Czechoslovak Mathematical Journal

Ján Jakubík
 On vector lattices of elementary Carathéodory functions

Czechoslovak Mathematical Journal, Vol. 55 (2005), No. 1, 223-236

Persistent URL: http://dml.cz/dmlcz/127972

Terms of use:

© Institute of Mathematics AS CR, 2005

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz

ON VECTOR LATTICES OF ELEMENTARY CARATHÉODORY FUNCTIONS

Ján Jakubík, Košice

(Received May 29, 2002)

Abstract. In this paper we deal with the vector lattice $C(B)$ of all elementary Carathéodory functions corresponding to a generalized Boolean algebra B.

Keywords: generalized Boolean algebra, elementary Carathéodory functions, Specker lattice ordered group, (α, β)-distributivity, complete distributivity

MSC 2000: 06F20, 46A40

1. Introduction

The vector lattice of elementary Carathéodory functions corresponding to a Boolean algebra was investigated by Gofman [7]. The author [9] applied elementary Carathéodory functions for studying cardinal properties of lattice ordered groups.

In an analogous way we can deal with elementary Carathéodory functions corresponding to a generalized Boolean algebra. The definition is given in Section 2 below.

For a generalized Boolean algebra B we denote by $C(B)$ the vector lattice of all elementary Carathéodory functions corresponding to B. If the multiplication of elements of $C(B)$ by reals is not taken into account, then we speak about lattice ordered group $C(B)$.

The Specker lattice ordered group $S(B)$ corresponding to B is an ℓ-subgroup of $C(B)$; this notion was investigated by Conrad and Darnel [3], [4], [5], Conrad and Martinez [6] and by the author [11].

Let α and β be cardinals. The (α, β)-distributivity of Boolean algebras and of lattice ordered groups was studied in a rather large series of papers. For the detailed

[^0]bibliography concerning the (α, β)-distributivity in Boolean algebras cf. Sikorski [12]; for the case of lattice ordered groups cf., e.g., Weinberg [13] and the author [10] (and the articles quoted in these papers).

In this paper we deal with the relations between the higher degrees of distributivity concerning the partially ordered structures $B, S(B)$ and $C(B)$.

2. Preliminaries and some results

For lattice ordered groups and vector lattices we apply the terminology and notation as in Birkhoff [1] and Conrad [2].

A generalized Boolean algebra is defined to be a distributive lattice B with the least element 0 such that for each $b \in B$, the interval $[0, b]$ is a Boolean algebra.

Let G be a lattice ordered group and $x, y \in G^{+}$. The elements x and y are called orthogonal (or disjoint) if $x \wedge y=0$; in such case we have $x \vee y=x+y$ and $n_{1} x \wedge n_{2} y=0$ for any positive integers n_{1} and n_{2}.

We recall the notion of elementary Carathéodory functions corresponding to a generalized Boolean algebra B (cf. [7], [9]; the distinction now is that in the quoted papers B was assumed to be a Boolean algebra).

Let $C(B)$ be the system consisting of all forms

$$
f=a_{1} b_{1}+\ldots+a_{n} b_{n}
$$

(where a_{i} are nonzero reals, $b_{i} \in B, b_{i}>0, b_{i(1)} \wedge b_{i(2)}=0$ for any $i(1), i(2) \in$ $\{1,2, \ldots, n\}, i(1) \neq i(2))$ and of the "empty form"; if g is another such form,

$$
g=a_{1}^{\prime} b_{1}^{\prime}+\ldots+a_{m}^{\prime} b_{m}^{\prime}
$$

then f and g are considered as equal if $\bigvee_{i=1}^{n} b_{i}=\bigvee_{j=1}^{m} b_{j}^{\prime}$ and if $a_{i}=a_{j}^{\prime}$ whenever $b_{i} \wedge b_{j}^{\prime} \neq 0$.

For $b, b^{\prime} \in B$ let $b-{ }_{1} b^{\prime}$ be the relative complement of $b \wedge b^{\prime}$ in the interval $[0, b]$. The operation $+\operatorname{in} C(B)$ is defined by

$$
f+g=\sum_{i=1}^{n} \sum_{j=1}^{m}\left(a_{1}+a_{j}^{\prime}\right)\left(b_{i} \wedge b_{j}^{\prime}\right)+\sum_{i=1}^{n} a_{i}\left(b_{i}-1 \bigvee_{j=1}^{m} b_{j}^{\prime}\right)+\sum_{j=1}^{m} a_{j}^{\prime}\left(b_{j}^{\prime}-1 \bigvee_{i=1}^{n} b_{i}\right)
$$

where in the summation only those terms are taken into account in which $a_{i}+a_{j}^{\prime} \neq 0$ and the elements $b_{i} \wedge b_{j}^{\prime}, b_{i}-1 \bigvee_{j=1}^{m} b_{j}^{\prime}, b_{j}^{\prime}-1 \bigvee_{i=1}^{n} b_{i}$ are non-zero. The empty form is considered to be a neutral element in $C(B)$ (with respect to the operation +) and it
will be identified with the element 0 of B. We put $f>0$ if $a_{i}>0$ for $i=1,2, \ldots, n$. Then $C(B)$ turns out to be a lattice ordered group. (We have the same symbol for the zero element of \mathbb{R}, the least element of B and for the neutral element of $C(B)$, but the meaning of this symbol will always be clear from the context.) If b is the neutral element of $C(B)$ and $a \in \mathbb{R}$, then we put $a b=b$. If $0 \in \mathbb{R}$ and $b \in B$, we set $0 b=0 \in C(\mathbb{R})$. Further, each element $b \in B$ will be identified with the element $b \in C(B)$; hence $B \subseteq C(B)$. If f is as above and $a \in \mathbb{R}$, then we put $a f=\left(a a_{1}\right) b_{1}+\ldots+\left(a a_{n}\right) b_{n}$. Under this definition, $C(B)$ is a vector lattice. The elements of $C(B)$ are called elementary Carathéodory functions corresponding to B.

