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1. Introduction

The vector lattice of elementary Carathéodory functions corresponding to a
Boolean algebra was investigated by Gofman [7]. The author [9] applied elementary
Carathéodory functions for studying cardinal properties of lattice ordered groups.
In an analogous way we can deal with elementary Carathéodory functions cor-

responding to a generalized Boolean algebra. The definition is given in Section 2
below.
For a generalized Boolean algebra B we denote by C(B) the vector lattice of

all elementary Carathéodory functions corresponding to B. If the multiplication of
elements of C(B) by reals is not taken into account, then we speak about lattice
ordered group C(B).
The Specker lattice ordered group S(B) corresponding to B is an `-subgroup

of C(B); this notion was investigated by Conrad and Darnel [3], [4], [5], Conrad and
Martinez [6] and by the author [11].
Let α and β be cardinals. The (α, β)-distributivity of Boolean algebras and of

lattice ordered groups was studied in a rather large series of papers. For the detailed
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bibliography concerning the (α, β)-distributivity in Boolean algebras cf. Sikorski [12];
for the case of lattice ordered groups cf., e.g., Weinberg [13] and the author [10] (and
the articles quoted in these papers).
In this paper we deal with the relations between the higher degrees of distributivity

concerning the partially ordered structures B, S(B) and C(B).

2. Preliminaries and some results

For lattice ordered groups and vector lattices we apply the terminology and nota-
tion as in Birkhoff [1] and Conrad [2].
A generalized Boolean algebra is defined to be a distributive lattice B with the

least element 0 such that for each b ∈ B, the interval [0, b] is a Boolean algebra.
Let G be a lattice ordered group and x, y ∈ G+. The elements x and y are

called orthogonal (or disjoint) if x ∧ y = 0; in such case we have x ∨ y = x + y and
n1x ∧ n2y = 0 for any positive integers n1 and n2.
We recall the notion of elementary Carathéodory functions corresponding to a

generalized Boolean algebra B (cf. [7], [9]; the distinction now is that in the quoted
papers B was assumed to be a Boolean algebra).
Let C(B) be the system consisting of all forms

f = a1b1 + . . . + anbn

(where ai are nonzero reals, bi ∈ B, bi > 0, bi(1) ∧ bi(2) = 0 for any i(1), i(2) ∈
{1, 2, . . . , n}, i(1) 6= i(2)) and of the “empty form”; if g is another such form,

g = a′1b
′
1 + . . . + a′mb′m,

then f and g are considered as equal if
n∨

i=1

bi =
m∨

j=1

b′j and if ai = a′j whenever

bi ∧ b′j 6= 0.
For b, b′ ∈ B let b−1 b′ be the relative complement of b ∧ b′ in the interval [0, b].

The operation + in C(B) is defined by

f + g =
n∑

i=1

m∑

j=1

(a1 + a′j)(bi ∧ b′j) +
n∑

i=1

ai

(
bi −1

m∨

j=1

b′j

)
+

m∑

j=1

a′j

(
b′j −1

n∨

i=1

bi

)
,

where in the summation only those terms are taken into account in which ai +a′j 6= 0

and the elements bi ∧ b′j , bi −1

m∨
j=1

b′j , b
′
j −1

n∨
i=1

bi are non-zero. The empty form is

considered to be a neutral element in C(B) (with respect to the operation +) and it
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will be identified with the element 0 of B. We put f > 0 if ai > 0 for i = 1, 2, . . . , n.
Then C(B) turns out to be a lattice ordered group. (We have the same symbol for
the zero element of 
 , the least element of B and for the neutral element of C(B),
but the meaning of this symbol will always be clear from the context.) If b is the
neutral element of C(B) and a ∈ 
 , then we put ab = b. If 0 ∈ 
 and b ∈ B,
we set 0b = 0 ∈ C( 
 ). Further, each element b ∈ B will be identified with the
element b ∈ C(B); hence B ⊆ C(B). If f is as above and a ∈ 
 , then we put
af = (aa1)b1 + . . . + (aan)bn. Under this definition, C(B) is a vector lattice. The
elements of C(B) are called elementary Carathéodory functions corresponding to B.
Let us denote by S(B) the set of all f ∈ C(B) such that (under the notation as

above) either f = 0 or all ai (i = 1, . . . , n) are integers. Then S(B) is an `-subgroup
of C(B); we say that S(B) is a Specker lattice ordered group corresponding to the
generalized Boolean algebra B.
A lattice ordered group G will be defined to be a Specker lattice ordered group

if there exists a generalized Boolean algebra B such that G is isomorphic to S(B).
In Section 3 we verify that this definition is equivalent to that used in the above
mentioned paper [5].
Let α and β be nonzero cardinals and let T , S be nonempty sets with cardT 6 α,

cardS 6 β. A lattice L is called (α, β)-distributive if the following identities hold
in L

