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GRACEFUL SIGNED GRAPHS: II. THE CASE OF SIGNED CYCLES

WITH CONNECTED NEGATIVE SECTIONS

� � � � � ��� � 	 
 ��	
and  	 
 ��� � � ��	 
�� � � � � , Delhi
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Abstract. In our earlier paper [9], generalizing the well known notion of graceful graphs,
a (p, m,n)-signed graph S of order p, with m positive edges and n negative edges, is
called graceful if there exists an injective function f that assigns to its p vertices inte-
gers 0, 1, . . . , q = m + n such that when to each edge uv of S one assigns the absolute
difference |f(u)−f(v)| the set of integers received by the positive edges of S is {1, 2, . . . , m}
and the set of integers received by the negative edges of S is {1, 2, . . . , n}. Considering
the conjecture therein that all signed cycles Zk, of admissible length k > 3 and signed
structures, are graceful, we establish in this paper its truth for all possible signed cycles of
lengths 0, 2 or 3 (mod 4) in which the set of negative edges forms a connected subsigraph.
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0. Introduction

For terminology in graph theory we follow [18] and for that of signed graphs

(henceforth abbreviated as sigraphs) we refer the reader to [12], [13], [17], [21], [26].
Additional terms will be defined as and when necessary.

An ordered pair S = (Su, s) where Su = (V,E) is a graph called the underlying
graph of S and s : E → {+,−} is a function from the edge set E into {+,−}, is
called a signed graph (or sigraph in short). We let E+(S) = {e ∈ E : s(e) = +}
and E−(S) = E − E+(S). Then the set E(S) = E+(S) ∪ E−(S) is called the edge
set of S. The elements of E+(S) (respectively, E−(S)) are called positive (negative)
edges of S. We shall regard graphs as sigraphs in which all the edges are positive

(or, all-positive sigraphs; all-negative sigraphs are defined similarly). A sigraph is
said to be homogeneous if it is either all-positive or all-negative and heterogeneous
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otherwise. Given a subsigraph H of S, by a negative (positive) section of H we mean

a maximal connected all-negative (all-positive) subsigraph of H .

Sigraphs were invoked by F. Harary [16] as appropriate prototype models to rep-
resent structures of cognitively dichotomic interrelationships in a social group. Ever

since, sigraphs have received much attention in social psychology (where they are
called sociograms) because of their extensive use in modelling a variety of cognition-

based social processes (e.g., see [1], [5], [13], [17], [21]).

Further intensive study of the topic has been due to their subsequently discovered
strong connections with many classical mathematical systems [2], [5], [10], [20], [21],

[25], [26] used in solving a variety of problems of theoretical and practical interest
(e.g., see [27]).

The notion of graceful graphs in graph theory (see [3], [4], [6], [7], [11], [14], [15],

[19], [22]–[24]) was recently extended to the class of sigraphs (see [8], [9]) as follows:

By a (p, q)-graph we mean a graph with p vertices and q edges. By a (p,m, n)-
sigraph we mean a sigraph S = (Su, s) where Su = (V,E) is a (p, q)-graph,
|E+(S)| = m and |E−(S)| = n so that m + n = q. If f is a function assigning
distinct labels to the vertices of S from the set {0, 1, 2, . . . , q} such that when each
edge uv ∈ E is assigned gf (uv) = s(uv)|f(u)− f(v)| the q edges receive all the inte-
gers from the set {1, 2, . . . ,m,−1,−2, . . . ,−n}; such a labelling f is called a graceful
labelling of S. A sigraph which admits such a labelling is called a graceful sigraph
(see [9]). If E−(S) = ∅ in the above definition one obtains the standard notion of
graceful graphs and graceful numberings of a graph (see [14], [15], [22]). In Fig. 1 we
depict some examples of graceful graphs and sigraphs.

Theorem 1 [9]. Let S = (Su, s) be any (p,m, n)-sigraph such that Su is an
eulerian graph. If S is graceful, then m2 + n2 +m+ n ≡ 0 (mod 4).