Let us denote by $S(B)$ the set of all $f \in C(B)$ such that (under the notation as above) either $f=0$ or all $a_{i}(i=1, \ldots, n)$ are integers. Then $S(B)$ is an ℓ-subgroup of $C(B)$; we say that $S(B)$ is a Specker lattice ordered group corresponding to the generalized Boolean algebra B.

A lattice ordered group G will be defined to be a Specker lattice ordered group if there exists a generalized Boolean algebra B such that G is isomorphic to $S(B)$. In Section 3 we verify that this definition is equivalent to that used in the above mentioned paper [5].

Let α and β be nonzero cardinals and let T, S be nonempty sets with card $T \leqslant \alpha$, card $S \leqslant \beta$. A lattice L is called (α, β)-distributive if the following identities hold in L

$$
\begin{align*}
& \bigwedge_{t \in T} \bigvee_{s \in S} x_{t, s}=\bigvee_{\varphi \in S^{T}} \bigwedge_{t \in T} x_{t, \varphi(t)}, \tag{1.1}\\
& \bigvee_{t \in T} \bigwedge_{s \in S} x_{t, s}=\bigwedge_{\varphi \in S^{T}} \bigvee_{t \in T} x_{t, \varphi(t)} \tag{1.2}
\end{align*}
$$

under the assumption that all joins and meets appearing in (1.1) and (1.2) exist in L. Further, L is α-distributive if it is (α, α)-distributive; L is completely distributive if it is α-distributive for every cardinal α.

Let K be a sublattice of a lattice L. The lattice K is a closed sublattice of L if the following condition and its dual are satisfied:
(2) whenever $X \subseteq K$ and $\sup X$ exists, then $\sup X \in K$.

The definition of a regular sublattice is given in Section 4.
Let α be an infinite cardinal. A lattice L is α-complete if, whenever X is a nonempty subset of L with card $X \leqslant \alpha$, then both $\sup X$ and $\inf X$ exist in L. Further, L is conditionally α-complete if each its interval is α-complete.

Let us recall that in accordance with the commonly used terminology, a lattice ordered group is called complete if it is conditionally complete; the analogous terminology will be used for α-completeness.

Conrad and Darnel proved the following result:
$(\mathbf{C D})($ Cf. [5], Theorem 3.13). Let B be a generalized Boolean algebra and $G=$ $S(B)$. Then the following conditions are equivalent:
(i) G is complete, completely distributive and has a unit;
(ii) B is an atomic complete Boolean algebra.

It is well-known (cf. e.g., Sikorski [12]) that (ii) is equivalent to the condition
(iii) B is a complete and completely distributive Boolean algebra.

Assume that B is a generalized Boolean algebra. Let us mention the following results proven below.
B is a closed and regular sublattice of $S(B)$; further, $S(B)$ is a closed and regular sublattice of $C(B)$.

Let α and β be cardinals. $S(B)$ is (α, β)-distributive if and only if B is (α, β) distributive. If $C(B)$ is (α, β)-distributive, then $S(B)$ is (α, β)-distributive.
B is conditionally complete and completely distributive if and only if $C(B)$ is complete and completely distributive.

3. Closedness of B and $S(B)$

Assume that $B, S(B)$ and $C(B)$ are as above.

Lemma 3.1. Let $f, g \in C(B)$.
a) There are $b_{1}, \ldots, b_{n} \in B, 0<b_{i}(i \in I=\{1,2, \ldots, n\}), b_{i(1)} \wedge b_{i(2)}=0$ for distinct elements $i(1), i(2)$ of I, and reals $a_{1}, \ldots, a_{n}, a_{1}^{\prime}, \ldots, a_{n}^{\prime}$ such that

$$
\begin{align*}
& f=a_{1} b_{1}+\ldots+a_{n} b_{n}, \tag{1}\\
& g=a_{1}^{\prime} b_{1}+\ldots+a_{n}^{\prime} b_{n} . \tag{2}
\end{align*}
$$

Moreover, if $\circ \in\{+,-, \wedge, \vee\}$, then

$$
f \circ g=\left(a_{1} \circ a_{1}^{\prime}\right) b_{1}+\ldots+\left(a_{n} \circ a_{n}^{\prime}\right) b_{n}
$$

b) If $f, g \in S(B)$, then $a_{1}, \ldots, a_{n}, a_{1}^{\prime}, \ldots, a_{n}^{\prime}$ are integers.

Proof. If suffices to apply the same method as in [11], Lemma 2.5 (the only distinction is that in [11] the coefficients $a_{i}, a_{i}^{\prime}(i \in I)$ were integers).

We say that (1) and (2) are canonical representations for the pair (f, g).

Lemma 3.2. For $b_{1}, b_{2} \in B$, the relation $b_{1}<b_{2}$ as defined in $C(B)$ coincides with the original relation of partial order defined in B.