∧

t∈T

∨

s∈S

xt,s =
∨

ϕ∈ST

∧

t∈T

xt,ϕ(t),(1.1)

∨

t∈T

∧

s∈S

xt,s =
∧

ϕ∈ST

∨

t∈T

xt,ϕ(t)(1.2)

under the assumption that all joins and meets appearing in (1.1) and (1.2) exist in L.
Further, L is α-distributive if it is (α, α)-distributive; L is completely distributive if
it is α-distributive for every cardinal α.
Let K be a sublattice of a lattice L. The lattice K is a closed sublattice of L if

the following condition and its dual are satisfied:
(2) whenever X ⊆ K and sup

L
X exists, then sup

L
X ∈ K.

The definition of a regular sublattice is given in Section 4.
Let α be an infinite cardinal. A lattice L is α-complete if, whenever X is a

nonempty subset of L with cardX 6 α, then both sup X and inf X exist in L.
Further, L is conditionally α-complete if each its interval is α-complete.
Let us recall that in accordance with the commonly used terminology, a lattice

ordered group is called complete if it is conditionally complete; the analogous termi-
nology will be used for α-completeness.
Conrad and Darnel proved the following result:
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(CD)(Cf. [5], Theorem 3.13). Let B be a generalized Boolean algebra and G =
S(B). Then the following conditions are equivalent:
(i) G is complete, completely distributive and has a unit;

(ii) B is an atomic complete Boolean algebra.

It is well-known (cf. e.g., Sikorski [12]) that (ii) is equivalent to the condition

(iii) B is a complete and completely distributive Boolean algebra.

Assume that B is a generalized Boolean algebra. Let us mention the following
results proven below.

B is a closed and regular sublattice of S(B); further, S(B) is a closed and regular
sublattice of C(B).
Let α and β be cardinals. S(B) is (α, β)-distributive if and only if B is (α, β)-

distributive. If C(B) is (α, β)-distributive, then S(B) is (α, β)-distributive.
B is conditionally complete and completely distributive if and only if C(B) is

complete and completely distributive.

3. Closedness of B and S(B)

Assume that B, S(B) and C(B) are as above.

Lemma 3.1. Let f, g ∈ C(B).
a) There are b1, . . . , bn ∈ B, 0 < bi (i ∈ I = {1, 2, . . . , n}), bi(1) ∧ bi(2) = 0 for
distinct elements i(1), i(2) of I , and reals a1, . . . , an, a′1, . . . , a

′
n such that

f = a1b1 + . . . + anbn,(1)

g = a′1b1 + . . . + a′nbn.(2)

Moreover, if ◦ ∈ {+,−,∧,∨}, then

f ◦ g = (a1 ◦ a′1)b1 + . . . + (an ◦ a′n)bn.

b) If f, g ∈ S(B), then a1, . . . , an, a′1, . . . , a
′
n are integers.

��������
. If suffices to apply the same method as in [11], Lemma 2.5 (the only

distinction is that in [11] the coefficients ai, a
′
i (i ∈ I) were integers). �

We say that (1) and (2) are canonical representations for the pair (f, g).
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Lemma 3.2. For b1, b2 ∈ B, the relation b1 < b2 as defined in C(B) coincides
with the original relation of partial order defined in B.
��������

. This is an easy consequence of 3.1. �
Let X ⊆ S(B) and x0 ∈ S(B). The meaning of the formulas x0 = sup

S(B)

X or

x0 = inf
S(B)

X is clear.