Corollary 1.1 [9]. If a signed cycle Zk, m+ n = k > 3, is graceful then k ≡ 0, 2
or 3 (mod 4).

It was conjectured in [9] that the converse of Corollary 1.1 must also hold for all
k > 3. Further, the following result was obtained.

Theorem 2A [9]. If a heterogeneous signed cycle Zk of length k ≡ 0 (mod 4) is
graceful then the number of negative sections of odd lengths in Zk is even.

In this paper, not only we shall establish the sufficiency part of Theorem 2A
when Zk contains exactly one negative section of any even length but also show

that Zk, 3 6 k ≡ 2 (mod 4) (or ≡ 3 (mod 4)), is graceful when it has exactly
one negative section of odd length (respectively, of any length), thus settling the
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Figure 1.

above mentioned original conjecture in the special case when cycle contains exactly

one negative section. The case of determining graceful heterogeneous signed cycles
with more than one negative section appears rather involved and will be attempted

elsewhere.
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1. Results

Everywhere in what follows and whenever mentioned, a signed cycle Zk of length
k > 3 is assumed to be imbedded in the Euclidean plane as a polygon without any of
its edges crossing another at any point including its corners that represent vertices of
the sigraph. Hence, first of all, we shall establish the following partial result towards

the sufficiency part of Theorem 2A.

Theorem 2B. If Zk, 4 6 k ≡ 0 (mod 4), is a signed cycle consisting of just one
negative section of even length then Zk is graceful.
���������

. It is enough to provide a graceful labelling of Zk whose sign structure

is as laid down in the hypothesis, with m and n denoting respectively the lengths of
positive and negative sections in Zk. To this aim, we define a graceful labelling ψ

of Zk as follows: Let the vertices of Zk be labelled consecutively as u1, u2, . . . , uk
along any one of the two directions of traversing its edges (i.e., clockwise or anti-

clockwise), with u1 appearing as the second vertex of the negative section along the
chosen direction of traversing the edges of Zk.

Case 1 : n = 1
2k. In this case, we let

ψ(ui) = 1
2 (i− 1) for i ∈ {1, 3, 5, . . . , n− 1};

ψ(ui) = n− 1
2 i for i ∈ {2, 4, . . . , n};

ψ(ui) = k − 1
2m+ 1 + b 1

2 (i− n− 3)c for odd integers i ∈ {n+ 1, n+ 3, . . . , k − 1};
ψ(ui) = k − 1

2m+ 1− b 1
2 (i− n) + 1c for even integers i ∈ {n+ 2, n+ 4, . . . , k − 2},

and

ψ(uk) = n.

Then, the induced edge function gψ yields the edge labels

{gψ(uiui+1) = s(uiui+1)|ψ(ui)− ψ(ui+1)|
= s(uiui+1)|n− i| : i ∈ {1, 2, . . . , n− 1}} = {−1,−2, . . . ,−(n− 1)}

{gψ(uiui+1) = s(uiui+1)
∣∣ψ(ui)− ψ(ui+1)

∣∣

= s(uiui+1)
∣∣b 1

2 (i− n− 2)c+ b 1
2 (i− n) + 1c

∣∣

= s(uiui+1)|i− n| : i ∈ {n+ 1, n+ 2, . . . , k − 2}} = {1, 2, . . . , 1
2k − 2};

gψ(unun+1) = s(unun+1)|ψ(un)− ψ(un+1)|
= s(unun+1)

∣∣k + 1− 1
2m+ b 1

2 (n− n− 2)c − n+ 1
2n

∣∣ = 1
2k;

gψ(ukuk−1) = s(ukuk−1)|ψ(uk)− ψ(uk−1)|
= s(ukuk−1)

∣∣n− (k + 1− 1
2m+ b 1

2 (k − n− 4)c)
∣∣ = 1

2k − 1,
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and

gψ(u1uk) = −n.