Proof. This is an easy consequence of 3.1.
Let $X \subseteq S(B)$ and $x_{0} \in S(B)$. The meaning of the formulas $x_{0}=\sup _{S(B)} X$ or $x_{0}=\inf _{S(B)} X$ is clear.

Lemma 3.3. Let $\emptyset \neq X \subseteq B, x_{0} \in S(B)$. Assume that $x_{0}=\sup _{S(B)} X$. Then $x_{0} \in B$.

Proof. Let x be any element of X. In view of 3.1 there exist canonical representations for the pair $\left(x_{0}, x\right)$

$$
\begin{align*}
x_{0} & =a_{1} b_{1}+\ldots+a_{n} b_{n}, \\
x & =a_{1}^{\prime} b_{1}+\ldots+a_{n}^{\prime} b_{n} .
\end{align*}
$$

Since $x=1 x$, in view of the definition of equality in $C(B)$ we must have $a_{i}^{\prime} \in\{0,1\}$ for $i=1,2, \ldots, n$. Further, $a_{i} \geqslant a_{i}^{\prime}$ for $i=1,2, \ldots, n$. Put $I_{0}=\{i \in\{1,2, \ldots, n\}$: $\left.a_{i}^{\prime}=1\right\}$. Then

$$
x=\sum_{i \in I_{0}} b_{i}=\bigvee_{i \in I_{0}} b_{i}
$$

Further, if $a_{i}=0$ for some i, then $a_{i}^{\prime}=0$; thus without loss of generality we can suppose that $a_{i} \neq 0$ for $i=1,2, \ldots, n$. Hence

$$
x_{0} \geqslant b_{1}+b_{2}+\ldots+b_{n}=b_{1} \vee b_{2} \vee \ldots \vee b_{n} \geqslant x
$$

Let x_{1} be another element of X; consider the canonical representation for the pair $\left(x_{0}, x_{1}\right)$

$$
\begin{aligned}
& x_{0}=a_{1}^{1} b_{1}^{1}+\ldots+a_{m}^{1} b_{m}^{1}, \\
& x_{1}=\left(a_{1}^{1}\right)^{\prime} b_{1}^{1}+\ldots+\left(a_{m}^{1}\right)^{\prime} b_{m}^{1}
\end{aligned}
$$

Similarly as above we can suppose that $b_{j}^{1} \neq 0$ for $j=1,2, \ldots, m$. We have

$$
a_{1}^{1} b_{1}^{1}+\ldots+a_{m}^{1} b_{m}^{1}=a_{1} b_{1}+\ldots+a_{n} b_{n}
$$

the definition of equality in $C(B)$ yields

$$
b_{1}^{1}+\ldots+b_{m}^{1}=b_{1}+\ldots+b_{n}
$$

Hence both x and x_{1} are less than or equal to $b_{1}+\ldots+b_{n}$. Therefore $x_{0}=\sup _{S(B)} X=$ $b_{1}+\ldots+b_{n}=b_{1} \vee \ldots \vee b_{n} \in B$.

From the method of the above proof we obtain also the following assertion:

Lemma 3.3.1. Let $\emptyset \neq X \subseteq B, x_{0} \in S(B)$. Assume that x_{0} is an upper bound of X and that it does not belong to B. Then there exists $b_{0} \in B$ such that b_{0} is an upper bound of X and $b_{0}<x_{0}$.

Lemma 3.4. B is an ideal of the lattice $(S(B))^{+}$.
Proof. Let $g \in B, f \in C(B), 0 \leqslant f \leqslant g$. Consider the canonical representation (1) and (2) corresponding to the pair (f, g). In view of $1 g=g \in B$ we conclude that $a_{i}^{\prime} \in\{0,1\}$ for $i=\{1,2, \ldots, n\}$; if $a_{i}^{\prime}=0$, then we can suppose that $a_{i}=0$ as well. Hence without loss of generality we can assume that all a_{i}^{\prime} are equal to 1 ; therefore $a_{i} \in\{0,1\}$ and $a_{i} b_{i} \in B$. Hence $f=a_{1} b_{1} \vee a_{2} b_{2} \vee \ldots \vee a_{n} b_{n} \in B$. In view of 3.3 , the proof is complete.

From 3.3 and 3.4 we obtain

Proposition 3.5. Let B be a generalized Boolean algebra. Then B is a closed sublattice of $S(B)$.

Let G be a lattice ordered group and let Y be the set of all $y \in G^{+}$such that the interval $[0, y]$ of G is a Boolean algebra. In [5], G is defined to be a Specker lattice ordered group if it is generated as a group by the set Y; then each element $0 \neq g \in G$ can be expressed in the form

$$
g=a_{1} y_{1}+\ldots+a_{n} y_{n}
$$

where $y_{1}, \ldots, y_{n} \in Y, y_{i}>0, y_{j(1)} \wedge y_{i(2)}=0$ for distinct $i(1), i(2)$, and a_{i}, \ldots, a_{n} are nonzero reals. It can be shown by a simple calculation that if two elements f and g of G are expressed in this form, then for $f+g$ the formula from Section 2 above is valid. Therefore the definition from [5] is equivalent (up to isomorphisms) to that given in Section 2.

