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1. Introduction

The theory of finite difference equation is in a process of continuous development
and it has become significant for its various applications. Finite difference inequalities

which give explicit bounds on unknown functions provide a very useful and impor-
tant technique in the study of many qualitative as well as quantitative properties of

solutions of nonlinear difference equations. During the past few years, various inves-
tigators have discovered many useful and new finite difference inequalities, mainly

inspired by their applications in various branches of finite difference equations; see
[1]–[9] and the references cited therein. In this paper, our main objective is to estab-

lish some new discrete inequalities involving functions of two independent variables
which can be used in the analysis of certain classes of difference equations.
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2. Main results

For discrete inequalities it is characteristic that the functions occurring in them

are defined on countable sets, which can, without loss of generality, be assumed to
be subsets of the set 
 of integers. We shall introduce some notation; � denotes the
set of real numbers and � + = [0,∞). Let α, β ∈ 
 , α 6 β, � α = {n ∈ 
 : n > α},
� α,β = {n ∈ 
 : α 6 n 6 β}. Let

β∑
j=α

x(j), and
β∏

j=α

x(j), be the sum, respectively

the product of x(j), j ∈ � α,β , and assume that
α−1∑
j=α

x(j) = 0,
α−1∏
j=α

x(j) = 1. We also

assume that all the sums and products involved throughout the discussion exist on
the respective domains of their definitions.

We need the inequality in the following Lemma 2.1, which appears in [1, p. 161].

Lemma 2.1. Let u(n), a(n), b(n), q(n) be nonnegative functions defined for
n ∈ � α satisfying the inequality

u(n) 6 a(n) + q(n)
n−1∑

s=α

b(s)u(s), n ∈ � α .

Then

u(n) 6 a(n) + q(n)
n−1∑

s=α

b(s)a(s)
n−1∏

i=s+1

(
1 + b(i)q(i)

)
, n ∈ � α .

The inequality in the following lemma is an analogue of the inequality in
Lemma 2.1 involving infinite series and products.

Lemma 2.2. Let u(n), a(n), b(n), q(n) be nonnegative functions defined for
n ∈ � α , satisfying the inequality

(2.1) u(n) 6 a(n) + q(n)
∞∑

s=n+1

b(s)u(s), n ∈ � α ,

and let 0 <
∞∑

s=n+1
b(s)a(s) < ∞. Then

(2.2) u(n) 6 a(n) + q(n)
∞∑

s=n+1

b(s)a(s)
∞∏

i=s

(
1 + b(i)q(i)

)
, n ∈ � α .

���������
. From (2.1) we have

(2.3) u(n) 6 a(n) + q(n)w(n),

114



where the function w(n) is defined by w(n) =
∞∑

s=n+1
b(s)u(s). From (2.3) we get

w(n) 6
∞∑

s=n+1

b(s)
(
a(s) + q(s)w(s)

)
(2.4)

= f(n) +
∞∑

s=n+1

b(s)q(s)w(s),

where f(n) =
∞∑

s=n+1
b(s)a(s). Clearly, f(n) is nonincreasing in the variable n on each

� α . First, we assume that f(n) > 0 for n ∈ � α . From (2.4) we observe that

w(n)
f(n)

6 1 +
∞∑

s=n+1

b(s)
w(s)
f(s)

.

Define a function v(n) by

v(n) = 1 +
∞∑

s=n+1

b(s)q(s)
w(s)
f(s)

,

then w(n)/f(n) 6 v(n) and

(2.5) ∆v(n) = v(n)− v(n− 1) = −b(n)q(n)
w(n)
f(n)

> −b(n)q(n)v(n).

From (2.5) and using the fact that v(n) > 0 for n ∈ � α , we observe that v(n− 1) 6(
1 + b(n)q(n)

)
v(n), or

(2.6) v(n) 6
(
1 + b(n + 1)q(n + 1)

)
v(n + 1).

Now, setting n = i in (2.6) and substituting i = n, n + 1, n + 2, . . . successively and
using the fact that v(∞) = 1, we get

(2.7) v(n) 6
∞∏

i=n+1

(
1 + b(i)q(i)

)
.

Using (2.7) in w(n)/f(n) 6 v(n) we have

(2.8) w(n) 6 f(n)
∞∏

i=n+1

(
1 + b(i)q(i)

)
.

