the decompositions of the
form (18) of the elements g1, g2 lacks. Then we write this factor in the decomposition

with the power 0. We have obtained new defining vectors u = (ϕ1, ϕ2, . . . , ϕr),
v = (ψ1, ψ2, . . . , ψr) for the elements g1, g2. We will say that the order of the

11



element g1 is higher than the order of the element g2 if ϕi = ψi for i = 1, 2, . . . , s,
but ϕs+1 > ψs+1.
Let gk have the highest order among the elements gi (i = 1, 2, . . . , t). Then in the

notation of the polynomial α1g1 + α2g2 + . . . + αtgt (αi ∈ F ) in terms of elements
of the group Cn the coefficient of dk is equal to ±αk. This directly follows from
the uniqueness of each element’s notation in the form (18). Consequently, the ele-

ments (19) are linearly independent and form F -basis of the algebra ωCn. Therefore
each element of ωCn can be represented as a linear combination of monomials (19),

moreover, this presentation is unique.
The number j1 + . . . + jm + p(s1 + . . . + sl) + . . . + pr−1(t1 + . . . + tk) will be

called the weight of the monomial (19) of the algebra ωCn. The weight of the
polynomial’s lowest monomial will be called the polynomial’s weight. We denote

by Ds the submodule of the F -module D = ωCn, generated by the monomials
from D whose weights are not less than s. We will show that the inclusion

(20) Ds ·Dt ⊆ Ds+t

is true in the algebra D. Indeed, consider a monomial of the general form

(21) dj1
i1α1

dj2
i2α2

. . . ds+t
is+tαs+t

(0 < ji < p)

from Ds ·Dt. If the powers of the same basic element are situated side by side in (21),

for example djm

iα d
jm+1
iα and jm+jm+1 < p, then we substitute the expression djm+jm+1

iα

for this pair. The total weight does not change. But if jm + jm+1 = j + p, then

the product djm

iα d
jm+1
iα will be represented in the form dj

iαd
p
iα. As d

p
iα enters higher

members of the central series (17), the sum of the monomials that belong to these

higher members can be substituted for dp
iα. The total weight does not change. Let

now djm

imαm
d

jm+1
im+1α−m+1 be such elements that their orders are inverse in the normal

form (19). Then for the product djm

imαm
d

jm+1
im+1αm+1

we substitute the expression

(22) dβdα = dαdβ + dα[dβ , dα] + dβ [dβ , dα]− [dβ , dα]− dαdβ [dβ , dα],

where dα = djm

imαm
, dβ = d

jm+1
im+1αm+1

, [dβ , dα] = d−1
β d−1

α dβdα. As (17) is the central
series of the group Cn, the commutator [dβ , dα] will be contained in a member of
a higher number than dα and dβ . Therefore the weights of the members from the
right-hand side of the equality (22) is not less than dβdα. Using the stated rules, we

are able to express each product of the form (21) as a product of higher order, and
the members’ weight does not diminish.

The group Cn is finite. Hence there are only a finite number of factors of the
form diα in (18). Therefore each monomial of (21) can be reduced (by a finite number
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of transformations) to a polynomial whose every monomial has the form (19). Then

the weight of the monomial’s product is not less than the sums of these polynomials’
weights. Consequently, the inclusion (20) is proved.

From (20) and the above proved statement about the basis of the algebra D it

follows that Di is an ideal of the algebra D and that Di ⊆ Di, where Di means the
ith power of the algebra D. Let Di be the ith member of the central series (17). We

will show that

(23) Di ⊆ 1−Di

for i = 1, 2, . . . , r + 1. In order to prove (23) we will show that Di ⊆ 1 − Di. We

have D = D1 ⊆ 1 −D1. Suppose that Di ⊆ 1 −Di and let di = 1 − di ∈ 1 −Di,
d = 1 − d ∈ 1 − D. Then 1 − [di, d] = d

−1

i d−1(ddi − did) = 1 − d
−1

i d(d, di) =
1− did(d, di) ∈ 1−Di+1, i.e. the inclusion (23) is proved.