Lemma 3.6. Let $\emptyset \neq X \subseteq S(B), x_{0} \in C(B), x_{0}=\sup _{C(B)} X$. Then $x_{0} \in S(B)$.
Proof. It is easy to verify (by applying the obvious translation) that it suffices to prove our assertion for the case when $X \subseteq(S(B))^{+}$. Thus we can assume that $x \geqslant 0$ for each $x \in X$. Hence $x_{0} \geqslant 0$.

We apply an analogous idea as in the proof of 3.5 . Let $x \in X$. Assume that (1^{\prime}) and $\left(2^{\prime}\right)$ are canonical representations corresponding to the pair $\left(x_{0}, x\right)$. Similarly as in the above proofs we can suppose that $a_{i}>0$ for $i=1,2, \ldots, n$. The relation $x \in S(B)$ implies that all a_{i}^{\prime} are integers. We denote by a_{i}^{0} the greatest integer with
$a_{i}^{0} \leqslant a_{i}$. Hence $a_{i}^{\prime} \leqslant a_{i}^{0}$. Put

$$
x_{0}(x)=a_{1}^{0} b_{1}+\ldots+a_{n}^{0} b_{n} .
$$

Then $x \leqslant x_{0}$.
Let y be another element of X. Consider the canonical representations

$$
\begin{align*}
x_{0} & =a_{1}^{*} b_{1}^{\prime}+\ldots+a_{m}^{*} b_{m}^{\prime}, \\
y & =y_{1}^{\prime \prime} b_{1}^{\prime}+\ldots+a_{m}^{\prime \prime} b_{m}^{\prime}
\end{align*}
$$

for the pair $\left(x_{0}, y\right)$. Similarly as above we can suppose that all $a_{1}^{*}, \ldots, a_{m}^{*}$ are nonzero. Further, by an analogous construction as above we define

$$
x_{0}(y)=a_{1}^{* 0} b_{1}^{\prime}+\ldots+a_{m}^{* 0} b_{m}^{\prime}
$$

In view of the definition of equality in $C(B)$ we have

$$
b_{1} \vee \ldots \vee b_{n}=b_{1}^{\prime} \vee \ldots \vee b_{m}^{\prime}
$$

Put $I=\{1,2, \ldots, n\}, J=\{1,2, \ldots, m\}$. Let $j \in J$. Then

$$
b_{j}^{\prime}=b_{j}^{\prime} \wedge\left(b_{1} \vee b_{2} \vee \ldots \vee b_{n}\right)=\left(b_{j}^{\prime} \wedge b_{1}\right) \vee \ldots \vee\left(b_{j}^{\prime} \wedge b_{n}\right)
$$

Denote $I(j)=\left\{i \in I: b_{j}^{\prime} \wedge b_{i}>0\right\}$. Then $I(j) \neq \emptyset$. By using again the definition of equality in $C(B)$ we obtain that for each $i \in I(j)$ we have $a_{j}^{*}=a_{i}$, whence $a_{j}^{* 0}=a_{i}^{0}$. Then

$$
\begin{aligned}
a_{j}^{* 0} b_{j}^{\prime} & =a_{j}^{* 0}\left(\bigvee_{i \in I(j)}\left(b_{j}^{\prime} \wedge b_{i}\right)\right)=a_{j}^{* 0} \sum_{i \in I(j)}\left(b_{j}^{\prime} \wedge b_{i}\right) \\
& \leqslant \sum_{i \in I(j)} a_{j}^{*} b_{i}=\sum_{i \in I(j)} a_{i}^{0} b_{i} \leqslant x_{0}(x)
\end{aligned}
$$

Since this holds for each $j \in J$, we get

$$
x_{0}(y)=\sum_{j \in J} a_{j}^{* 0} b_{j}^{\prime}=\bigvee_{j \in J} a_{j}^{* 0} b_{j}^{\prime} \leqslant x_{0}(x)
$$

Clearly $y \leqslant x_{0}(y)$, hence $y \leqslant y_{0}(x)$. Thus $x_{0}(x)$ is an upper bound of X. Because $x_{0}(x) \leqslant x_{0}=\sup _{C(B)} X$, we get $x_{0}(x)=x_{0}$. In view of the definition of $x_{0}(x)$ we have $x_{0}(x) \in S(B)$.

Similarly as in 3.3.1, the above proof yields also the following assertion:

Lemma 3.6.1. Let $\emptyset \neq X \subseteq S(B), x_{0} \in C(B)$. Assume that x_{0} is an upper bound of X and that it does not belong to $S(B)$. Then there exists $y_{0} \in S(B)$ such that y_{0} is an upper bound of X and $y_{0}<x_{0}$.

Lemma 3.7. Let $\emptyset \neq X \subseteq S(B), x_{0} \in C(B), x_{0}=\inf _{C(B)} X$. Then $x_{0} \in S(B)$.
Proof. Similarly as in the proof of 3.6 , it suffices to consider the case $X \subseteq$ $(S(B))^{+}$. Thus $x_{0} \geqslant 0$. Let $x \in X$. Again, let (1^{\prime}) and (2^{\prime}) be canonical representations of the pair $\left(x_{0}, x\right)$. Let I be as above and $i \in I$. Then $a_{i}^{\prime} \geqslant a_{i}$. We denote by a_{i}^{0} the least integer with $a_{i}^{0} \geqslant a_{i}$. Hence $a_{i}^{\prime} \geqslant a_{i}^{0}$. Put