The required inequality in (2.2) follows from (2.3) and (2.8). �

In 2001, Pachpatte proved the following Lemma 2.3 (see [9, Theorem 1]).
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Lemma 2.3. Let u(m, n), a(m, n), f(m, n) be nonnegative functions defined for
m, n ∈ � 0 .

(i) Assume that f(m, n) is nondecreasing in m and nonincreasing in n for m, n ∈
� 0 . If u(m, n) 6 f(m, n) +

m−1∑
s=0

∞∑
t=n+1

a(s, t)u(s, t) for all m, n ∈ � 0 , then

u(m, n) 6 f(m, n)
m−1∏

s=0

(
1 +

∞∑

t=n+1

a(s, t)
)

.

(ii) Assume that f(m, n) is nonincreasing in each of the variables m, n ∈ � 0 . If

u(m, n) 6 f(m, n) +
∞∑

s=m+1

∞∑
t=n+1

a(s, t)u(s, t) for all m, n ∈ � 0 , then

u(m, n) 6 f(m, n)
∞∏

s=m+1

(
1 +

∞∑

t=n+1

a(s, t)
)

.

Now, we use the notation; a function f : � + → � + is said to be subadditive if

f(x + y) 6 f(x) + f(y), x, y ∈ � + ; submultiplicative if f(xy) 6 f(x)f(y), x, y ∈ � + .
Our main results on discrete inequalities are established in the following theorems.

Theorem 2.4. Let u(m, n), a(m, n), b(m, n), c(m, n), d(m, n) be real-valued
nonnegative functions defined for m, n ∈ � 0 and u(m, n) > u0 > 0, where u0 is

a real constant. Let W (r) be a real-valued continuous, positive, nondecreasing,
subadditive, and submultiplicative function on I = [u0,∞) and let H(r) be real-
valued, continuous, positive, and nondecreasing function on I . Assume that a(m, n)
is nondecreasing in m for m ∈ � 0 . If

u(m, n) 6 a(m, n) + b(m, n)
m−1∑

s=0

c(s, n)u(s, n)(2.9)

+ H

(m−1∑

s=0

∞∑

t=n+1

d(s, t)W
(
u(s, t)

))
,

for m, n ∈ � 0 , then for 0 6 m 6 m1, 0 6 n 6 n1, m, m1, n, n1 ∈ � 0 ,

(2.10) u(m, n) 6 q(m, n)[a(m, n) + H(G−1[G
(
V1(∞, 0)

)
+ V2(m, n)])],
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where

q(m, n) = 1 + b(m, n)
m−1∑

s=0

c(s, n)
m−1∏

i=s+1

(
1 + c(i, n)b(i, n)

)
,(2.11)

V1(∞, 0) =
∞∑

s=0

∞∑

t=1

d(s, t)W
(
q(s, t)a(s, t)

)
,(2.12)

V2(m, n) =
m−1∑

s=0

∞∑

t=n+1

d(s, t)W
(
q(s, t)

)
,

G(r) =
∫ r

r0

ds

W
(
H(s)

) , r > u0 with r0 > u0,(2.13)

G−1 is the inverse function of G and

G

( ∞∑

s=0

∞∑

t=1

d(s, t)W
(
q(s, t)a(s, t)

))
+

m−1∑

s=0

∞∑

t=n+1

d(s, t)W
(
q(s, t)

)
∈ Dom(G−1)

for 0 6 m 6 m1, 0 6 n 6 n1, m, m1, n, n1 ∈ � 0 .

���������
. Define a function z(m, n) by

(2.14) z(m, n) = a(m, n) + H

(m−1∑

s=0

∞∑

t=n+1

d(s, t)W
(
u(s, t)

))
.

Then(2.9) can be restated as

(2.15) u(m, n) 6 z(m, n) + b(m, n)
m−1∑

s=0

c(s, n)u(s, n).