By the construction, Cn/Bn
∼= An. Then by item 4) of Lemma 2 FCn/ωBn

∼=
FAn. Earlier we have shown that FCn = FCn. It is obvious that Bn = 1−ωBn will
be the kernel of the homomorphism induced on the group Cn by the homomorphism
FCn → FCn/ωBn. Therefore Bn is a normal subgroup of the group Cn. Further, by

item 5) of Lemma 2 the homomorphism FCn → FCn/ωBn preserves the sum of the
polynomials’ coefficients. Therefore, again by item 5) of Lemma 2, it follows from the

relation FCn/ωBn
∼= FAn that ωCn/ωBn

∼= ωAn, where ωAn is the augmentation
ideal of the group algebra FAn. Now let us show that these relations imply that

Cn/Bn
∼= An, where An = 1 − An. Consider a homomorphism α : FCn → FAn.

Let c = 1− c, where c ∈ ωCn. Then it follows from the relation ωCn/ωBn
∼= ωAn

that α(c + ωBb) = a, where a ∈ ωAn. If e is the identity element of the group An,
then α(cBn) = α((1−e)(1−ωBn)) = α(1− c−ωBn + c ·ωBn) = α(1− (c+ωBn)) =
α1 − α(c + ωBn) = e − a ∈ An. It means that the homomorphism α maps the
group Cn into the group An. But if a = e − a ∈ An ⊆ Cn, then αa = α(e − a) =
αe − αa = αe − α(c + ωBn) = αe − α(c + ωBn − c · ωBn) = α(1 − c − ωBn + c ·
ωBn) = α(1− c)(1−ωBn) = α(cBn). It means that α is an epimorphism. Therefore
Cn/Bn

∼= An. It follows that ωCn/ωBn
∼= ωAn. Further, as FCn = FCn, it is easy

to show that ωBn = ωBn, ωAn = ωAn. Therefore

(24) Cn = 1− ωCn, Bn = 1− ωBn, An = 1− ωAn.

We denote t = j1 + . . .+ jm + p(s1 + . . .+ sl). The set (ωBn)t is an ideal of the
algebra ωBn, and ωBn is an ideal of the algebra ωCn. It easily follows that (ωBn)t

will be an ideal of the algebra ωCn, too. Consider the homomorphism ϕ : ωCn →
ωCn/(ωBn)t. Let ϕ(ωCn) = Un, ϕ(ωBn) = Vn, ϕ(ωAn) = Wn, ϕCn = Un, ϕBn =
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V n, ϕAn = Wn. It follows from the relation ωCn/ωBn
∼= ωAn that Un/Vn

∼= Wn.

Now consider the homomorphism ψ : Un → Wn → Wn/(Wn)t and let ψUn = Ln,
ψVn = Mn, ψWn = Kn. The series (17) of the group Cn induces the central series
Ln = (Ln)1 ⊇ (Ln)2 ⊇ . . . of the group Ln, which in turn induces respectively the

central series Mn = (Mn)1 ⊇ (Mn)2 ⊇ . . . and Kn = (Kn)1 ⊇ (Kn)2 ⊇ . . . of the
subgroups Mn and Kn, where (Mn)i = Mn ∩ (Ln)i, (Kn)i = Kn ∩ (Ln)i. The

quotient groups (Mn)i/(Mn)i+1, (Kn)i/(Kn)i+1 are elementary abelian p-groups.
Then it follows from the definition of series (17), homomorphisms ϕ, ψ and (23) that

(Mn)3 = 1, (Kn)3 = 1 and that the derived groups (Mn)′, (Kn)′ are also elementary
abelian p-groups. Therefore the groups Mn, Kn are nilpotent of class 2 and have

exponent p2, i.e. they belong to the variety Np. Then it follows from the relations
ωCn/ωBn

∼= ωAn and Cn/Bn
∼= An that

(25) Ln/Mn
∼= Kn, Ln/Mn

∼= Kn Mn,Kn ∈ Np, Ln ∈ NpNp.