$$
x_{0}(x)=a_{1}^{0} b_{1}+\ldots+a_{n}^{0} b_{n} .
$$

Then $x_{0} \geqslant x_{0}(x) \geqslant x$.
Let $y \in X$ and let $\left(1^{\prime \prime}\right)$ and $\left(2^{\prime \prime}\right)$ be canonical representations of the pair $\left(x_{0}, y\right)$. By means of these representations we define

$$
x_{0}(y)=a_{1}^{* 0} b_{1}^{\prime}+\ldots+a_{m}^{* 0} b_{m}^{\prime}
$$

analogously as in the case of $x_{0}(x)$.
For $j \in J$ let $I(j)$ be as in the proof of 3.6. Further, for $i \in I$ let $J(i)=\{j \in$ $\left.J: b_{i} \wedge b_{j}^{\prime}>0\right\}$. In the proof of 3.6 we verified that, for each $j \in J$,

$$
b_{j}^{\prime}=\bigvee_{i \in I(j)}\left(b_{j}^{\prime} \wedge b_{i}\right)
$$

similarly, for each $i \in I$ we have

$$
b_{i}=\bigvee_{j \in J(i)}\left(b_{i} \wedge b_{j}^{\prime}\right)
$$

Next, in view of the definition of the equality in $C(B)$ we infer that whenever $b_{i} \wedge b_{j}^{\prime}>0$, then $a_{i}=a_{j}^{*}$, whence

$$
\begin{equation*}
a_{i}^{0}=a_{j}^{* 0} . \tag{3}
\end{equation*}
$$

This yields

$$
\begin{align*}
& x_{0}(x)=\bigvee_{i \in I} a_{i}^{0} b_{i}=\bigvee_{i \in I} a_{i}^{0} \bigvee_{j \in J(i)}\left(b_{i} \wedge b_{j}^{\prime}\right)=\bigvee_{i \in I} \bigvee_{j \in J(i)} a_{i}^{0}\left(b_{i} \wedge b_{j}^{\prime}\right), \tag{4}\\
& x_{0}(y)=\bigvee_{j \in J} a_{j}^{*} b_{j}^{\prime}=\bigvee_{j \in J} a_{j}^{*} \bigvee_{i \in I(j)}\left(b_{j}^{\prime} \wedge b_{i}\right)=\bigvee_{j \in J} \bigvee_{i \in I(j)} a_{j}^{*}\left(b_{j}^{\prime} \wedge b_{i}\right) . \tag{5}
\end{align*}
$$

We remark that in (4) we take all $b_{i} \wedge b_{j}^{\prime}$ which are nonzero, and the same situation is in (5). Hence according to (3) we have $x_{0}(y)=x_{0}(x)$. Thus $y \geqslant x_{0}(x)$ for each $y \in X$. Therefore we must have $x_{0}(x)=x_{0}$. Since $x_{0}(x) \in S(B)$, we get $x_{0} \in S(B)$.

In view of the proof of 3.7 we obtain (analogously as in 3.6.1)

Lemma 3.7.1. Let $\emptyset \neq X \subseteq S(B), x_{0} \in C(B)$. Assume that x_{0} is a lower bound of X and that it does not belong to $S(B)$. Then there exists $y_{0} \in S(B)$ such that y_{0} is a lower bound of X and $y_{0}>x_{0}$.

Proposition 3.8. Let B be a generalized Boolean algebra. Then $S(B)$ is a closed ℓ-subgroup of $C(B)$.

Proof. Since $S(B)$ is a subgroup of the group $C(B)$, the assertion follows from 3.6 and 3.7.

In view of 3.5 we have

Corollary 3.9. Let B be a generalized Boolean algebra. Then B^{\prime} is a closed sublattice of $C(B)$.

4. Regularity

Assume that L_{1} is a sublattice of a lattice L_{2}. Consider the following condition: $\left(\mathrm{r}_{1}\right)$ Whenever $x_{1} \in L_{1}, \emptyset \neq X \subseteq L_{1}$ such that $x_{1}=\sup _{L_{1}} X$, then $x_{1}=\sup _{L_{2}} X$.

Further, let $\left(\mathrm{r}_{2}\right)$ be the condition dual to $\left(\mathrm{r}_{1}\right)$. If $\left(\mathrm{r}_{1}\right)$ and $\left(\mathrm{r}_{2}\right)$ are valid, then L_{1} is said to be a regular sublattice of L_{2}.

Lemma 4.1. Let L_{1} be a sublattice of a lattice L_{2}. The condition $\left(\mathrm{r}_{1}\right)$ is implied by the condition
$\left(\mathrm{r}_{1}^{\prime}\right)$ Whenever $\emptyset \neq X \subseteq L_{1}, x_{0} \in L_{2}, x_{0} \notin L_{1}$ such that x_{0} is an upper bound of X, then there exists $y \in L_{1}$ such that y is an upper bound of X and $y<x_{0}$.

Proof. Suppose that $\left(r_{1}^{\prime}\right)$ is satisfied. If $\left(\mathrm{r}_{1}\right)$ does not hold, then there are $x_{1} \in L_{1}, \emptyset \neq X \subseteq L_{1}$ such that $x_{1}=\sup _{L_{1}} X$ and x_{1} fails to be the supremum of X in L_{2}. Hence there exists $y_{1} \in L_{2}$ such that y_{1} is an upper bound of X and $y_{1} \ngtr x_{1}$. Put $y=y_{1} \wedge x$. Thus $y<x_{1}$ and y is an upper bound of X. Then we must have $y \notin L_{1}$. In view of (r_{1}^{\prime}), there is $x_{2} \in L_{1}$ such that x_{2} is an upper bound of X and $x_{2}<y$. But then $x_{2}<x_{1}$ and hence the relation $x_{1}=\sup _{L_{1}} X$ cannot hold; we arrived at a contradiction.