Lemma 3.3. Let ∅ 6= X ⊆ B, x0 ∈ S(B). Assume that x0 = sup
S(B)

X . Then

x0 ∈ B.
��������

. Let x be any element of X . In view of 3.1 there exist canonical
representations for the pair (x0, x)

x0 = a1b1 + . . . + anbn,(1′)

x = a′1b1 + . . . + a′nbn.(2′)

Since x = 1x, in view of the definition of equality in C(B) we must have a′i ∈ {0, 1}
for i = 1, 2, . . . , n. Further, ai > a′i for i = 1, 2, . . . , n. Put I0 = {i ∈ {1, 2, . . . , n} :
a′i = 1}. Then

x =
∑

i∈I0

bi =
∨

i∈I0

bi.

Further, if ai = 0 for some i, then a′i = 0; thus without loss of generality we can
suppose that ai 6= 0 for i = 1, 2, . . . , n. Hence

x0 > b1 + b2 + . . . + bn = b1 ∨ b2 ∨ . . . ∨ bn > x.

Let x1 be another element of X ; consider the canonical representation for the pair
(x0, x1)

x0 = a1
1b

1
1 + . . . + a1

mb1
m,

x1 = (a1
1)

′b1
1 + . . . + (a1

m)′b1
m.

Similarly as above we can suppose that b1
j 6= 0 for j = 1, 2, . . . , m. We have

a1
1b

1
1 + . . . + a1

mb1
m = a1b1 + . . . + anbn;

the definition of equality in C(B) yields

b1
1 + . . . + b1

m = b1 + . . . + bn.

Hence both x and x1 are less than or equal to b1 + . . .+ bn. Therefore x0 = sup
S(B)

X =

b1 + . . . + bn = b1 ∨ . . . ∨ bn ∈ B. �
From the method of the above proof we obtain also the following assertion:
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Lemma 3.3.1. Let ∅ 6= X ⊆ B, x0 ∈ S(B). Assume that x0 is an upper bound
of X and that it does not belong to B. Then there exists b0 ∈ B such that b0 is an
upper bound of X and b0 < x0.

Lemma 3.4. B is an ideal of the lattice (S(B))+.
��������

. Let g ∈ B, f ∈ C(B), 0 6 f 6 g. Consider the canonical representa-
tion (1) and (2) corresponding to the pair (f, g). In view of 1g = g ∈ B we conclude
that a′i ∈ {0, 1} for i = {1, 2, . . . , n}; if a′i = 0, then we can suppose that ai = 0
as well. Hence without loss of generality we can assume that all a′i are equal to 1;
therefore ai ∈ {0, 1} and aibi ∈ B. Hence f = a1b1 ∨ a2b2 ∨ . . . ∨ anbn ∈ B. In view
of 3.3, the proof is complete. �

From 3.3 and 3.4 we obtain

Proposition 3.5. Let B be a generalized Boolean algebra. Then B is a closed
sublattice of S(B).

Let G be a lattice ordered group and let Y be the set of all y ∈ G+ such that the
interval [0, y] of G is a Boolean algebra. In [5], G is defined to be a Specker lattice
ordered group if it is generated as a group by the set Y ; then each element 0 6= g ∈ G

can be expressed in the form

g = a1y1 + . . . + anyn,

where y1, . . . , yn ∈ Y , yi > 0, yj(1) ∧ yi(2) = 0 for distinct i(1), i(2), and ai, . . . , an

are nonzero reals. It can be shown by a simple calculation that if two elements f and
g of G are expressed in this form, then for f + g the formula from Section 2 above
is valid. Therefore the definition from [5] is equivalent (up to isomorphisms) to that
given in Section 2.

Lemma 3.6. Let ∅ 6= X ⊆ S(B), x0 ∈ C(B), x0 = sup
C(B)

X . Then x0 ∈ S(B).

��������
. It is easy to verify (by applying the obvious translation) that it suffices

to prove our assertion for the case when X ⊆ (S(B))+. Thus we can assume that
x > 0 for each x ∈ X . Hence x0 > 0.
We apply an analogous idea as in the proof of 3.5. Let x ∈ X . Assume that (1′)

and (2′) are canonical representations corresponding to the pair (x0, x). Similarly
as in the above proofs we can suppose that ai > 0 for i = 1, 2, . . . , n. The relation
x ∈ S(B) implies that all a′i are integers. We denote by a0

i the greatest integer with
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a0
i 6 ai. Hence a′i 6 a0

i . Put

x0(x) = a0
1b1 + . . . + a0

nbn.