Case 2 : n is even and 2 6 n < 1
2k. In this case, let

ψ(ui) = 1
2 (i− 1) for i ∈ {1, 3, 5, . . . , n− 1};

ψ(ui) = n− 1
2 i for i ∈ {2, 4, . . . , n};

ψ(ui) = k − 1
2m+ 1 + b 1

2 (i− n− 1)c for odd integers i ∈ {n+ 1, n+ 3, . . . , k − 1};
ψ(ui) = k − 1

2m+ 1− b 1
2 (i− n)c

for even integers i ∈ {n+ 2, n+ 4, . . . , k − t} where m− n = 2t;

ψ(ui) = k − 1
2m+ 1− b 1

2 (i− n) + 1c
for even integers i ∈ {(k − t) + 2, (k − t) + 4, . . . , k − 2},

and

ψ(uk) = n.

Then, the induced edge function gψ yields the edge labels

{gψ(uiui+1) = s(uiui+1)|ψ(ui)− ψ(ui+1)|
= s(uiui+1)| 12 (i− 1)− n+ 1

2 (i+ 1)|
= s(uiui+1)|n− i| : i ∈ {1, 2, . . . , n− 1}} = {−1,−2, . . . ,−(n− 1)};

{gψ(uiui+1) = s(uiui+1)|ψ(ui)− ψ(ui+1)| = s(uiui+1)|b 1
2 (i− n)c+ b 1

2 (i− n)c|
= s(uiui+1)|i− n| : i ∈ {n+ 1, n+ 2, . . . , k − t}} = {1, 2, . . . ,m− t};

{gψ(uiui+1) = s(uiui+1)|ψ(ui)− ψ(ui+1)| = s(uiui+1)
∣∣b 1

2 (i− n) + 1c+ b 1
2 (i− n)c

∣∣

= s(uiui+1)|i− n+ 1| : i ∈ {k − t+ 1, k − t+ 2, . . . , k − 2}}
= {m− t+ 2,m− t+ 3, . . . ,m− 1};

gψ(unun+1) = s(unun+1)|ψ(un)− ψ(un+1)|
= s(unun+1)|k + 1− 1

2m− 1
2n| = 1

2k + 1;

gψ(uk−1uk) = s(uk−1uk)|ψ(uk−1)− ψ(uk)|
= s(ukuk−1)|k + 1− 1

2m+ b 1
2 (i− n− 1)c − n|

= s(uk−1uk)|k − n| = m,

and

gψ(u1uk) = − n.
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In each of the above cases, the injectivity of ψ is straightforward to see by its very

definition. Also, in each case, we have seen separately above that the induced edge
labelling gψ is also injective, thus completing the proof. �

The above theorem is illustrated in Fig. 2.
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Theorem 3. Let Zk be a heterogeneous signed cycle of length k ≡ 2 (mod 4). If
Zk is graceful then the number of negative sections of odd lengths in Zk is odd.
���������

. Let Zk be any heterogeneous signed cycle of length k > 2, k ≡ 2
(mod 4) possessing a graceful numbering f and let l1, l2, . . . , lr be the lengths of the
negative sections, r > 1. Suppose that the number of the negative sections of odd
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lengths in Zk is even, say 2x for some positive integer x. Without loss of generality,
we may assume l1, l2, . . . , l2x to be the odd ones. Let li = 2ai+1 for i ∈ {1, 2, . . . , 2x}
and li = 2bi for i ∈ {2x+ 1, 2x+ 2, . . . , r} where ai is nonnegative integer and bi is
a positive integer. Then

n =
∑

i∈{1,2,...,2x}
li +

∑

i∈{2x+1,2x+2,...,r}
li = 2u

and hence m = k − n = (4a + 2) − 2u = 2(2a − u + 1) where a and u are positive
integers. Then

m2 + n2 +m+ n = (k − n)2 + n2 + (k − n) + n

= ((4a+ 2)− 2u)2 + 4u2 + 4a+ 2

= (4a+ 2)2 + 4u2 − 8u(2a+ 1) + 4u2 + 4a+ 2

= 16a2 + 20a+ 6 + 8u2 − 16au− 8u ≡ 2 (mod 4),

a contradiction to the hypothesis. Therefore, the number of negative sections of odd

lengths in Zk must be odd as claimed. �

Since we are considering heterogeneous signed cycles having exactly one negative
section in this paper, in the case of signed cycles whose lengths are congruent to

2 (mod 4) integers, Theorem 3 implies that if such a signed cycle is graceful then
its only negative section must have an odd length. The following result shows that

every such signed cycle is indeed graceful.

