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Abstract. A necessary and sufficient condition for the boundedness of a solution of the
third problem for the Laplace equation is given. As an application a similar result is given
for the third problem for the Poisson equation on domains with Lipschitz boundary.
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1. GENERAL OPEN SETS

For z,y € R™, m > 2, denote

(m— 271 A e — " for z £,
hx(y) = {

0 for x =y,

where A is the area of the unit sphere in R". For the finite real Borel measure v
denote

2@ = [ ),

the single layer potential corresponding to v, for each x for which this integral has
sense.

Suppose that G C R™ (m > 2) is an open set with a non-void compact bound-
ary 0G such that 0G = 9(R™ \ G). Fix a nonnegative element A of €'(0G) (= the
Banach space of all finite signed Borel measures with support in G with the total
variation as a norm) and suppose that the single layer potential % A is bounded and
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continuous on JG. It was shown in [26] that % X is bounded and continuous on G
if and only if

lim sup / hy(z)dX(z) = 0.
=0+ yeoa Ja, (y)

According to [12], Lemma 2.18 this is true if there are constants o > m — 2 and
k > 0 such that A(Q,(x)) < kr® for all z € R™ and all r > 0.

Suppose that for M\-a.a. z € OG there is
A (GN Qe (2))

de(z) = lim :

m= e ow)

Here ,(x) is the open ball with the centre x and the diameter r, J#; is the
k-dimensional Hausdorff measure normalized so that 77, is the Lebesgue measure
in R¥.

For a Lebesgue measurable function u on a Borel set M and x with das(z) > 0
define

aplylgiupu(y) = lnf{tv d{zEM; u(z)>t}(x) = 0}7
yeM
apzlJl_)HlmleU(y) = Sup{t; d{zEM; u(z)<t}(x) = 0}

yeM

We speak of the approximate limit of u at = over M in case

aplimsup u(y) = apliminf u(y),
y—x y—x
yeM yeM

and u is said to be approximately continuous at x with respect to M if

aplimu(y) = u(x).
Yy—x

yeM

If h is a harmonic function on G such that

/ \Vh| Ao, < oo
H

for all bounded open subsets H of G we define the weak normal derivative Nh of h
as the distribution

<<p,NGh>:/ V- Vhdi,
G

for ¢ € Z (= the space of all compactly supported infinitely differentiable functions
in R™).
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If H C R™ is an open set with a compact smooth boundary, u € €*(clH) is a

harmonic function on H and

0

i + fu=g¢g on OH

on
where f,g € €(0H) (= the space of all bounded continuous functions on 0H
equipped with the maximum norm) and n is the exterior unit normal of H, then

for ¢ € 2 we have

(1) / @gd%mflz/ V¢~Vud3fm+/ ofuddt, 1.
OH H OH

(Here cl H denotes the closure of H.) If we denote by J# the restriction of 7,1
to OH then (1) has the form

(2) Ny + fustt = g,

The formula (2) motivates our definition of the solution of the third problem for
the Laplace equation

(3) Auy=0 in G,
N+ ul = p,

where p € €' (0G) (compare [12], [25]).

Let pu € €'(0G). We say that a function u on clG is a weak solution of the third
problem for the Laplace equation (3) if u € Li(\), u is harmonic on G, |Vu| is
integrable over all bounded open subsets of G, u(x) is the approzimmative limit of u
over G for M-a.a. x € OG, and N%u 4+ uX = p. (If A = 0 we say that u is a weak
solution of the Neumann problem for the Laplace equation.)

Notation. Let V C R™ be an open set. For p > 1 denote by W1P(V) the
collection of all functions f € L,(V) the distributional gradient of which belongs to
[L,(V)]™. By W,LP(V) denote the collection of all functions f such that f € Wh?(U)
for each bounded open set U with clU C V.

Suppose that G has a locally Lipschitz boundary and u € W1P(G), 1 < p < co. It
is well-known that we can even suppose that u € W1P(R™) (see [30], Remark 2.5.2).
We can choose such a representation of u that u is approximately continuous at
Hn—1-a.a. points of R™ (see [30], Theorem 3.3.3, Theorem 2.6.16 and Remark 3.3.5).
The restriction of u to 9G is the trace of u (see [30], p. 190). If J# denotes the
restriction of J4,_1 to OG, then u € L,() (see [22], Theorem 1.2). If f is a
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nonnegative bounded Baire function on 0G and g € L, (%), then u is called a weak
solution in W?(G) of the problem Au = 0 in G, du/dn + fu = g on G if

/ vg d I, :/ Vv -Vudig, + foudd, 4
G G G

for each v € W19(G), where ¢ = p/(p — 1) (compare [22], Example 2.12). Put
A= fH, p=gs. Using Holder’s inequality we see that |Vu| is integrable over all
bounded open subsets of G. Since u is approximately continuous at .77, _1-a.a. points
of R™ and A is absolutely continuous with respect to J¢,_1, we obtain that u(x) is
the approximative limit of u at x over G for A-a.a. x € 9G. If u is a weak solution
in WHP(G) of the problem Au = 0 in G, Ou/On + fu = g on OG, then u is a weak
solution of (3) because 2 C WH4(G). Since Z is a dense subset of WH4(G), u is a
weak solution of the third problem for the Laplace equation (3) if and only if u is a
weak solution in W1P(G) of the problem Au =0 in G, du/0n + fu = g on 9G.

It is usual to look for a solution u in the form of the single layer potential Z v,
where v € ¢'(0G). It was shown in [17] that % v has all the properties of the
solution of the third problem with some boundary condition, but our “continuity”
on the boundary is replaced by the fine continuity at A-a.a. points of the boundary. If
% v is fine-continuous in x € OG with respect to cl G then u(z) is the approximative
limit of u at = over G (see [11], Theorem 10.15, Corollary 10.5). If % v is a solution of
the third problem in the sense of [17] then it is a weak solution of the third problem.