Then x 6 x0.
Let y be another element of X . Consider the canonical representations

x0 = a∗1b
′
1 + . . . + a∗mb′m,(1′′)

y = y′′1 b′1 + . . . + a′′mb′m(2′′)

for the pair (x0, y). Similarly as above we can suppose that all a∗1, . . . , a∗m are nonzero.
Further, by an analogous construction as above we define

x0(y) = a∗01 b′1 + . . . + a∗0m b′m.

In view of the definition of equality in C(B) we have

b1 ∨ . . . ∨ bn = b′1 ∨ . . . ∨ b′m.

Put I = {1, 2, . . . , n}, J = {1, 2, . . . , m}. Let j ∈ J . Then

b′j = b′j ∧ (b1 ∨ b2 ∨ . . . ∨ bn) = (b′j ∧ b1) ∨ . . . ∨ (b′j ∧ bn).

Denote I(j) = {i ∈ I : b′j ∧ bi > 0}. Then I(j) 6= ∅. By using again the definition of
equality in C(B) we obtain that for each i ∈ I(j) we have a∗j = ai, whence a∗0j = a0

i .
Then

a∗0j b′j = a∗0j

( ∨

i∈I(j)

(b′j ∧ bi)
)

= a∗0j

∑

i∈I(j)

(b′j ∧ bi)

6
∑

i∈I(j)

a∗j bi =
∑

i∈I(j)

a0
i bi 6 x0(x).

Since this holds for each j ∈ J , we get

x0(y) =
∑

j∈J

a∗0j b′j =
∨

j∈J

a∗0j b′j 6 x0(x).

Clearly y 6 x0(y), hence y 6 y0(x). Thus x0(x) is an upper bound of X . Because
x0(x) 6 x0 = sup

C(B)

X , we get x0(x) = x0. In view of the definition of x0(x) we have

x0(x) ∈ S(B). �

Similarly as in 3.3.1, the above proof yields also the following assertion:
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Lemma 3.6.1. Let ∅ 6= X ⊆ S(B), x0 ∈ C(B). Assume that x0 is an upper
bound of X and that it does not belong to S(B). Then there exists y0 ∈ S(B) such
that y0 is an upper bound of X and y0 < x0.

Lemma 3.7. Let ∅ 6= X ⊆ S(B), x0 ∈ C(B), x0 = inf
C(B)

X . Then x0 ∈ S(B).
��������

. Similarly as in the proof of 3.6, it suffices to consider the case X ⊆
(S(B))+. Thus x0 > 0. Let x ∈ X . Again, let (1′) and (2′) be canonical represen-
tations of the pair (x0, x). Let I be as above and i ∈ I . Then a′i > ai. We denote
by a0

i the least integer with a0
i > ai. Hence a′i > a0

i . Put

x0(x) = a0
1b1 + . . . + a0

nbn.

Then x0 > x0(x) > x.
Let y ∈ X and let (1′′) and (2′′) be canonical representations of the pair (x0, y).

By means of these representations we define

x0(y) = a∗01 b′1 + . . . + a∗0m b′m

analogously as in the case of x0(x).
For j ∈ J let I(j) be as in the proof of 3.6. Further, for i ∈ I let J(i) = {j ∈

J : bi ∧ b′j > 0}. In the proof of 3.6 we verified that, for each j ∈ J ,

b′j =
∨

i∈I(j)

(b′j ∧ bi);

similarly, for each i ∈ I we have

bi =
∨

j∈J(i)

(bi ∧ b′j).

Next, in view of the definition of the equality in C(B) we infer that whenever
bi ∧ b′j > 0, then ai = a∗j , whence

(3) a0
i = a∗0j .

This yields

x0(x) =
∨

i∈I

a0
i bi =

∨

i∈I

a0
i

∨

j∈J(i)

(bi ∧ b′j) =
∨

i∈I

∨

j∈J(i)

a0
i (bi ∧ b′j),(4)

x0(y) =
∨

j∈J

a∗j b
′
j =

∨

j∈J

a∗j
∨

i∈I(j)

(b′j ∧ bi) =
∨

j∈J

∨

i∈I(j)

a∗j (b
′
j ∧ bi).(5)

We remark that in (4) we take all bi ∧ b′j which are nonzero, and the same situation
is in (5). Hence according to (3) we have x0(y) = x0(x). Thus y > x0(x) for each
y ∈ X . Therefore we must have x0(x) = x0. Since x0(x) ∈ S(B), we get x0 ∈ S(B).