Theorem 4. Let Zk be a heterogeneous signed cycle of length k ≡ 2 (mod 4)
having exactly one negative section of odd length. Then, Zk is graceful.
���������

. It is enough to provide a graceful labelling of Zk whose sign structure
is as laid down in the hypothesis, with m and n denoting respectively the lengths of

the positive and negative sections in Zk. To this aim, we define a graceful labelling ψ
of Zk as follows: Let the vertices of Zk be labelled consecutively as u1, u2, . . . , uk

along any one of the two directions of traversing its edges (i.e., clockwise or anti-
clockwise), with u1u2 as the first edge of the negative section.

Case 1 : n = 1. In this case, we let

ψ(u1) = 0;

ψ(ui) = 1
2 i for even integers i ∈ {2, 4, . . . , 1

2k − 1};
ψ(ui) = 1

2 (i+ 2) for even integers i ∈ { 1
2k + 1, 1

2k + 3, . . . , k};
ψ(ui) = k − 1

2 (i− 3) for odd integers i ∈ {3, 5, . . . , k − 1}.
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Then, the induced edge function gψ yields the edge labels

gψ(u1u2) = s(u1u2)|ψ(u1)− ψ(u2)| = −1;

{gψ(uiui+1) = s(uiui+1)|k − 1
2 (i− 2)− 1

2 i|
= s(uiui+1)|k − i+ 1| : i ∈ {2, 3, . . . , 1

2k − 1}}
= { 1

2k + 2, 1
2k + 3, . . . , k − 1};

{gψ(uiui+1) = s(uiui+1)|k − 1
2 (i− 2)− 1

2 (i+ 2)|
= s(uiui+1)|k − i| : i ∈ { 1

2k,
1
2k + 1, . . . , k − 1}} = {1, 2, . . . , 1

2k},

and

gψ(u1uk) = s(u1uk)|ψ(uk)− ψ(u1)| = 1
2k + 1.

Case 2 : n = 1
2k. In this case, without loss of generality we assume u1uk as the first

negative edge of the negative section and we let

ψ(ui) = 1
2 (i− 1) for i ∈ {1, 3, . . . , n};

ψ(ui) = n− 1
2 i for i ∈ {2, 4, . . . , n− 1};

ψ(ui) = k − 1
2 (m− 1)− 1

2 (i− n+ 1) for even integers i ∈ {n+ 1, n+ 3, . . . , k},

and

ψ(ui) = k − 1
2 (m− 1) + 1

2 (i− n− 2) for odd integers i ∈ {n+ 2, n+ 4, . . . , k − 1}.

Then, the induced edge function gψ yields the edge labels

{gψ(uiui+1) = s(uiui+1)|ψ(ui)− ψ(ui+1)|
= s(uiui+1)|n− i| : i ∈ {1, 2, . . . , n− 1}} = {−1,−2, . . . ,−(n− 1)};

{gψ(uiui+1) = s(uiui+1)|ψ(ui)− ψ(ui+1)| = s(uiui+1)| 12 (i− n− 2) + 1
2 (i− n+ 2)|

= s(uiui+1)|i− n| : i ∈ {n+ 1, n+ 2, . . . , k − 1}} = {1, 2, . . . , (m− 1)};
gψ(unun+1) = s(unun+1)|ψ(un)− ψ(un+1)|

= s(unun+1)| 12 (n− 1)− k + 1
2 (m− 1) + 1| = 1

2k,

and

gψ(u1uk) = s(u1uk)|ψ(u1)− ψ(uk)| = s(u1uk)|k −m| = −n.