The operator 7: v+ N9% v+ (% v))\ is a bounded linear operator on ¢”(9G) if
and only if V¢ < 0o, where
“(

VE = sup v%(x),

r€0G

vG(x) = sup{/ Vo -Vhy,di,; 0 € 2, ol <1,sptp C R™ — {x}}
el

(see [12]). There are more geometrical characterizations of v () in [12] which ensure

k
that V¢ < oo for G convex or for G with G C |J L;, where L; are (m — 1)-
i=1
dimensional Ljapunov surfaces i.e. of class C1+2.

If z € R™ and € is a unit vector such that the symmetric difference of G and
the half-space {x € R™; (z — z) - § < 0} has m-dimensional density zero at z then
n%(z) = 0 is termed the exterior normal of G at z in Federer’s sense. If there is no
exterior normal of G at z in this sense, we denote by n%(z) the zero vector in R™.
The set {y € R™; [n%(y)| > 0} is called the reduced boundary of G and will be
denoted by aG.
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If G has a finite perimeter (which is fulfilled if VC < 00) then ,_1(0G) < oo
and

O (z) = / In () - Vo ()| dHn1 (1)
oG

for each 2 € R™. Throughout the paper we shall assume that V& < oo.

If L is a bounded linear operator on the Banach space X we denote by ||L||ess
the essential norm of L, i.e. the distance of L from the space of all compact linear
operators on X. The essential spectral radius of L is defined by

FessL = Hm (|| L™ |less) ™.

Theorem ([17]). Let ress(t — 3I) < i, where I is the identity operator, ju €
%' (0G). Then there is a harmonic function v on G, which is a weak solution of the
third problem

NGu—i—u)\:u,

if and only if u € €(0G) (= the space of such v € €'(0G) that v(0H) = 0 for each
bounded component H of clG for which A(OH) = 0). Moreover, if u € 63(0G) then

there is a solution of this problem in the form of the single layer potential % v, where
v € E'(0G).

Remark 1. It is well-known that the condition regs (7‘ — %I ) < % is fulfilled
for sets with a smooth boundary (of class C'*®) (see [13]) and for convex sets
(see [23]). R.S. Angell, R.E. Kleinman, J. Kral and W.L. Wendland proved that
rectangular domains (i.e. formed from rectangular parallelepipeds) in R* have this
property (see [1], [14]). A. Rathsfeld showed in [27], [28] that polyhedral cones in R3
have this property. (By a polyhedral cone in R we mean an open set  whose
boundary is locally a hypersurface (i.e. every point of 92 has a neighbourhood in 92
which is homeomorphic to R?) and 952 is formed by a finite number of plane angles.
By a polyhedral open set with bounded boundary in R? we mean an open set €
whose boundary is locally a hypersurface and 912 is formed by a finite number of
polygons). N.V. Grachev and V.G. Maz’ya obtained independently an analogous
result for polyhedral open sets with bounded boundary in R* (see [9]). (Let us note
that there is a polyhedral set in R* which does not have a locally Lipschitz boundary:.)
In [16] it was shown that the condition ress(7 — 31) < 3 has a local character. As
a conclusion we obtain that this condition is fullfiled for G C R? such that for each
z € OG there are r(x) > 0, a domain D, which is polyhedral or smooth or convex
or a complement of a convex domain and a diffeomorphism ¢, : % (z;7(z)) — R®
of class C'*®, where a > 0, such that v, (G N % (x;7(2))) = Dy N e (% (x;7(2))).
V. G. Maz’ya and N. V. Grachev proved this condition for several types of sets with
“piecewise-smooth” boundary in the general Euclidean space (see [7], [8], [10]).
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In the rest of the paper we will suppose that ress (7 — %I) < % Since T— N¢% is a
compact operator (see [17], Remark 5), this condition is equivalent to the condition
Toss(NCU — %I) < % Denote by 47 the restriction of %, 1 onto 0G. Then
H(R™) < oo (see [18], Lemma 2). If z € OG then dg(z) exists and is strictly
positive (see [17], Lemma 14).

Notation. Let us denote by %, (9G) the set of all p € €' (0G) for which % p is
bounded on R™ \ 0G.

Note that €, (0G) is the set of all u € €’(0G) for which there is a polar set M
such that % u(z) is meaningful and bounded on R™ \ M, because 7%, (0G) = 0
by [17], Corollary 1 and therefore R™ \ G is finely dense in R™ (see [2], Chap. VII,
§§2, 6, [15], Theorem 5.11, Theorem 5.10) and % pu = # p+t — % p~ is finite and
fine-continuous outside of a polar set.

Remark 2. Let m—1 <p < oo, f € L,(4). Then p = fH# € 6,(0G) (see [17],
Remark 6).

Theorem 1. Let v, € €'(0G), N %v + (#v)\ = u. Then the following
assertions are equivalent:
a) v € %, (0G).
b) u € € (0G).
) % v is bounded on G.
) % u is bounded on G.
) There are a polar set K and a bounded function f on OG such that Z v = f on
0G\ K.
f) There are a polar set K and a bounded function f on OG such that % u = f
on O0G\ K.

C

oL

e

Proof. a)= c) Since Zv is bounded in R™ \ JG it is bounded in G.