Now let us show that the homomorphism ϕ : FCn → FCn/(ωBn)t induces iso-
morphisms on the subgroups An, Bn of the group Cn. Indeed, let H be a normal

subgroup of the group Bn corresponding to the induced homomorphism η. We have
to show that H = 1. Assume the contrary. Let the element 1 6= h ∈ H have the

form (18). With help of the identity 1 − xy = 1 − x + 1 − y − (1 − x)(1 − y) we
write the element 1− h as a linear combination of monomials of the form (19). By

the construction, the groups An, Bn are nilpotent of class 2, the derived groups A′
n,

B′
n and the quotient groups An/A

′
n, Bn/B

′
n are elementary abelian p-groups. Then

no monomial of the form (19) from the decomposition of the element 1 − h has a
weight greater than t. It means that 1 − h does not belong to the ideal (Bn)t. On

the other hand, by item 2) of Lemma 2 the element 1 − h belongs to the ideal ωH
corresponding to the homomorphism η. We obtain a contradiction as it is obvious

that ωH ⊆ H ∩ (Bn)t. Consequently, H = 1, i.e. η is an isomorphism of the sub-
group Bn. The isomorphisms ϕAn

∼= An and ψ(ϕBn) ∼= Bn, ψ(ϕAn) ∼= An can be

proved by analogy. Therefore

(26) ψ(ϕCn) ∼= Cn.

Let us denote elements of the group Ln by l and let E be the subgroup of the

group Ln, generated by all the expressions

α(l1, l2, . . . , l8), βk(li, lj , ls, lt; l1, l2, . . . , l4k),(27)

γk(ii, lj , ls, lt; l1, l2, . . . , l4k), δk(li, lj , ls; l1, l2, . . . , l4k)

for k 6= n. Obviously, the subgroup E is normal in Ln and the identities (8), (14)–
(16) hold in Ln/E. By d, gi we denote the images of the elements b, ai under the
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homomorphism Cn → Ln/E = Tn. We have shown earlier that Ln ∈ M ∩ NpNp.

Then Tn ∈ M ∩NpNp, too. By Lemma 9 the identity δn = 1 is not a consequence
of the system of identities (8), (14)–(16) in the variety of groups M ∩ NpNp. So it
follows from (9) and (26) that the inequality

(28) δn(d, g1, g2; g1, g2, . . . , g4n) 6= 1

is true in the group Tn.

The subgroup E is normal in Ln. Then by item 3) of Lemma 2, ωE will be an ideal
of the algebra FLn. Consider a homomorphism ϕ : FLn → FLn/ωE. We denote

ϕLn = Tn, ϕMn = Sn, ϕKn = Rn, ϕLn = Tn, ϕMn = Sn, ϕKn = Rn. Earlier
we have proved the following properties for the groups Mn, Kn: a) the groups Mn,

Kn belong to the variety Np; b) the derived groups M
′
n, K

′
n are elementary abelian

p-groups. Then the relations

(29) Rn, Sn ∈ Np, Tn/Sn
∼= Rn, Tn/Sn

∼= Rn

follow from a) and (25). It follows from the properties a), b) that the identities

[x, y]p = 1, [x, y, z] = 1 hold in the groupsMn, Kn. Taking in consideration (5), the
identity [xp, y] = 1 follows from them. Therefore the identities

(30) [x, y]p = 1, [xp, y] = 1

hold in the groups Rn, Sn.

Earlier we have shown that the algebra ωCn is nilpotent. Then the algebra Tn

is also nilpotent, say, of index m. We denote the elements of the group Cn by ui,

and the images of the elements ui under the homomorphism Cn → Tn by vi. We
introduce the notation

wi = 1− vi,

{x, y} = − (1 + x+ . . .+ xm−1)(1 + y + . . .+ ym−1)(x, y),

{x1, . . . , xi−1, xi} = {{x1, . . . , xi−1}, xi}.

It follows from Lemma 1 that [vi, vj ] = 1− {wi, wj}, and this implies directly that

(31) [v1, v2, . . . , vi] = 1− {w1, w2, . . . , wi}.
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We also denote

θ(x1, x2, . . . , x8)

= {{x1, x2, x3}, {x4, x5, x6}, {x7, x8}},
ηk(xs, xt, xi, xj ;x1, x2, . . . , x4k)

= {{xs, xi, xj}, {x1, x2}, . . . , {x4k−1, x4k}, {xt, xi, xj}}
− {{xt, xi, xj}, {{xs, xi, xj}, {x1, x2}, . . . , {x4k−1, x4k}}},

ξk(xs, xt, xi, xj ;x1, x2, . . . , x4k)

= {{xi, xj , xs, }, {x1, x2}, . . . , {x4k−1, x4k}, {xi, xj , xt}}
− {{xi, xj , xt}, {{xi, xj , xs}, {x1, x2}, . . . , {x4k−1, x4k}}},

λk(xi, xj , xs;x1, x2, . . . , x4k)

= {{xi, xj , xs}, {x1, x2}, . . . , {x4k−1, x4k}, {xi, xj , xs}}.