Let $\left(\mathrm{r}_{2}^{\prime}\right)$ be the condition dual to $\left(\mathrm{r}_{1}^{\prime}\right)$. Similarly as in 4.1 we have

Lemma 4.1.1. Let L_{1} be a sublattice of L_{2}. Then $\left(\mathrm{r}_{2}\right)$ is implied by $\left(\mathrm{r}_{2}^{\prime}\right)$.

Proposition 4.2. Let B be a generalized Boolean algebra. Then B is a regular sublattice of $S(B)$.

Proof. Put $L_{1}=B, L_{2}=S(B)$. In view of 3.3.1 and 4.1, the condition (r_{1}) is satisfied. Further, according to 3.4 and 4.1.1, the condition (r_{2}) holds.

Proposition 4.3. Let B be a generalized Boolean algebra. Then $S(B)$ is a regular sublattice of $C(B)$.

Proof. Put $L_{1}=S(B), L_{2}=C(B)$. In view of 3.6.1 and 4.1, we obtain that the condition $\left(\mathrm{r}_{1}\right)$ holds. In view of 3.7.1 and 4.1.1, the condition $\left(\mathrm{r}_{2}\right)$ is valid.

Corollary 4.4. Let B be a generalized Boolean algebra. Then B is a regular sublattice of $C(B)$.

5. Higher degrees of distributivity

Let α and β be cardinals; consider the relations (1.1) and (1.2) defining the (α, β)distributivity of a lattice.

Proposition 5.1. Let B be a generalized Boolean algebra. Then the following conditions are equivalent:
(i) B is (α, β)-distributive.
(ii) $S(B)$ is (α, β)-distributive.

Proof. The case $B=\{0\}$ is trivial; suppose that $B \neq\{0\}$. Assume that (i) is valid. It is easy to verify that $S(B)$ is (α, β)-distributive if and only if all intervals of $S(B)$ are (α, β)-distributive. If $[u, v]$ is an interval in $S(B)$ and $a \in S(B)$, then $[u, v]$ is (α, β)-distributive if and only if the interval $[u+a, v+a]$ is (α, β)-distributive. Therefore, without loss of generality, it suffices to deal with intervals of the form $[0, v]$ with $0<v \in S(B)$.

Let $\left\{x_{t, s}\right\}_{t \in T, s \in S} \subseteq[0, v]$; assume that $T \neq \emptyset \neq S$ and $\operatorname{card} T \leqslant \alpha, \operatorname{card} S \leqslant \beta$. Further, suppose that all joins and meets appearing in (1.1) and (1.2) exist in $S(B)$; then these elements belong to the interval $[0, v]$. By way of contradiction, suppose that $S(B)$ fails to be (α, β)-distributive; e.g., suppose that (1.1) does not hold. Thus

$$
\begin{equation*}
v_{1}=\bigwedge_{t \in T} \bigvee_{s \in S} x_{t, s}>\bigvee_{\varphi \in S^{T}} \bigwedge_{t \in T} x_{t, \varphi(t)}=u_{1} \tag{1}
\end{equation*}
$$

There exists $0<b \in B$ with $b \leqslant v_{1}-u_{1}$. Denote

$$
\left(s_{t, s}-u_{1}\right) \wedge b=x_{t, s}^{\prime}
$$

From (1) we obtain

$$
\begin{equation*}
0<b=\left(v_{1}-u_{1}\right) \wedge b=\bigwedge_{t \in T} \bigvee_{s \in S} x_{t, s}^{\prime} \geqslant \bigvee_{\varphi \in S^{T}} \bigwedge_{t \in T} x_{t, \varphi(t)}^{\prime}=\left(u_{1}-u_{1}\right) \wedge b=0 \tag{2}
\end{equation*}
$$

The joins and meets in (2) are taken with respect to $S(B)$; since B is closed in $S(B)$ (cf. Proposition 3.5), these operations give the same results in B. But then, in view of $(2), B$ is not (α, β)-distributive, which is a contradiction.
b) Assume that (ii) holds and let $\left\{x_{t, s}\right\}_{t \in T, s \in S} \subseteq B$, card $T \leqslant \alpha$, card $S \leqslant \beta$. Suppose that all the joins and meets appearing in (1.1) and (1.2) exist in B. Then, since B is a regular sublattice of $S(B)$ (cf. 4.2), these operations give the same results in $S(B)$. Because $S(B)$ is (α, β)-distributive, (1.1) and (1.2) hold. Hence B is (α, β) distributive.

Proposition 5.2. Let B be a generalized Boolean algebra. Assume that $C(B)$ is (α, β)-distributive. Then $S(B)$ is (α, β)-distributive as well.

Proof. We can apply analogous argument as in the part b) of the proof of 5.1 with the distinction that instead of 4.2 we use 4.3.

Proposition 5.3. Let B be a generalized Boolean algebra and let α be an infinite cardinal.
a) B is α-complete if and only if $S(B)$ is α-complete.
b) If $C(B)$ is α-complete, then $S(B)$ is α-complete.