�
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In view of the proof of 3.7 we obtain (analogously as in 3.6.1)

Lemma 3.7.1. Let ∅ 6= X ⊆ S(B), x0 ∈ C(B). Assume that x0 is a lower bound
of X and that it does not belong to S(B). Then there exists y0 ∈ S(B) such that
y0 is a lower bound of X and y0 > x0.

Proposition 3.8. Let B be a generalized Boolean algebra. Then S(B) is a closed
`-subgroup of C(B).
��������

. Since S(B) is a subgroup of the group C(B), the assertion follows
from 3.6 and 3.7. �

In view of 3.5 we have

Corollary 3.9. Let B be a generalized Boolean algebra. Then B‘ is a closed
sublattice of C(B).

4. Regularity

Assume that L1 is a sublattice of a lattice L2. Consider the following condition:

(r1) Whenever x1 ∈ L1, ∅ 6= X ⊆ L1 such that x1 = sup
L1

X , then x1 = sup
L2

X .

Further, let (r2) be the condition dual to (r1). If (r1) and (r2) are valid, then L1 is
said to be a regular sublattice of L2.

Lemma 4.1. Let L1 be a sublattice of a lattice L2. The condition (r1) is implied
by the condition

(r′1) Whenever ∅ 6= X ⊆ L1, x0 ∈ L2, x0 /∈ L1 such that x0 is an upper bound of X ,
then there exists y ∈ L1 such that y is an upper bound of X and y < x0.

��������
. Suppose that (r′1) is satisfied. If (r1) does not hold, then there are

x1 ∈ L1, ∅ 6= X ⊆ L1 such that x1 = sup
L1

X and x1 fails to be the supremum of X

in L2. Hence there exists y1 ∈ L2 such that y1 is an upper bound of X and y1

�
x1.

Put y = y1 ∧ x. Thus y < x1 and y is an upper bound of X . Then we must have
y /∈ L1. In view of (r′1), there is x2 ∈ L1 such that x2 is an upper bound of X and
x2 < y. But then x2 < x1 and hence the relation x1 = sup

L1

X cannot hold; we arrived

at a contradiction. �

Let (r′2) be the condition dual to (r
′
1). Similarly as in 4.1 we have
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Lemma 4.1.1. Let L1 be a sublattice of L2. Then (r2) is implied by (r′2).

Proposition 4.2. Let B be a generalized Boolean algebra. Then B is a regular
sublattice of S(B).
��������

. Put L1 = B, L2 = S(B). In view of 3.3.1 and 4.1, the condition (r1) is
satisfied. Further, according to 3.4 and 4.1.1, the condition (r2) holds. �

Proposition 4.3. Let B be a generalized Boolean algebra. Then S(B) is a regular
sublattice of C(B).
��������

. Put L1 = S(B), L2 = C(B). In view of 3.6.1 and 4.1, we obtain that
the condition (r1) holds. In view of 3.7.1 and 4.1.1, the condition (r2) is valid. �

Corollary 4.4. Let B be a generalized Boolean algebra. Then B is a regular
sublattice of C(B).

5. Higher degrees of distributivity

Let α and β be cardinals; consider the relations (1.1) and (1.2) defining the (α, β)-
distributivity of a lattice.

Proposition 5.1. Let B be a generalized Boolean algebra. Then the following
conditions are equivalent:

(i) B is (α, β)-distributive.
(ii) S(B) is (α, β)-distributive.
��������

. The case B = {0} is trivial; suppose that B 6= {0}. Assume that (i) is
valid. It is easy to verify that S(B) is (α, β)-distributive if and only if all intervals
of S(B) are (α, β)-distributive. If [u, v] is an interval in S(B) and a ∈ S(B), then
[u, v] is (α, β)-distributive if and only if the interval [u+a, v+a] is (α, β)-distributive.
Therefore, without loss of generality, it suffices to deal with intervals of the form [0, v]
with 0 < v ∈ S(B).
Let {xt,s}t∈T, s∈S ⊆ [0, v]; assume that T 6= ∅ 6= S and cardT 6 α, cardS 6 β.