¢) = e) Denote K = {z € 0G; % |v|(x) = oo}. Then K is polar and % v(z) is
the fine limit of v for each x € 9G \ K. Put f(x) = Z v(x) for each x € 0G \ K,
f(z) =0 for 2 € K. Since the density of G is positive at each point of G by [17],
Corollary 1, every fine neighbourhood of « € G intersects G (see [2], Chap. VII, § 2,
§6, [15], Theorem 5.11, Theorem 5.10), and % v is bounded on G, f is a bounded
function.

e) = a) Fix R > 0 such that 0G C {z; |z| < R}. Put H = {z € G; |z| < R},
M ={x € R™ \ clG; |z| < R}. Using [19], Lemma 1 and [19], Lemma 2 for H and
M we get

sup |Zv(z)| < sup [f(z)], sup [Zv(z)| < sup [f(z)].
reH r€EOH xeM x€eOM
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Since
‘zl‘iinoo Uv(z) =0,
we get for R — oo
sup % v(z)| < sup [f(x)] < oo.
zER™\G z€0G

b) & d) < f) We have proved a) < ¢) < e). Since we can take arbitrary v we
obtain b) & d) < f).

a) = b) See [17], Lemma 4.

b) = a) Let Z denote the Banach space of all bounded Baire functions defined
on JG with the usual supremum norm. The symbol %’ stands for the dual space of A.

According to [24], Proposition 8, [13] we may define on % continuous operators V,
W by

VIy) =% () (y),
W) = daw)fw) + 5 [ -

According to [24], Proposition 8 the operator 7 is the restiction of (W + V)’ (i.e. the
adjoint operator of W + V') onto ¢’ (0G). Since b) = f), there is Zzu € & and a
polar set K such that %y = %z in OG \ K. We show that Zgu € (W + V)(A).
Let 0 € Ker(W + V). Since dg(x) > 0 for each € 0G, there exists a continuous
function %.0 on R™ coinciding with % o on R™ \ 9G (see [16], Theorem 1.11, [17],
Lemma 13). According to [19], Lemma 3 the set G has finitely many components
Gi,...,Gy and clGj; NclGy, = 0 for j # k. According to [18], Lemma 2 and [17],
Lemma 11 there are ci,...,¢, € R such that %0 = ¢j on clGj for j = 1,...,n
and ¢; = 0 for each j such that A(0G;) # 0. Since %o (z) — 0 as |z| — oo, we
have ¢; = 0 for G; unbounded. Since u, o have a finite energy (see [18], Lemma 2,
[24], Proposition 23, [15], Chapter I, Theorem 1.20), o, 1 do not charge polar sets
(see [15], Theorem 2.1, p. 222). Therefore

%@udoz/ %udaz/ %adu:/ %Codu:chu(an).
oG oG oG

Gle =

Fix j such that c¢; # 0. Then G; is bounded. Choose ¢ € & such that ¢ =1 on G
and ¢ =0 on G\ G;. Since A\(0G;) = 0 we have

w(0G;) = (Tv, @) :/ Vo -Vuvdi, =0.
G
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Since ress(W/ 4+ V' — %I) = Tegs(T— %I) < % by [16], Lemma 1.5, the operator W'+V’
is Fredholm. Since (o, Zzu) = 0, we conclude that Zgp € (W + V)(%) by [29],
Chapter VII, Theorem 3.1.

Fix a > VE 4+ 1 +supZ\. Put

T—al\kpu
pn (T
o o

According to [17], Theorem 2 the series

o
Vo = Z Mk
k=0

converges and N¢% vy + (% v9)\ = p. According to [26], Lemma 4 the measures
pn € €L(0G) and Uguy, = [—a *(W + V) + [1*a ' Ugp.

Since {8 €C; [B—1| < i} c{BeC; |B—L|<a}, res(r—al) < a. Moreover,
if 8 € C is an eigenvalue of 7, |8 — a| 2 a then 8 > 0 by [17], Lemma 4, Lemma 11.
Since ||7|| < « by [17], Lemma 2, there is no eigenvalue 5 # 0 of 7 such that
| — 8| = a. According to [16], Lemma 1.2, Lemma 1.5 we have ress(W +V —al) =
Tess(W + V' —al) = regs (1 — al) < a. If B is an eigenvalue of W + V then f is an
eigenvalue of 7/, because W + V is the restriction of 7/ to B. If |a — 3| > « then
(3 is an eigenvalue of 7, because 7 — SI, 7/ — I are Fredholm operators with index
zero. Therefore § = 0. If 0 is not an eigenvalue of W +V then the spectral radius of
W 4V — ol is smaller than « (i.e. the spectral radius of a=!(W + V) — I is smaller
than 1) and there are constants M > 1, ¢ € (0,1) such that

(4) [ "W +V) =1 f|| , < Md"||f || 5

for each f € % and nonnegative integer k. If 0 is an eigenvalue of W + V' then
there are constants M > 1, ¢ € (0,1) such that (4) holds for each f € (W + V)(£)
(see [18], Proposition 3). Since Zgu € (W + V)(B) and Ugur = [—a 1 (W +
V) + 1fa= Uz, (4) gives that > | %z % < co. Since moreover Y ||ux|| < oo,
[26], Lemma 3 yields that vy € €, (0G). Since 7(v — 1) = 0, there is a continuous
function %.(v —vp) on R™ coinciding with % (v —vp) on R™ \ 9G (see [17], Lemma 4,
Lemma 5, Lemma 10). Therefore v € €, (0G). O

Lemma 1. Let G be bounded, 1 € ¢'(0G), u € WY1 (R™) be a weak solution of
the Neumann problem for the Laplace equation with the boundary condition p. Then
there is the approximate limit of u at J¢;,_1-a.a. points of 0G. Suppose moreover
that

u(z) = aplim u(y)

y—x
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at any point © € OG where the right-hand side is defined. Then u € L1 () and for
eachr € G

(5) u(x) = % p(x) — Pula),

where

%:/ u(y)n®(y) - Vha(y) d 1 (y)
oG

is the double layer potential corresponding to the density u.