Clearly z(m, n) is nonnegative and nondecreasing in m, m ∈ � 0 . Treating n, n ∈ � 0

as a fixed in (2.15) and using Lemma 2.1 to (2.15), we get

u(m, n) 6 z(m, n) + b(m, n)
m−1∑

s=0

c(s, n)z(s, n)
m−1∏

i=s+1

(
1 + c(i, n)b(i, n)

)

6 z(m, n)q(m, n),

where q(m, n) is defined by (2.11). From (2.14) and the last estimate we have

(2.16) u(m, n) 6 q(m, n)
(
a(m, n) + H

(
v(m, n)

))
,
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where v(m, n) is defined by

v(m, n) =
m−1∑

s=0

∞∑

t=n+1

d(s, t)W
(
u(s, t)

)
.

From (2.16) we get

v(m, n) 6
m−1∑

s=0

∞∑

t=n+1

d(s, t)W
(
q(s, t)

[
a(s, t) + H

(
v(s, t)

)])
(2.17)

6 V1(∞, 0) +
m−1∑

s=0

∞∑

t=n+1

d(s, t)W
(
q(s, t)

)
W

(
H(v(s, t))

)

where V1(∞, 0) is defined by (2.12). Define a function k(m, n) by the right-hand side
of (2.17). Then, v(m, n) 6 k(m, n) and

[k(m, n)− k(m− 1, n)]− [k(m, n− 1)− k(m− 1, n− 1)](2.18)

= − d(m− 1, n)W
(
q(m− 1, n)

)
W

(
H

(
v(m− 1, n)

))

> − d(m− 1, n)W
(
q(m− 1, n)

)
W

(
H

(
k(m− 1, n)

))
.

From (2.18) and the fact that k(m− 1, n) 6 k(m− 1, n− 1), we observe that

k(m, n)− k(m− 1, n)
W

(
H

(
k(m− 1, n)

)) − k(m, n− 1)− k(m− 1, n− 1)
W

(
H

(
k(m− 1, n− 1)

))(2.19)

> − d(m− 1, n)W
(
q(m− 1, n)

)
.

Keeping m fixed in (2.19), substituting n = t, and taking the sum over t = n + 1,

n + 2, . . . , r (r > n + 1 is arbitrary in � 0 ), we obtain

k(m, n)− k(m− 1, n)
W

(
H

(
k(m− 1, n)

)) − k(m, r)− k(m− 1, r)
W

(
H

(
k(m− 1, r)

))(2.20)

6
r∑

t=n+1

d(m− 1, t)W
(
q(m− 1, t)

)
.

Noting that lim
r→∞

k(m+1, r) = lim
r→∞

k(m, r) = V1(∞, 0) and letting r →∞ in (2.20),
we have

(2.21)
k(m, n)− k(m− 1, n)
W

(
H

(
k(m− 1, n)

)) 6
∞∑

t=n+1

d(m− 1, t)W
(
q(m− 1, t)

)
.
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From (2.13) and (2.21), we have

G(k(m, n)) −G(k(m− 1, n)) =
∫ k(m,n)

k(m−1,n)

ds

W (H(s))
(2.22)

6 k(m, n)− k(m− 1, n)
W

(
H(k(m− 1, n))

)

6
∞∑

t=n+1

d(m− 1, t)W (q(m− 1, t)).

Now, keeping n fixed in (2.22), substituting m = s + 1, and taking the sum over
s = 0, 1, . . . , m− 1 (m > 1 is arbitrary in � 0 ), we obtain

(2.23) G(k(m, n))−G(k(0, n)) 6
m−1∑

s=0

∞∑

t=n+1

d(s, t)W (q(s, t)).

Noting that k(0, n) = V1(∞, 0) in (2.23), we get

(2.24) k(m, n) 6 G−1

(
G(V1(∞, 0)) +

m−1∑

s=0

∞∑

t=n+1

d(s, t)W (q(s, t))
)

.