Now let us show that the equalities

θ = θ(α1w1, α2w2, . . . , α8w8) = 0,

ηk = ηk(αsws, αtwt, αiwi, αjwj ;α1w1, α2w, . . . , α4kw4k) = 0,(32)

ξk = ξk(αsws, αtwt, αiwi, αjwj ;α1w1, α2w2, . . . , α4kw4k) = 0,

λk = λk(αiwi, αjwj , αsws;α1w1, α2, w2, . . . , α4kw4k) = 0

hold in the algebra Tn. Indeed, in (27) we substitute li = αi(1− ui), where αi ∈ F ,
and let the image of the expression obtained for ηk(li, lj , ls, lt; l1, l2, . . . , l4k) under
the homomorphism Ln → Ln/E have the form ϕk%k. Then the equality ϕk%k = 1 or
ϕk = %−1

k is true in the group Ln/E = Tn, where ϕk, %k are commutator expressions

of the group Tn. With help of the identity [u, v] = [v, u]−1 we represent %−1 in
the form ψk, in which the arrangement of parentheses [ , ] in ψk coincides with

the arrangement of parentheses { , } in the second member of ηk. The parentheses
arrangements in ϕk and in the first member of ηk coincide. Now we apply the

equality (31) for ϕk, ψk. Suppose that ϕk = 1 − ϕk, ψk = 1 − ψk. As the equality
ϕk = ψk holds in the group Ln/E, it follows from the relation ω(Ln/E) ∼= ωLn/ωE

that the equality ϕk −ψk = 0 holds in the algebra Tn. But ϕk −ψk = ηk. Therefore
the equality ηk = 0 holds in the algebra Tn. By analogy we obtain the validity of

the equalities θ = 0, ξk = 0, λk = 0 in the algebra Tn.
Let f = f(x1, x2, . . . , xt) be one of the polynomials

θ(x1, x2, . . . , x8), ηk(xs, xt, xi, xj ;x1, xx, . . . , x4k),

ξ(xs, xt, xi, xj ;x1, xx, . . . , x4k), λk(xi, xj , xs;x1, xx, . . . , x4k).
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By the definition of { , } we pass to the operations (+), (·) in f and for the polynomial
obtained we introduce in a natural way the notions of degree in every variable xi,
degree and homogeneity of polynomials. Let us represent f in the form f = f0 +
f1+ . . .+fr1 , where fi is the sum of all the monomials of the polynomial f that have

the degree i in x1. Let w1, w2, . . . , wt be elements of the algebra ωTn determined
above. Using abbreviations we write f(w) instead of f(w1, w2, . . . , wt). If α ∈
F , then f(αw1, w2, . . . , wt) = f0(w) + αf1(w) + α2f2(w) + . . . + αr1fr1(w). Let
α1, α2, . . . , αr1 be arbitrary elements from F . Then by (32) we get a system consisting

of r1 equations
f0(w) + αif1(w) + . . .+ αr1

i fr1(w) = 0

with variables f0(w), f1(w), . . . , fr1(w). By [9], d1fj(w) = 0, where d1 is the determi-
nant of this system. The field F is infinite. Then we can choose such α1, α2, . . . , αr1

that d1 6= 0. That is why fj(w) = 0. Doing the same operation with the polynomi-
als fji and variable x2 and so on, we finally get the following statement.

Lemma 10. Let f = f1(x1, x2, . . . , xt) + . . . + fi(x1, x2, . . . , xt) + . . . +
fr(x1, x2, . . . , xt) be the decomposition of the polynomial f into homogeneous com-
ponents fi(x1, x2, . . . , xt) and let w1, w2, . . . , wt be the elements of the algebra ωTn

determined above. Then fi(w1, w2, . . . , wt) = 0.