Proof. Each interval of B is projective to an interval of type $\left[0, b_{1}\right]$ in B. Also, each interval of $S(B)$ is isomorphic to an interval of the form $[0, x], x \in S(B)$, and an analogous assertion is valid for $C(B)$. Hence, when investigating the conditional completeness of $B, S(B)$ or $C(B)$, it suffices to consider only the intervals of the above mentioned types.
a1) Assume that $S(B)$ is conditionally α-complete. Since B is a closed sublattice of $S(B)$, in view of 3.5 we conclude that B is conditionally complete as well.
a2) Suppose that B is α-complete. Let $0<x \in S(B)$. Then there are mutually orthogonal elements b_{1}, \ldots, b_{n} in B and positive integers a_{1}, \ldots, a_{n} such that

$$
x=a_{1} b_{1}+\ldots+a_{n} b_{n} .
$$

Put $a=\max \left\{a_{1}, \ldots, a_{n}\right\}, b=b_{1} \vee \ldots \vee b_{n}$. Hence $[0, x] \subseteq[0, a b]$. The interval $[0, b]$ of B is α-complete. Since B is a regular subset of $S(B)$, the interval $[0, b]$ is
α-complete also as a subset of $S(B)$ (i.e., if we consider the operations \wedge and \vee as defined in $S(B)$). Now by applying the results of [9] we get that the interval [0, ab] of $S(B)$ is α-complete as well.
b) Assume that $C(B)$ is conditionally α-complete. By the same method as in a1) (applying Proposition 3.8) we obtain that $S(B)$ is conditionally α-complete.

Proposition 5.4. Let B be a generalized Boolean algebra. The following conditions are equivalent:
(i) B is a Boolean algebra.
(ii) $S(B)$ has a strong unit.
(iii) $C(B)$ has a strong unit.

Proof. The equivalence of (i) and (ii) is a consequence of Proposition 3.1 in [5]. For each element $x>0$ of $C(B)$ there exists $y \in S(B)$ with $y \geqslant x$; from this we immediately obtain that (ii) and (iii) are equivalent.

An element $0<u$ of a lattice ordered group G is a weak unit if, whenever $0<g \in$ G, then $u \wedge g>0$.

Proposition 5.4.1. Let $B \neq\{0\}$ be a generalized Boolean algebra and $u \in C(B)$. The following conditions are equivalent:
(i) u is a strong unit of $C(B)$.
(ii) u is a weak unit of $C(B)$.

Proof. The implication (i) \Rightarrow (ii) is obvious. Assume that (ii) is valid. The element u can be represented in the form

$$
u=a_{1} b_{1}+\ldots+a_{n} b_{n}
$$

with $0<b_{i} \in B, 0<a_{i} \in \mathbb{R}$ such that the system $\left\{b_{1}, \ldots, b_{n}\right\}$ is orthogonal. Let $0<b \in B$. In view of (ii) we have

$$
0<u \wedge b=\left(a_{1} b_{1}+\ldots+a_{n} b_{n}\right) \wedge b=\left(a_{1} b_{1} \vee \ldots \vee a_{n} b_{n}\right) \wedge b=\bigvee_{i=1}^{n}\left(a_{i} b_{i} \wedge b\right)
$$

Hence there is $i \in\{1,2, \ldots, n\}$ such that $a_{i} b_{i} \wedge b>0$. This yields that $b_{i} \wedge b>0$. Therefore $\left\{b_{1}, \ldots, b_{n}\right\}$ is a maximal disjoint system in B.

It is easy to verify that whenever $\left\{b_{i}^{\prime}\right\}_{i \in I}$ is a maximal disjoint system of a generalized Boolean algebra B^{\prime} such that $\sup \left\{b_{i}^{\prime}\right\}_{i \in I}$ exists in B^{\prime}, then the element $\sup \left\{b_{i}^{\prime}\right\}_{i \in I}$ is the greatest element of B^{\prime}.

Hence, in our case, the element $b=b_{1} \vee \ldots \vee b_{n}=b_{1}+\ldots+b_{n}$ is the greatest element of B. There exists $n \in N$ such that $n a_{i}>1$ for each $i=1,2, \ldots, n$. Thus $n u>b$; from this we conclude that u is a strong unit of $C(B)$.

The analogous result for $S(B)$ was proved in [5, Theorem 3.1] by using a different idea of the proof.

We remark that Theorem 3.13 of [5] (cf. (CD) in Section 2 above) is a consequence of 5.1, 5.3, 5.4 and 5.4.1.

Lemma 5.5. Let B be a generalized Boolean algebra and let b_{0} be an atom of B. Then the interval $\left[0, b_{0}\right]$ in $C(B)$ is a complete chain.