The required inequality in (2.10) follows from the fact that v(m, n) 6 k(m, n), (2.16)
and (2.24). The subdomain 0 6 m 6 m1, 0 6 n 6 n1 is obvious. �

Theorem 2.5. Under the conditions of Theorem 2.4, assume that a(m, n) is

nonincreasing in m for m ∈ � 0 , and 0 <
∞∑

s=m+1
c(s, n) < ∞. If

u(m, n) 6 a(m, n) + b(m, n)
∞∑

s=m+1

c(s, n)u(s, n)

+ H

( ∞∑

s=m+1

∞∑

t=n+1

d(s, t)W (u(s, t))
)

for m, n ∈ � 0 , then for 0 6 m 6 m1, 0 6 n 6 n1, m, m1, n, n1 ∈ � 0 ,

u(m, n) 6 q̄(m, n)[a(m, n) + H(G−1[G
(
V1(∞, 0)

)
+ V2(m, n)])],
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where

q̄(m, n) = 1 + b(m, n)
∞∑

s=m+1

c(s, n)
∞∏

i=m+1

(
1 + c(i, n)b(i, n)

)
,

V1(∞, 0) =
∞∑

s=1

∞∑

t=1

d(s, t)W
(
q̄(s, t)a(s, t)

)
,

V2(m, n) =
∞∑

s=m+1

∞∑

t=n+1

d(s, t)W
(
q̄(s, t)

)
,

G is defined by (2.13), G−1 is the inverse function of G and

G

( ∞∑

s=1

∞∑

t=1

d(s, t)W
(
q̄(s, t)a(s, t)

))
+

∞∑

s=m+1

∞∑

t=n+1

d(s, t)W
(
q̄(s, t)

)
∈ Dom(G−1)

for 0 6 m 6 m1, 0 6 n 6 n1, m, m1, n, n1 ∈ � 0 .

The proof of Theorem 2.5 can be given along the lines of the proof of Theorem 2.4,
and we omit it. In the proof of Theorem 2.5 we have to use Lemma 2.2 instead of

Lemma 2.1 appearing in the proof of Theorem 2.4.

Theorem 2.6. Let u(m, n), a(m, n), b(m, n), c(m, n) be real-valued nonnegative
functions defined for m, n ∈ � 0 and L : � 2

0 × � + → � + be a function which satisfies

the condition

0 6 L(m, n, u)− L(m, n, v) 6 M(m, n, v)ϕ−1(u− v),

for u > v > 0, where M(m, n, v) is a real-valued nonnegative function defined for
m, n ∈ � 0 , v ∈ � + . Let ϕ : � + → � + be a continuous and strictly increasing

function with ϕ(0) = 0, ϕ−1 the inverse function of ϕ and ϕ−1(uv) 6 ϕ−1(u)ϕ−1(v)
for u, v ∈ � + . Assume that a(m, n) is nondecreasing in m for m ∈ � 0 . If

u(m, n) 6 a(m, n) + b(m, n)
m−1∑

s=0

c(s, n)u(s, n)(2.25)

+ ϕ

(m−1∑

s=0

∞∑

t=n+1

L
(
s, t, u(s, t)

))

for m, n ∈ � 0 , then

u(m, n) 6 q(m, n)
{

a(m, n)(2.26)

+ ϕ

(
e(m, n)

m−1∏

s=0

[
1 +

∞∑

t=n+1

M
(
s, t, q(s, t)a(s, t)

)
ϕ−1(q(s, t))

])}
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for m, n ∈ � 0 , where

(2.27) e(m, n) =
m−1∑

s=0

∞∑

t=n+1

L
(
s, t, q(s, t)a(s, t)

)

for m, n ∈ � 0 , and q(m, n) is defined by (2.11).
���������

. Define a function z(m, n) by

(2.28) z(m, n) = a(m, n) + ϕ

(m−1∑

s=0

∞∑

t=n+1

L
(
s, t, u(s, t)

))
.

Then (2.25) can be restated as

(2.29) u(m, n) 6 z(m, n) + b(m, n)
m−1∑

s=0

c(s, n)u(s, n).

Clearly z(m, n) is a nonnegative and nondecreasing in m, m ∈ � 0 . Treating n,
n ∈ � 0 as fixed in (2.29) and applying Lemma 2.1 to (2.29), we get

u(m, n) 6 z(m, n) + b(m, n)
m−1∑

s=0

c(s, n)z(s, n)
m−1∏

i=s+1

(
1 + c(i, n)b(i, n)

)

6 z(m, n)q(m, n),

where q(m, n) is defined by (2.11). From (2.28) and the last estimate we have

(2.30) u(m, n) 6 q(m, n)
(
a(m, n) + ϕ(w(m, n))

)
,

where w(m, n) is defined by w(m, n) =
m−1∑
s=0

∞∑
t=n+1

L
(
s, t, u(s, t)