In particular, examining the homogeneous components of the least degree in each
of the cases (32), we obtain that the equalities

((w1, w2, w3), (w4, w5, w6), (w7, w8)) = 0,

((wi, wj , ws), (w1, w2), . . . , (w4k−1, w4k), (wt, wj , ws))

− ((wi, wj , ws), ((wt, wj , ws), (w1, w2), . . . , (w4k−1, w4k))) = 0,

((wi, wj , ws), (w1, w2), . . . , (w4k−1, w4k), (wi, wj , wt))

− ((wi, wj , ws), ((wi, wj , wt), (w1, w2), . . . , (w4k−1, w4k))) = 0,

((wi, wj , ws), (w1, w2), . . . , (w4k−1, w4k), (wi, wj , ws)) = 0

are valid in the algebra Tn for k 6= n.
By item (6) of Lemma 2 the augmentation ideal ωCn is generated as an F -module

by elements of the form 1−ui. Then the F -module Tn is generated by the elements wi,
i.e. any element h from Tn has the decomposition h = α1w1 + . . . + αsws. The

statement can be proved taking into account the identity (x, y) = −(y, x) and using
induction on the length s, from the last equalities it is easy to prove the statement.

Lemma 11. The identities (2) and µk = 0 hold in the algebra Tn for k 6= n.
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Lemma 12. The algebra Tn belongs to the variety B ∩ CpCp.
	�
�����

. The groups Rn, Sn are epimorphic images of the groups An, Bn, and
algebras Rn, Sn are respectively the images of the algebras ωAn, ωBn. Then it

follows from (24) that

(33) Rn = 1−Rn, Sn = 1− Sn, Tn = 1− Tn.

Let h be an arbitrary element of the algebra Rn (or Sn) and let q = 1 − h. Then
it follows from (33) that q ∈ Rn (or q ∈ Sn), and it follows from (29) that qp2

= 1.

We have hp2
= (1− q)p2

= 1 +
p2−1∑
i=1

(
i

p2−1

)
(−1)iqi + (−1)p2

qp2
= 1 + (−1)p2

since all

binomial coefficients can be divided by p. If p = 2, then 1 + (−1)p2
= 1 + 1 = 0,

as F is a field of characteristic 2. But if p 6= 2, then 1 + (−1)p2
= 1 − 1 = 0.

Consequently, hp2
= 0, i.e., the algebras Rn, Sn satisfy the identity xp2

= 0.
The groupsRn, Sn satisfy the identity (30) and by (29) are nilpotent of the index 2.

Then, considering (33), similarly to the proof of the of identity (2) in the algebra Tn

(Lemma 11), it is shown that the algebras Rn, Sn satisfy the identities (x, y, z) = 0,
(x, y)p = 0, (xp, y) = 0. Consequently, Rn, Sn ∈ Cp and by (29) Tn ∈ CpCp. It follows
from Lemma 11 that Tn ∈ B, therefore Tn ∈ B ∩ CpCp. Lemma is proved. �

Let (A, ·,+) be an arbitrary associative algebra. It is known that the algebra’s A
operations of taking the commutator (u, v) = uv − vu and addition (+) turn A into
a Lie algebra. We denote it by Λ(A).
Now we use the notation introduced before the relation (28). Let G be a subgroup

of the group Tn generated by the set X = {d, g1, g2, . . . , g4n} and let A be a sub-
algebra of the augmentation ideal ωTn generated by the set {yi : yi = 1 − xi}. We
have shown earlier (after the relation (28)) that the algebra ωCn is nilpotent. Then

the algebra Tn is nilpotent. In particular, the algebra A is also nilpotent. Then
for every monomial v ∈ A there exists such a number m that v ∈ Am\Am+1. The

number m will be called the weight of the monomial v. A polynomial that consists
of monomials of the weight m will be called homogeneous of the weight m. Let U be

a word of group G from the generating set X . We pass in U to the generators yi

of the algebra A, with help of the relation xi = 1 − yi. Assume that U has the

decomposition

(34) U = 1− (um + um+1 + . . . , ur)

in A, where ui is a homogeneous polynomial from A of the weight i and um is a
polynomial of the smallest weight. We define a mapping δ : G → A by δ(U) = 0 if
U = 1, and δ(U) = um otherwise.
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Lemma 13. Let U , V be words (6= 1) of the group G from the generating set X
and let δ(U) = um, δ(V ) = vk. Then for every integer l

(35) δ(U l) = lum.