Proof. According to [4] there is a set E C OG with zero functional capacity
of degree 1 such that the approximate limit of u exists at each point of G \ E.
Since 4%,-1(E) = 0 by [5], Theorem 4.3, the approximate limit of u exists at ¢, _1-
a.a. points of 0G.

Define u*(z) = max(u(z),0), v~ () = max(—u(z),0). Acoording to [30], Corol-
lary 2.1.8 the functions u™,u~ € WHL(R™). Since there is a positive constant M
such that 2 (Q,.(z)) < Mr™~1! for each z € R™, r > 0 (see [12], Corollary 2.17
and [17], Corollary 1), [30], Theorem 5.12.4 yields that u*,u~ € L;(#). Since
u(y) =ut(y) —u (y) for #-a.a. y (see [30], Theorem 5.9.6) we have u € Li(H#).

Fix z € G. Choose a sequence G; of open sets with C*° boundary such that
clG; € Gj+1 C G, x € Gy and |JG; = G. Fix r > 0 such that Qq.(z) C Gi.
Choose infinitely differentiable function ¢ such that ¢» = 0 on Q,.(z) and ¥ = 1 on
R™ \ Qo (z). According to Green’s identity

u(xr) = lim [/BGJ- he(y) 822{;) dt—1(y) _/

j—oo le?

u(y)n(y) - Vha(y) djfm—l(y):|

j—o0

Jim [ / Vu(y) - V(he () (y)) A (y)
Gj

- [ V) Ihaw i)

J

- /G Va(y) - V(he(4)6(y)) dHon(y) — / V(um)b(y)) - Vha(y) don(y)

G
— Uu(a) - /G Vu)bm)) - Vha(y) dn(y).

According to [30], Theorem 2.3.2 there is a sequence of infinitely differentiable
functions u,, € WH(R™) such that u, — u in WH1(R™). According to [12], §2

u(z) = % p(x) — lim Vun(y) - Vhe(y) ddt, (y) = % p(z) — lim Quy(z).

n—oo G n—oo

325



For a Borel set M C R™ put

v (M) = / max(0, 16 (y) - Vha () d 1 (3),
OGNM

va(M) = / min(0,n¢ (y) - Vha(y)) d o1 (y).
OGNM

According to [30], Theorem 5.12.4 there is a positive constant K such that

’/(uz/J ) dy,

< K|uy) — un|wrrwmy,
for j = 1,2. Since u,, — utp in WH(R™), we have

lim Qu,(z) = im [ u,dvy + lim [ w,dvs = /udm + /udug = Yu(x).

n—oo n—oo n—oo

O

Lemma 2. Let G be unbounded, ju € €' (0G), u € W, (R™) be a weak solution
of the Neumann problem for the Laplace equation with the boundary condition .
Suppose moreover that

u(z) = aplim u(y)
Yy—x
at any point © € 0G where the right-hand side is defined. Then u € L,(5¢). If
|u(z)| = O(1) as |x| — oo then there exists

u(o0) = ‘zl‘iinoo u(x),
and for eachx € G
(6) u(z) = u(oc0) + % p(z) — Qu(z).

Proof. Since u(y) = o(|y|) as |y| — oo, [20], Lemma 3 yields that there exists

u(oo) = lim u(y).

ly|—o0
Choose r > 0 such that 0G C Q,(z). Put G, = G N Q. (z),

8
w00 =g+ [ SRt
MnoG, On
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for each Borel set M. Then u is a weak solution of the Neumann problem for the
Laplace equation on G, with the boundary condition p,.. According to Lemma 1

() = U () /8 ulw)nly) - Vhel) 41 0)

— 2, 1 du 2—m
= U p(z) — Du(zx) + Am—2) /{mr(z) o dst, 1
+ L [u(y) — w(oo)]r'=™ dst, 1 + L / u(o0)r =™ dst, ;.
A Jog, () A89 o

Since |u(y) — u(oo)| = o(1) as |y| — oo, [20], Lemma 3 yields that du(y)/On =
O(Jy|*=™). For r — oo we get

u(z) = % p(x) — Du(z) + u(oo).

O

Definition. Let H C R™ be an open set, 1 < p < co. We say that H is WhP-
extendible if there is a bounded linear operator P: W1P(H) — W1P(R™) such that
Pf = fon H for each f € WYP(H).

Remark that G is W' l-extendible if OG is locally a graph of a Lipschitz function.
(See [30], Remark 2.5.2.)

Theorem 2. Let u € 64(0G). Then the following assertions are equivalent:

a) p € 6 (0G).

b) There is u € WL (R™), bounded in G, which is a weak solution of the third
problem for the Laplace equation (3).

If G is Whl-extendible then these assertions are equivalent to

c) There is a bounded function on G which is a weak solution of the third problem

for the Laplace equation (3).

Proof. a)= D) According to Theorem 1 there is v € %, (9G) such that Z v is
a solution of (3). But Zv € Wli’cl(lRm) and bounded on G.

b) = a) Let u € W, (R™), bounded in G, be a weak solution of the third problem
for the Laplace equation (3). Put i = pr — uX\. Then u is a weak solution of the
Neumann problem for the Laplace equation on G with the boundary condition f.
Fix a constant K such that |u| < K in G. Put v(z) = max(min(K, u(x)), —K) for
x € R™\ 0G,

v(x) = aplimo(y) for x € JG.