)
. From (2.30) we get

w(m, n) 6
m−1∑

s=0

∞∑

t=n+1

L(s, t, q(s, t)
[
a(s, t) + ϕ(w(s, t))

]
)

6 e(m, n) +
m−1∑

s=0

∞∑

t=n+1

M
(
s, t, q(s, t)a(s, t)

)
ϕ−1(q(s, t))w(s, t),

where e(m, n) is defined by (2.27). Clearly, e(m, n) is nonnegative, nondecreasing in
m, m ∈ � 0 , and nonincreasing in n, n ∈ � 0 . Now, by (i) of Lemma 2.3, we obtain

(2.31) w(m, n) 6 e(m, n)
m−1∏

s=0

(
1 +

∞∑

t=n+1

M
(
s, t, q(s, t)a(s, t)

)
ϕ−1(q(s, t))

)
.

Using (2.31) in (2.30) we get the required inequality in (2.26). �

121



Theorem 2.7. Under the conditions of Theorem 2.6, assume that a(m, n) is

nonincreasing in m for m ∈ � 0 , and 0 <
∞∑

s=m+1
c(s, n)u(s, n) < ∞. If

u(m, n) 6 a(m, n) + b(m, n)
∞∑

s=m+1

c(s, n)u(s, n)

+ ϕ

( ∞∑

s=m+1

∞∑

t=n+1

L
(
s, t, u(s, t)

))

for m, n ∈ � 0 , then

u(m, n) 6 q̄(m, n)
{

a(m, n)

+ ϕ

(
ē(m, n)×

∞∏

s=m+1

[
1 +

∞∑

t=n+1

M
(
s, t, q̄(s, t)a(s, t)

)
ϕ−1

(
q̄(s, t)

)])}

for m, n ∈ � 0 , where

ē(m, n) =
∞∑

s=m+1

∞∑

t=n+1

L
(
s, t, q̄(s, t)a(s, t)

)

for m, n ∈ � 0 , and q̄(m, n) is defined in Theorem 2.5.

The proof of Theorem 2.7 can be given along the lines of the proof of Theorem 2.6,
and we omit it. In the proof of Theorem 2.7 we have to use Lemma 2.2 (respectively,

Lemma 2.3 (ii)) instead of Lemma 2.1 (respectively, Lemma 2.3 (i)) appearing in the
proof of Theorem 2.6.

3. Some applications

In this section we present some immediate applications of Theorem 2.4 to study
certain properties of solutions of the following a nonlinear sum-difference equation,

u(m, n) = F (m, n) +
m−1∑

s=0

A
(
m, n, s, t, u(s, t)

)
(3.1)

+
m−1∑

s=0

∞∑

t=n+1

B
(
m, n, s, t, u(s, t)

)
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where u : � 2
0 → � − {0}, F : � 2

0 → � , A, B : � 2
0 × � 2

0 × � → � − {0}, and

|F (m, n)| 6 a(m, n),(3.2)
∣∣A

(
m, n, s, t, u(s, t)

)∣∣ 6 b(m, n)c(s, n)|u(s, n)|,(3.3)

|B(m, n, s, t, u(s, t)| 6 d(s, t)W (|u(s, t)|),(3.4)

where a(m, n), b(m, n), c(s, n) and d(s, t) are as defined in Theorem 2.4, W (r) is a
real-valued continuous, positive, nondecreasing, subadditive, and submultiplicative
function on I = [u0,∞) and |u| > u0 > 0 where u0 is real constant. Let u(m, n) be
a solution of (3.1). From (3.1)–(3.4), we have

|u(m, n)| 6 a(m, n) + b(m, n)
m−1∑

s=0

c(s, n)|u(s, n)|(3.5)

+
m−1∑

s=0

∞∑

t=n+1

d(s, t)W (|u(s, t)|).

Now, a suitable application of Theorem 2.4 to (3.5) yields the required estimate as

follows

|u(m, n)| 6 q(m, n)
[
a(m, n) + G−1

[
G(V1(∞, 0)) + V2(m, n)

]]
.

The right-hand side of the above inequality gives an upper bound on the solu-

tion u(m, n) of (3.1) in terms of the known functions.
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