Case 3 : n is odd and 1 < n < 1
2k. In this case also without loss of generality, we

assume u1uk as the first negative edge of the negative section and we let

ψ(ui) = 1
2 (i− 1) for i ∈ {1, 3, . . . , n};
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ψ(ui) = n− 1
2 i for i ∈ {2, 4, . . . , n− 1};

ψ(ui) = k − 1
2 (m− 1)− 1

2 (i− n− 1)

for even integers i ∈ {n+ 1, n+ 3, . . . , k − t}, where m− n = 2t;

ψ(ui) = k − 1
2 (m− 1)− 1

2 (i− n+ 1)

for even integers i ∈ {(k − t) + 2, (k − t) + 4, . . . , k},

and

ψ(ui) = k − 1
2 (m− 1) + 1

2 (i− n)

for odd integers i ∈ {n+ 2, n+ 4, . . . , k − 1}.

Then, the induced edge function gψ yields the edge labels

{gψ(uiui+1) = s(uiui+1)|ψ(ui)− ψ(ui+1)|
= s(uiui+1)|n− i| : i ∈ {1, 2, . . . , n− 1}} = {−1,−2, . . . ,−(n− 1)};

{gψ(uiui+1) = s(uiui+1)|ψ(ui)− ψ(ui+1)|
= s(uiui+1)|i− n| : i ∈ {n+ 1, n+ 2, . . . , k − t}} = {1, 2, . . . ,m− t};

{gψ(uiui+1) = s(uiui+1)|ψ(ui)− ψ(ui+1)|
= s(uiui+1)|i− n+ 1| : i ∈ {k − t+ 1, k − t+ 2, . . . , k − 1}}
= {m− t+ 2,m− t+ 3, . . . ,m};

gψ(unun+1) = s(unun+1)|ψ(un)− ψ(un+1)|
= s(unun+1)| 12 (n− 1)− k + 1

2 (m− 1)| = 1
2k + 1,

and

gψ(u1uk) = s(u1uk)|ψ(u1)− ψ(uk)| = s(u1uk)|k −m| = −n.

The injectivity of ψ is straightforward to see by its very definition of the above in

each case. Also, in each case, we have seen separately above that the induced edge
labelling gψ is also injective, thus completing the proof. �

Fig. 3 illustrates the findings of Theorem 4.

In the theory of graceful graphs, it is well known (e.g., see [14]) that the cycle Ck is

graceful for all values of k ≡ 3 (mod 4). This conclusion can be extended to certain
signed graphs on Ck as found in our next result.
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Theorem 5. If a signed cycle Zk, k ≡ 3 (mod 4), contains exactly one negative
section then it is graceful.

���������
. It is enough to provide a graceful labelling of Zk whose sign structure

is as laid down in the hypothesis, with m and n denoting respectively the lengths of
the positive and negative sections in Zk. To this aim, we define a graceful labelling ψ

of Zk as follows: Let the vertices of Zk be labelled consecutively as u1, u2, . . . , uk
along any one of the two directions of traversing its edges (i.e., clockwise or anti-

clockwise), with u1 appearing as the second vertex of the negative section along the
chosen direction of traversing the edges of Zk so that the edge u1uk is negative.

34



Case 1 : k > 7 and n = 1. In this case, we let

ψ(u1) = 0 and ψ(uk) = 1;

ψ(ui) = k − b 1
2 (m− 1)c+ 1

2 (i− 2) for even integers i ∈ {2, 4, . . . , k − 1};
ψ(ui) = k − b 1

2 (m− 1)c − 1
2 (i− 1) for odd integers i ∈ {3, 5, . . . , 1

2 (k + 3)},

and

ψ(ui) = k − b 1
2 (m− 1)c − 1

2 (i− 2)− 1

for odd integers i ∈ { 1
2 (k + 7), 1

2 (k + 11), . . . , k − 2}.