If m < k, then

(36) δ(UV ) = uk.

If m = k and uk + vk 6= 0, then

(37) δ(UV ) = uk + vk.

If m = k and uk + vk = 0, then UV = 1 or δ(UV ) lies in At, where t > m. If

(um, vk) 6= 0, then

(38) δ([U, V ]) = (um, vk).

If (um, vk) = 0, then [U, V ] = 1 or δ([U, V ]) lies in At, where t > m+ k.

	�
�����
. We denote um + mm+1 + . . . , ur = u. Then U = 1 − u. We use the

decomposition (1 − u)l =
l∑

t=0
(−1)t

(
l
t

)
ut, where

(
l
t

)
= l(l−1)...(l−t+1)

t! , for the proof

of (35). As u ∈ A, all nonconstant members of the smallest weight of the element

(1− u)l belong to −lu. Hence (35) is proved.
The assertions (36), (37) follow from the multiplication rules, and the other asser-

tions follow from Lemma 1. �

We denote Dk = {g ∈ G : 1 − g ∈ (ωG)k}. It is easy to see that Dk is the
kernel of the homomorphism induced on the group G by the natural homomorphism

FG→ FG/(ωG)k. This follows from Lemma 13.

Lemma 14. If Gm is the m-th member of the lower central series of the group G,

then Gm ⊆ Dm.

	�
�����
. We will use induction on m. We have G1 = G = D1. Suppose that

Gm ⊆ Dm and let a ∈ Gm, u ∈ G. Then [a, u] = 1, or δ([a, u] has weight not less
than m + 1, as δ(a) has weight not less than m. In any case [a, u] ∈ Dm+1 and
therefore Gm+1 ⊆ Dm+1. The lemma is proved. �
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By the construction, the group Cn is finite of exponent p4. Then the groupG, being

a subgroup of the homomorphic image of the group Cn, is also finite of exponent p4.
Therefore it is nilpotent. Following [10], we link the lower central series G = G1 ⊃
G2 ⊃ . . . ⊃ Gs = 1 of the group G with the Lie algebra L(G). It is the direct sum of
modules Bi = Gi/Gi+1, i = 1, 2, . . . , s− 1, in which the multiplication [ , ] is defined
in the following way. Let bi ∈ Bi, bj ∈ Bj and let gi ∈ Gi, gj ∈ Gj be such elements

that the mappings
Gi → Gi/Gi+1, Gj → Gj/Gj+1

transfer gi into bi and gj in bj . Then the product [b, bj ] is defined as the element
from Gi+j/Gi+j+1 containing the commutator [gi, gj ]. The null element of the alge-
bra L(G) will be 1 + . . .+ 1, where 1 is the identity element of Bi.
The commutator βk(x1, x2, . . . , xk) is naturally defined for the elements xi ∈ X ,

where βk is an arrangement of parentheses [ and ] [10]. The group G is nilpotent.
Hence there exists such a number µ(k) that βk(x1, x2, . . . , xk) ∈ Gµ(k)/Gµ(k)+1.

Proposition 2. Let G and A be the algebras considered above. Then the

mapping xiG2 → yi induces the monomorphism of the Lie algebra L(G) into the Lie
algebra A ⊆ Λ(ωG). The monomorphism is determined in the following way:
Let βk(x1, x2, . . . , xk), where xi ∈ X , be a commutator of the group G with some

parentheses arrangement of βk and let βk(x1, x2, . . . , xk) ∈ Gµ(k)\Gµ(k)+1. Then the

mapping

βk(x1, x2, . . . , xk)Gµ(k)+1 → βk(y1, y2, . . . , xk)

is a monomorphism of the quotient group Gµ(k)/Gµ(k)+1 in the additive group Λµ(k)