Yy—r
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Then v € W,2' (R™) (see [30], Corollary 2.1.8). According to Lemma 1 and Lemma 2

loc
there is a constant ¢ such that

U ji(x) = v(z) + Dv(z) +c
for each x € G. Since
1
|% j(z)| < K + Kv¥(2) + |e| < K+K(VG + 5) + el

for z € G by [12], Theorem 2.16, we have i € ¢)/(0G) by Theorem 1. Since |u| < K
A-a.e., ut A\, u” X € €/(0G) by [25], Proposition 6 and = i+utA—u~" )\ € €,(9G).

¢) = b) Let u be a weak solution of the third problem for the Laplace equation (3),
bounded in G. Then up € W(G) for each ¢ € 2. Since G is W' l-extendible we
can extend u to R™ so that u € Wlicl([Rm) O

Theorem 3. Let G be unbounded, A(OH) > 0 for the unbounded component H
of G. Put

g =3 ()5

where

1
a> —(VG—l—l—i— sup %A(m))
2 z€dd

Then u = (% vy — 1) € W21 (R™) is a bounded weak solution of the third problem
for the Laplace equation with zero boundary condition, which is nonconstant on H.

Proof. According to [17], Theorem 2 the function % vy is a weak solution of
the third problem for the Laplace equation with the boundary condition A. Since
X € €,(0G), the function % vy is bounded by Theorem 1. Therefore u is a bounded
weak solution of the third problem for the Laplace equation with zero boundary
condition. Suppose now that u is constant on H. Since u(z) — —1 as |z] — oo we
have u = —1 on H. Since clH Ncl(G \ H) = 0 by [19], Lemma 3 we can choose
v € P such that o =0on G\ H and ¢ =1 on 0H. Then

0:/ V@-Vudjfer/ pud) = —\(0H) < 0,
G oG

what is a contradiction. O

2. LIPSCHITZ DOMAINS

In the rest of the paper we will suppose that G is locally a graph of a Lipschitz

function.
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Theorem 4. Denote by G1,. .., Gy all components of G. Let € 6[(0G). Then
there is a bounded weak solution of the Neumann problem for the Laplace equation
with the boundary condition p if and only if i € 6,)(0G). The general form of this

solution is

k
(8) u:%l/JchjXGj,
j=1
where
(9) v=p+2Yy (I-2N°%)(I-N°U)p,
§=0

Xg, are characteristic functions of G, and c; are arbitrary constants.

Proof. According to Theorem 2 there is a bounded function on G which is a
weak solution of the Neumann problem for the Laplace equation with the boundary
condition y if and only if € 6, (0G).

Suppose now that 4 € 6,(0G). According to Theorem 1 and [16], Theorem 1 the
function u given by (8) is a bounded weak solution of the Neumann problem for the
Laplace equation with the boundary condition s, which is in W11 (R™). Let v be a
bounded weak solution of the Neumann problem for the Laplace equation with the
boundary condition p. Since v € WHI(H) for each bounded open subset H of G and
G is WH! extendible, we can suppose that v € Wlicl([Rm) The function w = v— % v
is a bounded weak solution of the Neumann problem for the Laplace equation with
zero boundary condition. Put w = w for G bounded and w = w — w(oo) for G
unbounded (see Lemma 2). According to Lemma 1 and Lemma 2 we have & = — 2w
in G. Put

W f(z) = da(z) f(z) + . FnC(y) - Vhe(y) dsn_1(y),

WHNG f(@) = dpmc (@) f (@) = | Fy)n® W) - Vha(y) don 1 (y)

f
oG

for x € G and f € 9, the space of all bounded Baire functions on dG. Since

W = — 2 in G we obtain w = WR™\C% on G (see [21], Lemma 3) and therefore
WCEb = 0. Let Gy,...,G, be all bounded components of G. Then WGXBGj =0
for j = 1,...,n (see [16], Lemma 1.13). (Here xsc, denotes the characteristic

function of dG,.) According to [16], Lemma 1.5 the operator W is a bounded
Fredholm operator with index 0 on . Since N®% is the restriction of the adjoint
operator of WY to €¢’(0G) (see [24], Proposition 8) and the kernel of the adjoint
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operator of W¢ is a subset of ¢’(0G) (see [16], Theorem 1.12), the dimension of
the kernel of W& is equal to the dimension of the kernel of N¢%. Since N¢%
is a Fredholm operator with index 0, the dimension of the kernel of W& is equal
to the codimension of the range of N% . Since the codimension of the range of
N9 is equal to n by [16], Theorem 1.14, the functions xsc;, - - -, Xoqg, form a basis
of the kernel of W&. Since W& = 0 and @ = —Z21w in G, there are constants
ai,...,an such that w = —a1%xsa, — ... — anPxsc, in G. Since xg, = —DXxoc;
for j=1,...,n by Lemma 1 and Lemma 2, we obtain @ = ai1xg, +...anXa, in G.

d

Theorem 5. Denote by G1,...,Gy all components of G such that A\(0G;) = 0.
Let p € 64(0G). Then there is a bounded weak solution of the third problem for the
Laplace equation (3) if and only if p € €, (0G).

a) If G\ (G1 U...UGYy) is bounded then the general form of this solution is

k
(10) u= %V+chxgj,
j=1
where
= T—al\"u
11 = (* ) N
(11) v 1; —) -
1
(12) o> —(VG + 14 sup %A(x)),
2 2€da

and c; are arbitrary constants.
b) If G\ (G1 U...UGYy) is unbounded then the general form of this solution is

k
(13) u:%u+chXGj+ck+1(0Z/yofl),

j=1

where v is given by (11), vy is given by (7) and c¢; are arbitrary constants; (10) is
a general form of a bounded weak solution v of the third problem for the Laplace
equation with the boundary condition y for which v(x) — 0 as |z| — oco.