Then the induced edge function gψ yields the edge labels

gψ(u1uk) = s(u1uk)|ψ(u1)− ψ(uk)| = s(u1uk)|0− 1| = −1;

{gψ(uiui+1) = s(uiui+1)|ψ(ui)− ψ(ui+1)|
= s(uiui+1)| 12 (i− 1) + 1

2 (i− 1)|
= s(uiui+1)|i− 1| : i ∈ {2, 3, . . . , 1

2 (k + 3)}}
= {1, 2, 3, . . . , 1

2 (k + 1)};
{gψ(uiui+1) = s(uiui+1)|ψ(ui)− ψ(ui+1)| = s(uiui+1)| 12 (i− 2) + 1

2 (i+ 2)|
= s(uiui+1)|i| : i ∈ { 1

2 (k + 5), 1
2 (k + 7), . . . , k − 2}}

= { 1
2 (k + 5), 1

2 (k + 7), . . . , k − 2};
gψ(u1u2) = s(u1u2)|ψ(u1)− ψ(u2)| = s(u1u2)|k − b 1

2 (m− 1)c|,

and

gψ(uk−1uk) = s(uk−1uk)|ψ(uk−1)− ψ(uk)|
= s(uk−1uk)|k − b 1

2 (m− 1)c+ 1
2 (k − 3)− 1| = k − 1 = m.

Case 2 : k > 3 and n = b 1
2kc. In this case, we let

ψ(ui) = 1
2 (i− 1) for i ∈ {1, 3, . . . , n};

ψ(ui) = n− 1
2 i for i ∈ {2, 4, . . . , n− 1};

ψ(ui) = k − b 1
2 (m− 1)c+ b 1

2 (i− n− 3)c
for even integers i ∈ {n+ 1, n+ 3, . . . , k − 1};

ψ(ui) = k − b 1
2 (m− 1)c − b 1

2 (i− n+ 2)c
for odd integers i ∈ {n+ 2, n+ 4, . . . , k − 2},
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and

ψ(uk) = n.

Then the induced edge function gψ yields the edge labels

{gψ(uiui+1) = s(uiui+1)|ψ(ui)− ψ(ui+1)|
= s(uiui+1)|n− i| : i ∈ {1, 2, . . . , n− 1}} = {−1,−2, . . . ,−(n− 1)};

{gψ(uiui+1) = s(uiui+1)|ψ(ui)− ψ(ui+1)|
= s(uiui+1)|b 1

2 (i− n+ 2)c+ b 1
2 (i− n− 2)c|

= s(uiui+1)|i− n| : i ∈ {n+ 1, n+ 2, . . . , k − 2}}
= {1, 2, 3, . . . ,m− 2};

gψ(unun+1) = s(unun+1)|ψ(un)− ψ(un+1)|
= s(unun+1)| 12 (n− 1)− k + b 1

2 (m− 1)c+ 1| = m;

gψ(uk−1uk) = s(uk−1uk)|ψ(uk−1)− ψ(uk)|
= s(uk−1uk)|(k − b 1

2 (m− 1)c+ b 1
2 (k − n− 4)c)− n| = m− 1,

and

gψ(u1uk) = − n.

Case 3 : n is odd and 1 < n < b 1
2kc. Then, we let

ψ(ui) = 1
2 (i− 1) for i ∈ {1, 3, . . . , n};

ψ(ui) = n− 1
2 i for i ∈ {2, 4, . . . , n− 1};

ψ(ui) = k − ( 1
2m− 1) + b 1

2 (i− n− 1)c
for even integers i ∈ {n+ 1, n+ 3, . . . , k − 1};

ψ(ui) = k − ( 1
2m− 1)− 1

2 (i− n) for odd integers i ∈ {n+ 2, n+ 4, . . . , k − t},

and

ψ(ui) = k − ( 1
2m− 1)− 1

2 (i− n+ 2)

for odd integers i ∈ {k + 2− t, k + 4− t, . . . , k}, where t = 1
2 (m− n− 1).