Proof. Let $0<x$ be an element of the interval $\left[0, b_{0}\right]$ in $C(B)$. Then x can be represented in the form

$$
x=a_{1} b_{1}+\ldots+a_{n} b_{n},
$$

where b_{1}, \ldots, b_{n} are mutually orthogonal strictly positive elements of B and a_{1}, \ldots, a_{n} are positive reals. Since $x \leqslant b_{0}$, we get $b_{i} \leqslant b_{0}(i=1,2, \ldots, n)$. But b_{0} is an atom in B, hence $b_{0}=b_{1}=\ldots=b_{n}$. We get $n=1, x=a_{1} b_{0}$. Then $0<a_{1} \leqslant 1$. If y is another element belonging to the interval $\left[0, b_{0}\right]$ in $C(B)$, then there is a_{1}^{\prime} with $0<a_{1}^{\prime} \leqslant 1, y=a_{1}^{\prime} b_{0}$. Thus the elements x and y are comparable. Moreover, for $a_{2} \in \mathbb{R}, a_{2} b_{0}$ belongs to the interval $\left[0, b_{0}\right]$ in $C(B)$ iff $0 \leqslant a_{2} \leqslant 1$, hence the interval under consideration is isomorphic to the interval $[0,1]$ of reals; thus it is a complete lattice.

Proposition 5.6. Let B be a generalized Boolean algebra. The following conditions are equivalent:
(i) B is conditionally complete and completely distributive;
(ii) $\mathcal{S}(B)$ is complete and completely distributive;
(iii) $C(B)$ is complete and completely distributive.

Proof. (iii) \Rightarrow (ii): This is a consequence of 5.2 and 5.3.
$($ ii $) \Rightarrow(\mathrm{i})$: This follows from 5.1 and 5.3.
(i) \Rightarrow (iii): Assume that (i) is valid. If suffices to verify that if $0<x \in c(B)$, then the interval $[0, x]$ of $C(B)$ is complete and completely distributive.

There exists $b \in B$ and a positive integer a such that $x \leqslant a b$, hence $[0, x] \subseteq$ $[0, a b]$. In view of the assumption, the interval $[0, b]$ of B is complete and completely distributive. Therefore, since this interval is a Boolean algebra, it is atomic and hence there is a set $\left\{b_{i}\right\}_{i \in I}$ of its atoms such that

$$
\begin{equation*}
b=\bigvee_{i \in I} b_{i} \tag{3}
\end{equation*}
$$

is valid in B. In view of Proposition 3.9, the relation (3) is valid also in $C(B)$. Thus in $C(B)$ we have

$$
\begin{equation*}
a b=\bigvee_{i \in I} a b_{i} \tag{4}
\end{equation*}
$$

For each $i \in I$ let X_{i} be the interval $\left[0, b_{i}\right]$ of $C(B)$. In view of $5.5, X_{i}$ is a complete chain. Thus according to [8], there exists a linearly ordered direct factor \bar{X}_{i} of $C(B)$ such that $X_{i} \subseteq \bar{X}_{i}$. From $b_{i} \in \bar{X}_{i}$ we obtain $a b_{i} \in \bar{X}_{i}$ and so [$\left.0, a b_{i}\right]$ (the interval in $C(B)$) is a chain; therefore it is completely distributive.

The system $\left\{a b_{i}\right\}_{i \in I}$ is orthogonal. From this and from the infinite distributivity of $C(B)$ we conclude that the relation (4) implies the existence of an isomorphisms of $[0, a b]$ onto the direct product $\prod_{i \in I}\left[0, a b_{i}\right]$. From the complete distributivity of the direct factors $\left[0, a b_{i}\right]$ we infer that $[0, a b]$ is completely distributive. Further, since $[0, x] \subseteq[0, a b]$, we obtain that $[0, x]$ is completely distributive.

In the part a2) of the proof of 5.3 we have already used the fact that from the completeness of $[0, b]$ it follows that $[0, a b]$ is complete as well. Thus $[0, x]$ is complete.

References

[1] G. Birkhoff: Lattice Theory, Third Edition. Providence, 1967.
[2] P. Conrad: Lattice Ordered Groups. Tulane University, Tulane, 1970.
[3] P. Conrad and M. R. Darnel: Lattice-ordered groups whose lattices determine their additions. Trans. Amer. Math. Soc. 330 (1992), 575-598.
[4] P. F. Conrad and M. R. Darnel: Generalized Boolean algebras in lattice-ordered groups. Order 14 (1998), 295-319.
[5] P. F. Conrad and M. R. Darnel: Subgroups and hulls of Specker lattice-ordered groups. Czechoslovak Math. J. To appear.
[6] P.F. Conrad and J. Martinez: Signatures and S-discrete lattice ordered groups. Alg. Universalis 29 (1992), 521-545.
[7] C. Gofman: Remarks on lattice ordered groups and vector lattices. I. Carathéodory functions. Trans. Amer. Math. Soc. 88 (1958), 107-120.
[8] J. Jakubik: Konvexe Ketten in ℓ-Gruppen. Čas. pěst. mat. 83 (1959), 53-63.
[9] J. Jakubik: Cardinal properties of lattice ordered groups. Fundamenta Math. 74 (1972), 85-98.
[10] J. Jakubik: Distributivity in lattice ordered groups. Czechoslovak Math. J. 22 (1972), 108-125.
[11] J. Jakubik: Torsion classes of Specker lattice ordered groups. Czechoslovak Math. J. 52 (2002), 469-482.
[12] R. Sikorski: Boolean Algebras. Second Edition, Springer-Verlag, Berlin, 1964.
[13] E. C. Weinberg: Higher degrees of distributivity in lattices of continuous functions. Trans. Amer. Math. Soc. 114 (1962), 334-346.

Author's address: Matematický ústav SAV, Grešákova 6, 04001 Košice, Slovak Republic, e-mail: kstefan@saske.sk.

[^0]: This work was supported by grant VEGA 2/1131/21.