Proof. Since G is Whl-extendible by [30], Remark 2.5.2, there is a bounded
function on G which is a weak solution of the third problem for the Laplace equa-
tion (3) if and only if 4 € € (0G). (See Theorem 2.)

Suppose now that u € 6,(9G). According to Theorem 1, Theorem 3 and [17],
Theorem 2 the function u given by (10) or (13) is a bounded weak solution of the third
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problem for the Laplace equation with the boundary condition u. If G\ (G1U...UGy)
is unbounded and w is given by (10) then u(z) — 0 as |z| — oco.

Let v be a bounded weak solution of the third problem for the Laplace equation
with the boundary condition . Then w = v — Zv is a bounded weak solution of
the third problem for the Laplace equation with zero boundary condition. Then
w is a bounded weak solution of the Neumann problem for the Laplace equation
with the boundary condition —wA. Let Gi,...,G, be all components of G. Ac-
cording to Theorem 4 there are 7 € %’(0G) and constants ci,...,c, such that
w= UV + cixoc, + ---+ cnXoa, - Let f be the characteristic function of the un-
bounded component of G for G unbounded; f = 0 for G bounded. Since for each
bounded component H of G there is vy € €'(0G) such that vy = 1 on H and
%vg = 0on G\ H (see [20], Lemma 1), there are v/ € ¢’(0G) and a constant a
such that w = Zv' +af. If G\ (G1 U...UG}) is bounded then v’ = w — af is
a weak solution of the third problem for the Laplace equation with zero boundary
condition. Then Zv' = a1 xo¢, + - - -+ arXac, for some constants aq,...,ax by [16],
Theorem 1.12. Suppose now that G \ (G1 U ... U Gj) is unbounded. Theorem 3
yields that @ = w + a(Z vy — 1) is a bounded weak solution of the third boundary
problem with zero boundary condition and w(z) — 0 as |z| — co. As was shown
there are v € €' (0G) and a constant b such that @ = Zv” + bf. Since w(z) — 0
as |z| — oo we obtain b = 0. Therefore Zv" = aixag, + - .. + arxsq, for some
constants ay, ..., ax by [16], Theorem 1.12. O

Lemma 3. Let u be a bounded weak solution of the third problem for the
Laplace equation with the boundary condition j1 € €'(0G). Then |Vu| € Lao(G). If
G is bounded then u € WY%(G). If G is unbounded and m > 4 then u € WH%(G)
if and only if u(z) — 0 as |z| — oo. Let now m < 4 and H be an unbounded
component of G. Denote by A the restriction of A to dG. If % X is constant on OH
(for example if X = 0) then u € W2(G) if and only if u(x) — 0 as |z| — co and
w(0H) = 0.

Proof. According to Theorem 5 the function v has the form (10) or (13). Since
v,y € 6,(0G) by Theorem 1 and Theorem 3, |VZv/|,|V% vy| € L2(R™) by [26],
Proposition 23. Therefore |Vu| € La(G). If G is bounded then u € W12(G), because
u is bounded. If G is unbounded and m > 4 then u € Lo(G) if and only if u(z) — 0
as |z| — oo by [20], Lemma 3. Suppose now that H is an unbounded component
of G, m < 4 and % ) is equal to a constant ¢ on dH. If u € W12(@) then u(z) — 0 as
|z| — oo by [20], Lemma 3. Suppose now that u(x) — 0 as |z| — co. Denote by /i the
restriction of y to H. Then Ny + U\ = fi. Since VH < 00, ress(NH % — %I) < %
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(see [16], Theorem 2.3), Theorem 5 yields that u = % U on H, where

=3 ()

n=0

Q Itl

u € WH2(H) if and only if 7(R™) = 0, because Z v(x) = (R™)|z|>~™ + O(|z|}=™)
for |x| — oo. If D(OH) = 0 then Fubini’s theorem and [18], Lemma 9 yield p(0H) =
fi(0H) = TH(0H) = NEYp(0H) + [#vd\ = 0+ [ % Ndi = c#(DH) = 0. On
the other hand, if u(0H) = 0 we get by induction (I — a~17H)"i(0H) = 0 and
therefore 7(0H) = a1 Y (I — o 17H)"1(OH) = 0. O

Example 1. Let G = R3 \ c1Q4([2,0,0]) \ c1Q1([—2,0,0]). For fixed constants
ce (1/27 1>a a € (0700) put u(x) = 1/|"17 - [23070” - C/“T - [727070”7

/\(M):/ o/ |u| 4,
891 ([~2,0,0))NM

(M) = O 4.t — sty (M 1 094 ([~2,0,0)))
acnm On
for any Borel set M. Then u is a weak bounded solution of the third problem for
the Laplace equation with the boundary condition u. If ¢ < 1 and a = 1 — ¢ then
u g WH2(GQ) but p(0G) = #(21(0))[1 —c—(1—¢)] = 0. If c =1 then u € W12(G)
but p(0G) = —a3(21(0)) # 0.

Definition. Let f € Lo () be a nonnegative function. Let L be a bounded
linear functional on W12(G) such that L(¢) = 0 for each p € 2(G) = {p €
9; sptp C G}. We say that u € W12(G) is a weak solution in W12(G) of the third
problem

(14) Au=0 on G,
ou

— +uf=L on 0G,
on

/Vu'Vvdjfer/ ufvds = L(v)
G oG

for each v € W12(G).