In this case, the induced edge function gψ yields the edge labels

{gψ(uiui+1) = s(uiui+1)|ψ(ui)− ψ(ui+1)|
= s(uiui+1)|n− i| : i ∈ {1, 2, . . . , n− 1}} = {−1,−2, . . . ,−(n− 1)};
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{gψ(uiui+1) = s(uiui+1)|ψ(ui)− ψ(ui+1)| = s(uiui+1)| 12 (i− n) + 1
2 (i− n)|

= s(uiui+1)|i− n| : i ∈ {n+ 1, n+ 2, . . . , k − t}} = {1, 2, 3, . . . ,m− t};
gψ(unun+1) = s(unun+1)|ψ(un)− ψ(un+1)|

= s(unun+1| 12 (n− 1)− (k − 1
2m+ 1)| = m− t+ 1;

{gψ(uiui+1) = s(uiui+1)|ψ(ui)− ψ(ui+1)|
= s(uiui+1)|i− n+ 1| : i ∈ {k − t+ 1, k − t+ 2, . . . , k − 1}}
= {m− t+ 2,m− t+ 3, . . . ,m},

and

gψ(u1uk) = s(u1uk)|k −m| = −n.

Case 4 : n is even and 2 6 n < b 1
2kc. In this case, we let

ψ(ui) = 1
2 (i− 1) for i ∈ {1, 3, . . . , n− 1};

ψ(ui) = n− 1
2 i for i ∈ {2, 4, . . . , n};

ψ(ui) = k − 1
2 (m− 1)− 1

2 (i− n− 1)

for odd integers i ∈ {n+ 1, n+ 3, . . . , k − t− 2};
ψ(ui) = k − 1

2 (m− 1)− 1
2 (i− n+ 1)

for odd integers i ∈ {k − t, k + 2− t, . . . , k}, where t = 1
2 (m− n− 3),

and

ψ(ui) = k − 1
2 (m− 1) + 1

2 (i− n) for even integers i ∈ {n+ 2, n+ 4, . . . , k − 1}.

In this case, the induced edge function gψ yields the edge labels

{gψ(uiui+1) = s(uiui+1)|ψ(ui)− ψ(ui+1)|
= s(uiui+1)|n− i| : i ∈ {1, 2, . . . , n− 1}} = {−1,−2, . . . ,−(n− 1)};

{gψ(uiui+1) = s(uiui+1)|ψ(ui)− ψ(ui+1)|
= s(uiui+1)|i− n| : i ∈ {n+ 1, n+ 2, . . . , k − t− 2}}
= {1, 2, 3, . . . ,m− t− 2};

gψ(unun+1) = s(unun+1)|ψ(un)− ψ(un+1)|
= s(unun+1|k − 1

2 (m− 1)− 1
2n| = 1

2 (k + 1);

{gψ(uiui+1) = s(uiui+1)|ψ(ui)− ψ(ui+1)|
= s(uiui+1)|i− n+ 1| : i ∈ {k − t− 1, k − t, . . . , k − 1}}
= {m− t,m− t+ 1, . . . ,m},
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and

gψ(u1uk) = s(u1uk)|k −m| = −n.

The injectivity of ψ can be seen straightforwardly by its very definition, in each of

the above cases. Also, in each case, the induced edge labelling gψ has been verified
to be injective, which completes the proof. �

We illustrate the findings of Theorem 5 in Fig. 4.
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2. Concluding remarks

Thus, we have determined all the possible graceful signed cycles Zk for all integers

k > 3, k ≡ 0, 2 or 3 (mod 4), each consisting of just one negative section. However,
the problem is open for such cycles containing more than one negative sections.

In general, determining graceful sigraphs in which more than one negative sections
exist seems to be a hard problem. Graceful labelling of signed graphs provide an

insight into more general problem of finding a unified model for automatic continuous
coding of monochromatic factors in an edge-packing of a graph as mentioned in [8].
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