Further, suppose that all joins and meets appearing in (1.1) and (1.2) exist in S(B);
then these elements belong to the interval [0, v]. By way of contradiction, suppose
that S(B) fails to be (α, β)-distributive; e.g., suppose that (1.1) does not hold. Thus

(1) v1 =
∧

t∈T

∨

s∈S

xt,s >
∨

ϕ∈ST

∧

t∈T

xt,ϕ(t) = u1.
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There exists 0 < b ∈ B with b 6 v1 − u1. Denote

(st,s − u1) ∧ b = x′t,s.

From (1) we obtain

(2) 0 < b = (v1 − u1) ∧ b =
∧

t∈T

∨

s∈S

x′t,s >
∨

ϕ∈ST

∧

t∈T

x′t,ϕ(t) = (u1 − u1) ∧ b = 0.

The joins and meets in (2) are taken with respect to S(B); since B is closed in S(B)
(cf. Proposition 3.5), these operations give the same results in B. But then, in view
of (2), B is not (α, β)-distributive, which is a contradiction.
b) Assume that (ii) holds and let {xt,s}t∈T, s∈S ⊆ B, cardT 6 α, cardS 6 β.

Suppose that all the joins and meets appearing in (1.1) and (1.2) exist in B. Then,
since B is a regular sublattice of S(B) (cf. 4.2), these operations give the same results
in S(B). Because S(B) is (α, β)-distributive, (1.1) and (1.2) hold. Hence B is (α, β)-
distributive. �

Proposition 5.2. Let B be a generalized Boolean algebra. Assume that C(B) is
(α, β)-distributive. Then S(B) is (α, β)-distributive as well.
��������

. We can apply analogous argument as in the part b) of the proof of 5.1
with the distinction that instead of 4.2 we use 4.3. �

Proposition 5.3. Let B be a generalized Boolean algebra and let α be an infinite
cardinal.
a) B is α-complete if and only if S(B) is α-complete.
b) If C(B) is α-complete, then S(B) is α-complete.
��������

. Each interval of B is projective to an interval of type [0, b1] in B. Also,
each interval of S(B) is isomorphic to an interval of the form [0, x], x ∈ S(B), and
an analogous assertion is valid for C(B). Hence, when investigating the conditional
completeness of B, S(B) or C(B), it suffices to consider only the intervals of the
above mentioned types.
a1) Assume that S(B) is conditionally α-complete. Since B is a closed sublattice

of S(B), in view of 3.5 we conclude that B is conditionally complete as well.
a2) Suppose that B is α-complete. Let 0 < x ∈ S(B). Then there are mutually

orthogonal elements b1, . . . , bn in B and positive integers a1, . . . , an such that

x = a1b1 + . . . + anbn.

Put a = max{a1, . . . , an}, b = b1 ∨ . . . ∨ bn. Hence [0, x] ⊆ [0, ab]. The interval
[0, b] of B is α-complete. Since B is a regular subset of S(B), the interval [0, b] is
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α-complete also as a subset of S(B) (i.e., if we consider the operations ∧ and ∨ as
defined in S(B)). Now by applying the results of [9] we get that the interval [0, ab]
of S(B) is α-complete as well.
b) Assume that C(B) is conditionally α-complete. By the same method as in a1)

(applying Proposition 3.8) we obtain that S(B) is conditionally α-complete. �

Proposition 5.4. Let B be a generalized Boolean algebra. The following condi-
tions are equivalent:
(i) B is a Boolean algebra.
(ii) S(B) has a strong unit.
(iii) C(B) has a strong unit.
��������

. The equivalence of (i) and (ii) is a consequence of Proposition 3.1 in [5].
For each element x > 0 of C(B) there exists y ∈ S(B) with y > x; from this we
immediately obtain that (ii) and (iii) are equivalent. �

An element 0 < u of a lattice ordered group G is a weak unit if, whenever 0 < g ∈
G, then u ∧ g > 0.

Proposition 5.4.1. Let B 6= {0} be a generalized Boolean algebra and u ∈ C(B).
The following conditions are equivalent:
(i) u is a strong unit of C(B).
(ii) u is a weak unit of C(B).
��������

. The implication (i) ⇒ (ii) is obvious. Assume that (ii) is valid. The
element u can be represented in the form

u = a1b1 + . . . + anbn

with 0 < bi ∈ B, 0 < ai ∈ 
 such that the system {b1, . . . , bn} is orthogonal. Let
0 < b ∈ B. In view of (ii) we have

0 < u ∧ b = (a1b1 + . . . + anbn) ∧ b = (a1b1 ∨ . . . ∨ anbn) ∧ b =
n∨

i=1

(aibi ∧ b).