Remark 3. Let u be a weak solution in W12(GQ) of (14). If there is u € ¢’(G)
such that L(p) = [¢dp for each ¢ € 2 then u is a weak solution of (3) with
A= fIH.
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Lemma 4. Letp € €)(0G). Then there is a unique bounded linear functional L,
on WH2(G) such that

Lu(p) = / pdp
oG
for each p € 9.

Proof. Let Gi,...,G, are all components of G. Fix real numbers cq,...,c,
such that p(0G;) — ¢;(0G;) =0 for j =1,...,n. Put

AM) = p—

ijf(M n 8GJ)

1

n

for each Borel set M. Since i € €} (0G) by [17], Remark 6, there is v € €, (9G) such
that N“% v = i by Theorem 5 and Theorem 1. Fix 1) € £ such that ¢» = 1 in a
neighbourhood of 9G. If p € 2 then Holder’s inequality yields

/ odji = wgodNG%u:/V(wgo)-V%udjfm
oG oG G

1/2 1/2
< Sup|1/1|(/ |w|2dyfm) (/ |V%u|2djfm)
GNspt ¥ GnNspt ¢

1/2 1/2
+ sup [V (/ IsDIQd%”m) (/ |V%u|2djfm)
GNspt ¥ Gnspt ¥

< Cllellwr2 @y,

where

1/2
C = 2(sup |¢| + sup |V|) (/ |V v|? dji”m) < 00
G

Nspt ¥
by Lemma 3. According to the Hahn-Banach theorem there is a bounded linear
functional Lz on W12(G) such that

Lu(p) = / pdp
oG
for each p € 2. If we define
L,(v) = La(v)+ ch/ vds?
j=1 G

for v € WH2(QG), then L, is a bounded linear operator on W'?(G) satisfying L, () =
J ¢dp for each ¢ € 2. Since Z is dense in W2(G) by [30], Remark 2.5.2 and [30],
Lemma 2.1.3, the functional L, is unique. (I
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Lemma 5. Let f € Lo(J) be a nonnegative function, \ = f#. Let p €
€5(0G). Ifu,v € W12(G) are weak solutions of (3) then w = u—w is locally constant
in G and w = 0 on the unbounded component of G and on each component H of G
for which A\(OH) > 0.

Proof. Fix a sequence ¢, € Z such that ¢, — w in WH2(G) (see [30],
Remark 2.5.2 and [30], Lemma 2.1.3). Then

0= lim [/ Vw.wnd%m+/ wfcpndjf} :/ |Vw|2d%”m+/ w? f dA.
G oG G oG

n—oo

Since [ |Vw|*ds, > 0, [ fw?d > 0, we have [|Vw|*d#, = 0 and therefore
w is locally constant on (. Since f fw?ds# = 0 we obtain that w = 0 on each
component H of G for which A(0H) > 0. Since w € W12(G) and w is constant on
the unbounded component of G, w = 0 on this component. O

Theorem 6. Let f € Lo () be a nonnegative function, A\ = f3. Let u €
€5(0G) N €,(0G), and let L be a bounded linear functional on W'2(G) such that
L(¢) = [ pdu for each ¢ € 2. If G is unbounded and m < 4 suppose moreover that
w(OH) = 0 and f = 0 on OH, where H is the unbounded component of G. Then
there is a bounded weak solution u in W12(G) of the third problem for the Laplace
equation (14). If Gu,...,G} are all components of G such that A(0G;) = 0, then
the general solution of this problem has the form (10), where v is given by (11) and
¢; =0 for G; unbounded and c; is an arbitrary constant for G; bounded.

Proof. Let v be given by (11). Then Z v is a bounded weak solution of (3) by
Theorem 5. According to Lemma 3 we have v € W12(Q). For fixed v € WH%(G)
choose ¢,, € 2 such that ¢,, — v in W2(G) as n — oo (see [30], Remark 2.5.2 and
[30], Lemma 2.1.3). Then

L(v)= lim [ ¢,du= lim {/ Ve - V%vdit, —l—/ wnf%ud%]

G

:/VU-V%Vd%”er/ vfUvdiA.
G aG

U v is a weak solution in W2(G) of the third problem (14). If u has the form (10),
where c¢; = 0 for G; unbounded, then u is a weak solution of this third problem.

Let u € W12(G) be a weak solution in WH2(G) of the third problem (14).
Lemma 5 yields that u has the form (10) with ¢; = 0 for G; unbounded. O
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Theorem 7. Let f € Lo (5) be a nonnegative function. Let L be a bounded
linear functional on W?(G) and p € €' (0G) be such that L(y) = [ ¢ du for each
0 € 9. Ifu e WH2(Q) is a weak solution in W'2(G) of the third problem for the
Laplace equation (14) then u is bounded in G if and only if p € €, (0G).

Proof. Put A = fs#. Since N9 + u\ = p, [17], Theorem 1 yields that
W € 65(0G). If the function u is bounded then p € % (0G) by Theorem 2, because
G is Whl-extendible by [30], Remark 2.5.2. Suppose now that p € ¢/(9G). If G
is bounded put G = G. If G is unbounded fix R > 0 such that G C Qr(0) and put
G =GN0, fi = p+ Ou/on(H_1/00R(0)), f =0 on NE(0). Since VE < oo
we have VG < oo. Since Tess(NCU — %I) < % and (N — %I) is compact for
each bounded open set H with a smooth boundary (see [12], Theorem 4.1, Propo-
sition 2.20, [29], Theorem 4.1), [16], Theorem 2.3 yields that ress(NC% — 11) < L.
Since N%u + u)X = fi, [17], Theorem 1 yields that i € 63(0G). If G is unbounded
then Qu/dn(H,_1/00r(0)) € €, (dG) by [17], Remark 6 and therefore fi € €/ (dG).
According to Theorem 6 there is a bounded v € W12(G) which is a weak solution
in W2(Q) of the third problem for the Laplace equation on G with the boundary
condition Lj