(A), where Λµ(k)(A) is the submodule of the module Λ(A) that consists of homo-
geneous polynomials of the weight µ(k) and the parentheses arrangement βk means

the multiplication in Λ(A).
	�
�����

. By the definition of the multiplication operation in the algebra L(G),
and also by the link between the operation of taking the commutator in the

group Gk/Gk+1 and the multiplication in the algebra Λ(ωG), the expression
βk(xi1 , xi2 , . . . , xk) obviously turns into an element βk(yi1 , yy2 , . . . , yk) of the al-
gebra Λ(A).
Further, an arbitrary element U from Gk\Gk+1, under the mapping xi → yi, is

transferred into the element of the algebra A of the form

1 + uk + uk+1 + . . .+ ut,

where ui has the weight i or equals zero, and i > k by Lemma 14. This lemma also

shows that the equality
δ(UGk) = δ(U) = uk
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determines a mapping δk of the group Ck = Gk/Gk+1 into the set of homogeneous

elements of the weight k of the algebraA. Modulo members of the lower central series,
the multiplication in the group G coincides with the addition in the algebra L(G).
Therefore the identity xp4

= 1 of the groupG does not influence the characteristic p of
the field F , and it follows from (34)–(38) that δk is a linear mapping Ck in Ak. By [10]
the commutators of the form [x1, x2, . . . , xk] generate the subgroup Gk , therefore the

mapping

δ(V ) = δ1(v1) + δ2(v2) + . . .+ δk(vk) + . . .

is a linear mapping of the � p-module L(G) into the � p-module A, where � p means
the ring of integers modulo p. Consequently, the mapping xiG2 → yi induces a

homomorphism of the Lie algebra L(G) in A.

By [10] the subgroup G2 generated by all the commutators of the group G is

contained in the Frattini subgroup. Therefore the mapping xiG2 → yi is one-to-one.
If a, b are elements fromG, then it follows from Lemma 1 that [a, b] = 1−a−1b−1(a, b).
Therefore, if [a, b] 6= 1 then (a, b) 6= 0. Now it is easy to show by induction that if
βk(xi1 , xi2 , . . . , xik

) 6= 1, then βk(yi1 , yi2 , . . . , xk) 6= 0. Then it follows from (38)
that the mapping xiG2 → yi induces a monomorphism of the Lie algebra L(G) into
the Lie algebra A. The proposition is proved. �

By (33) we have Tn = 1− Tn. Then it follows from the definition of the augmen-

tation ideal ωTn that ωTn ⊆ Tn. Then A ⊆ Tn and (28) together with Proposition 2
yields

Lemma 15. The identity µn = 0 does not hold in the algebra Tn.

Now we directly obtain from Lemmas 3, 11 and 15:

Theorem 1. In the variety B ∩ CpCp of associative algebras over an infinite

field of characteristic p > 0 the system of identities M = {µk = 0: k = 1, 2, . . .} is
independent.

Different subsets from M determine different varieties, hence Theorem 1 implies

Corollary 1. The varietyB∩CpCp contains a continuum of different not finitely

based subvarieties.
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Corollary 2. In the variety B ∩ CpCp there exists an algebra determined by an

enumerable set of identity relations in which the words problem is unsolvable.
	�
�����

. Let S be an enumerable and unsolvable set of numbers. Consider the

algebra of the variety B ∩ CpCp determined by the identity relations {µk = 0} for
n ∈ S. It is obvious that each relation of the algebra A is an identity relation. By

Theorem 1 an arbitrary identity from {µk = 0} for given n is fulfilled in A if and
only if n ∈ S. Consequently, in A the problem of words equality is not solvable. �

It is known that if on the additive F -module Tn we introduce multiplication (·) :
x · y = xy − yx, then the resulting algebra will be special Jordan and since F is a

field of characteristic 2, it will be Lie, too. Then, from Theorem 1 and (2) we get

Corollary 3. In the variety D∩N3N3 of Lie algebras (special Jordan algebras)

over an infinite field of characteristic p > 0 (over an infinite field of characteristic 2)
the system of identities {νk = 0: k = 1, 2, . . .} is independent.

As in the case of Corollaries 1, 2, this implies

Corollary 4. The variety D ∩ N3N3 contains a continuum of different not

finitely based subvarieties and in D ∩ N3N3 there exists an algebra determined by

an enumerable set of identity relations, where the words problem is unsolvable.

Note, eventually, that in the case of Lie algebras Corollary 3 does not pretend to
novelty. Infinite systems of identities for the varieties of Lie algebras over the field

are given in [11], [12].
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