Hence there is i ∈ {1, 2, . . . , n} such that aibi ∧ b > 0. This yields that bi ∧ b > 0.
Therefore {b1, . . . , bn} is a maximal disjoint system in B.
It is easy to verify that whenever {b′i}i∈I is a maximal disjoint system of a gen-

eralized Boolean algebra B′ such that sup{b′i}i∈I exists in B′, then the element
sup{b′i}i∈I is the greatest element of B′.
Hence, in our case, the element b = b1 ∨ . . . ∨ bn = b1 + . . . + bn is the greatest

element of B. There exists n ∈ N such that nai > 1 for each i = 1, 2, . . . , n. Thus
nu > b; from this we conclude that u is a strong unit of C(B). �
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The analogous result for S(B) was proved in [5, Theorem 3.1] by using a different
idea of the proof.
We remark that Theorem 3.13 of [5] (cf. (CD) in Section 2 above) is a consequence

of 5.1, 5.3, 5.4 and 5.4.1.

Lemma 5.5. Let B be a generalized Boolean algebra and let b0 be an atom of B.
Then the interval [0, b0] in C(B) is a complete chain.
��������

. Let 0 < x be an element of the interval [0, b0] in C(B). Then x can be
represented in the form

x = a1b1 + . . . + anbn,

where b1, . . . , bn are mutually orthogonal strictly positive elements of B and
a1, . . . , an are positive reals. Since x 6 b0, we get bi 6 b0 (i = 1, 2, . . . , n). But b0 is
an atom in B, hence b0 = b1 = . . . = bn. We get n = 1, x = a1b0. Then 0 < a1 6 1.
If y is another element belonging to the interval [0, b0] in C(B), then there is a′1 with
0 < a′1 6 1, y = a′1b0. Thus the elements x and y are comparable. Moreover, for
a2 ∈ 
 , a2b0 belongs to the interval [0, b0] in C(B) iff 0 6 a2 6 1, hence the interval
under consideration is isomorphic to the interval [0, 1] of reals; thus it is a complete
lattice. �

Proposition 5.6. Let B be a generalized Boolean algebra. The following condi-
tions are equivalent:
(i) B is conditionally complete and completely distributive;
(ii) S(B) is complete and completely distributive;
(iii) C(B) is complete and completely distributive.
��������

. (iii) ⇒ (ii): This is a consequence of 5.2 and 5.3.
(ii) ⇒ (i): This follows from 5.1 and 5.3.
(i) ⇒ (iii): Assume that (i) is valid. If suffices to verify that if 0 < x ∈ c(B), then

the interval [0, x] of C(B) is complete and completely distributive.
There exists b ∈ B and a positive integer a such that x 6 ab, hence [0, x] ⊆

[0, ab]. In view of the assumption, the interval [0, b] of B is complete and completely
distributive. Therefore, since this interval is a Boolean algebra, it is atomic and
hence there is a set {bi}i∈I of its atoms such that

(3) b =
∨

i∈I

bi

is valid in B. In view of Proposition 3.9, the relation (3) is valid also in C(B). Thus
in C(B) we have

(4) ab =
∨

i∈I

abi.

235



For each i ∈ I let Xi be the interval [0, bi] of C(B). In view of 5.5, Xi is a complete
chain. Thus according to [8], there exists a linearly ordered direct factor X i of C(B)
such that Xi ⊆ X i. From bi ∈ X i we obtain abi ∈ Xi and so [0, abi] (the interval
in C(B)) is a chain; therefore it is completely distributive.
The system {abi}i∈I is orthogonal. From this and from the infinite distributivity

of C(B) we conclude that the relation (4) implies the existence of an isomorphisms
of [0, ab] onto the direct product

∏
i∈I

[0, abi]. From the complete distributivity of the

direct factors [0, abi] we infer that [0, ab] is completely distributive. Further, since
[0, x] ⊆ [0, ab], we obtain that [0, x] is completely distributive.
In the part a2) of the proof of 5.3 we have already used the fact that from the

completeness of [0, b] it follows that [0, ab] is complete as well. Thus [0, x] is complete.
�
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