Av =0 in CNT',
g—z +fv=L; on oG.
Since u — v is locally constant in G by Lemma 5, the function u is bounded in G.
Since u € W12(G), u(z) — 0 as [r] — oo (see [20], Lemma 3). Therefore u is
bounded in G. O

Definition. Let f € Lo(4) be a nonnegative function. Let g € Ly(G) and let
L be a bounded linear functional on W12(G) such that L(p) = 0 for each p € 2(G).
We say that u € W12(G) is a weak solution in W12(G) of the third problem for the
Poisson equation

(15) Au=g on G,

6—quuf:L on 0G,
on

if
/Vu~Vvdjfm+/ ufvdjf:L(v)f/gvdjfm
G oG G

for each v € W12(G).
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Theorem 8. Let f € Lo (#) be a nonnegative function. Let g € L,(R™), where
p > m, be a compactly supported function. Put A\ = f5Z. Denote by G1,...,Gy all
bounded components of G such that A(0G;) = 0. Let u € 6,(0G) be such that

n(0G;) = / g At

GJ
for j=1,... k. If G is unbounded and m < 4 suppose moreover that
/ gdst, =0,

wom) = [ gdst,
H

MOH) = 0 for the unbounded component H of G. Then there is u € W12(G) which
is a weak solution in W2(G) of the third problem for the Poisson equation (15)
with the boundary condition L = L,. The general form of this solution is

k
(16) w=Uv—UgHhn) + > ciXa,,
j=1
where
_ = T—al\"[i
an =)o
(18) o = p+ [0 NU(gA) A+ U (9500,

1
a> —(VG+1+ sup %A(z))
2 z€dd

Proof. Put

| Cexp[-1/(1— |z|?)] for |z| <1,
plr) =

0 for |z| > 1,

where C' is chosen so that [¢ = 1. For ¢ > 0 put ¢.(z) = ¢ ™p(xe). Since
U (g,) € €H(R™) (see [6], Theorem A.6, Theorem A.11), @. * % (95,) —
U (9H), e *x NU (95) — VU (95,) locally uniformly as ¢ \, 0 (see [30],
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Theorem 1.6.1, [27], § 12). The Divergence Theorem (see [12], p. 49) and [6], Theo-
rem A.16 yield for j € {1,...,k}

A(0G;) = u(dG;) + / nS () - VU (gn) (y) A ()

le?

= u(0G;) + lim - n(y) - (e % VU (95)) (y) 47 (y)

= w(9G;) + lim - n(y) - Ve * (ho * g)](y) dA(y)

= w(dG;) + lim - nS(y) - Viho * (e * 9)|(y) 4 (y)

= u(9G;) + lim .. A [(pe * 9) ] A,

= p(0G;) — lim Gj(soa * g) A, = u(0G;) — /Gj gdA, =0.

If G is unbounded and m < 4 then [6], Theorem A.16 and the Divergence Theorem
(see [12], p. 49) yield

F(OH) = Jim { lim / nHOORO) o VU (0 0) Aoy
O(HNQR(0))

R—oo | e—04

,/ n 5O () U (9.70) () d«%ﬂml(y)} +u(0H)
9Qr(0)

= lim lim nfINRO) 7 [hg x (e % g)] A1 + p(OH)
R—o0e—04 8(HNQ R (0))
= lim lim AU [(pe * g)H] A5, + u(OH)

R—ooe=0+ Jnag(0)

= — lim lim (pe x g) dH, + n(0H)
R—ooe=0+ Jnag(0)

—/ gdA, + p(0H) = 0.
H

According to Theorem 6,
k

%u—i—chXGj

Jj=1

is a weak solution in W12(G) of the third problem for the Laplace equation (14)
with the boundary condition L = Lj. If u has the form (16) then [20], Lemma 5
yields that u is a weak solution in W?(G) of the third problem for the Poisson
equation (15) with the boundary condition L = L,,.
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Let now u € W12(G) be a weak solution of the third problem for the Poisson
equation (15) with the boundary condition L = L,,. Then

w=u—Uv+U(gHy,)

is a weak solution in W12(G) of the third problem for the Laplace equation with the
zero boundary condition. According to Lemma 5 the function w is locally constant
and vanishes on G\ (G1 U...UGYy). O

Theorem 9. Let f € Lo (5¢) be a nonnegative function. Let g € L,(R™),
where p > m, be a compactly supported function. Let L be a bounded linear
functional on W?(G) and p € ¢’(9G) be such that L(p) = [ pdp for each ¢ € 9.
If u € WH2(G) is a weak solution in W12(G) of the third problem for the Poisson
equation (15) then u is bounded in G if and only if |1 € €} (0G).

Proof. Changing g on R™ \ G we can suppose that

/ gdst, = 0.

Put A = f#, o = —[n% - VU (95,,)|# — U (95,)\. Then [20], Lemma 5 yields
that u + % (95%,) is a weak solution in W?(G) of the Neumann problem for the
Laplace equation with the boundary condition L — L,. Since % (g9.74,) € C*(R™)
(see [6], Theorem A.6 and Theorem A.11) and % (¢97¢,)(x) — 0 as |z| — oo, the
function % (g.#¢,,) is bounded. Therefore u is bounded if and only if u+ % (¢.74,) is
bounded. According to Theorem 7 the function u+ % (9.%,) is bounded if and only
if 4 — 0 € 6 (0G). Since ¢ € €,(0G) by [20], Lemma 5, the function u is bounded
in G if and only if € €/ (0G). O
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