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Abstract. In this paper the notion of weak chain-completeness is introduced for pseudo-
ordered sets as an extension of the notion of chain-completeness of posets (see [3]) and it
is shown that every isotone map of a weakly chain-complete pseudo-ordered set into itself
has a least fixed point.
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1. Introduction

A reflexive and antisymmetric binary relation v on a set P is called a pseudo-
order on P . A pseudo-ordered set or a psoset 〈P,v〉 consists of a nonempty set P

and a pseudo-order v on P . For a, b ∈ P , we denote a @ b to mean a v b and
a 6= b. For a subset of P the notions of a lower bound, an upper bound, the greatest

lower bound (or meet), the least upper bound (or join), the minimum (or the least)
element and the maximum (or the greatest) element are defined analogous to the

corresponding notions in a poset. As in the case of posets (see [1]) for the empty
set ∅, ∨ ∅ exists in P if and only if

∧
P exists or equivalently P has the minimum

element 0 and
∨ ∅ =

∧
P = 0. A psoset 〈P,v〉 is said to be a trellis if every pair of

elements of P has a g.l.b. and a l.u.b. or equivalently, a trellis can be regarded as an

algebra 〈P,∧,∨〉 satisfying certain axioms. A psoset 〈P,v〉 is said to be a complete
trellis if every subset of P has a g.l.b and a l.u.b. An extensive investigation of the

notions of psoset, a trellis and a complete trellis can be found in H. L. Skala [4] and
H. Skala [5].
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Let 〈P,v〉 be psoset. A map f : P → P is said to be isotone if a v b implies

f(a) v f(b). An element a ∈ P is said to be a fixed point for f if f(a) = a. If
every isotone map of P into itself has a fixed point (a least fixed point), then P is
said to have the fixed point property (the least fixed point property) and we express

it by writing P has the FPP (P has the least FPP). It is known (see [5]) that every
complete trellis has the FPP.

A poset 〈P, 6〉 is said to be chain-complete if every chain in P , including the empty
chain, has a join. This notion and its applications were discussed by G. Markowsky

in [3]. It was proved that a poset P is chain-complete if and only if P has the
least FPP.

The aim of this paper is to introduce the notion of weak chain-completeness for

psosets as a generalization of the notion of chain-completeness of posets and to prove
that every weakly chain-complete psoset has the least FPP.

Any psoset 〈P,v〉 can be represented by a digraph (possibly infinite) whose points
are the elements of P while for distinct points a and b there is a unique directed line

from a to b if and only if a @ b. The digraph of Fig. 1 represents the psoset 〈A,v〉
where A = {0, a, b, c} with 0 @ x for every x ∈ {a, b, c} while a @ b @ c @ a. 〈A,v〉 is
a trellis having the minimum element 0 which is not complete.

0

a b

c

Figure 1

2. Weakly chain-complete psosets

Let 〈P,v〉 be a psoset. A subset C of P , including C = ∅, is called a chain in P

if the restriction of v to C is a complete order (i.e. it is a partial order on C such
that every pair of elements of C are comparable). A subset C = {ai | i = 0, 1, 2, . . .}
of P is said to be a descending chain in P if ai A aj whenever i < j. A psoset P is
said to satisfy the descending chain condition if there exists no infinite descending

chain in P or equivalently if every nonempty chain in P has a minimum element. A
chain C in P is said to be a well-ordered chain if it satisfies the descending chain
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condition or equivalently if every nonempty subset of C has a minimum element. A

psoset 〈P,v〉 is said to be weakly chain-complete if every well-ordered chain in P has
a join.

We know that weak chain-completeness and chain-completeness are equivalent for
posets and that a chain-complete lattice is a complete lattice. However, a weakly

chain-complete trellis need not be a complete trellis since the trellis A of Fig. 1 is
weakly chain-complete but not complete. In this trellis the only (well-ordered) chains

are the proper subsets of A excluding {a, b, c}.
The following lemma is a major step in proving our main theorem. The proof of

the lemma is an adaptation, with several modifications, of the proof of Zorn’s lemma
(see J. Lewin [2]).

Lemma. Every weakly chain-complete psoset has the FPP.

���������
. Let 〈P,v〉 be a weakly chain-complete psoset and f : P → P be

an isotone map. If C, D are chains in P , then C is said to be a section of D

determined by some d ∈ D denoted by C = Sd(D), if there exists d ∈ D such that
C = {x ∈ D | x @ d}. Call a subset A of P admissible if it satisfies the following

three conditions:

(1) A is a well-ordered chain in P .

(2) For a ∈ A, if Sa(A) has a maximum element, say b, then f(b) = a; if Sa(A) does
not have a maximum element, then

∨
Sa(A) = a.

(3) If a ∈ A and b is an upper bound of Sa(A) in P , the f(b) is also an upper bound
of Sa(A).

Let A denote the collection of all admissible subsets of P . We now make the
following observations.

(i) A is nonempty since the empty chain ∅ lies in A. Also, if ∨ ∅ = 0, then {0} ∈ A.
(ii) If A ∈ A and a ∈ A, then Sa(A) ∈ A.
In fact, for any x ∈ Sa(A), clearly Sx(Sa(A)) = Sx(A).

(iii) Let A ∈ A. If b is an upper bound of A in P , then f(b) is also an upper bound
of A.

In fact, for any a ∈ A, clearly b is an upper bound of Sa(A) so that, by (3), f(b) is
also an upper bound of Sa(A). If Sa(A) has a maximum element, say c, then by (2),

a = f(c) v f(b), since c @ b and f is isotone. If Sa(A) does not have a maximum
element, then, by (2), a =

∨
Sa(A) v f(b).

(iv) If A ∈ A and A has the maximum element, say a, then A ∪ {f(a)} ∈ A.
In fact, by (iii), f(a) is an upper bound of A.
(v) If A ∈ A, then A ∪ {∨ A} ∈ A.
(vi) If A ∈ A, then a v f(a) for every a ∈ A.
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In fact, if a ∈ A, then Sa(A) ∈ A. By using (2), (iv) and (v), Sa(A) ∪ {a} ∈ A.
Hence, by (iii), f(a) is an upper bound of Sa(A) ∪ {a}.
(vii) If A, B ∈ A, a ∈ A and b ∈ B such that Sa(A) = Sb(B), then a = b. This

follows from (2).

(viii) If A, B ∈ A, then either A = B or one of A, B is a section of the other.

Before proving this statement we prove the following special case of it:

(∗) If B ⊂ A (where ⊂ denotes proper inclusion), then B is a section of A.

Given B ⊂ A, let x = min(A−B). Then Sx(A) ⊆ B. We assert that Sx(A) = B. If

Sx(A) 6= B, then let y = min(B − Sx(A)). Then Sy(B) ⊆ Sx(A). Clearly x, y ∈ A

and x 6= y since x /∈ B whereas y ∈ B. Also y 6@ x since y /∈ Sx(A). Thus x @ y.

But then Sx(A) ⊆ Sy(B). For, if t ∈ Sx(A), then t ∈ B and t @ x @ y so that t @ y

since t, x, y ∈ A, a chain; and therefore t ∈ Sy(B). Thus Sx(A) = Sy(B). Hence,
by (vii), x = y, a contradiction. This proves our assertion and hence (∗) holds.
In general, given A, B ∈ A, either A ⊆ B or A � B. In the first case, by (∗), it

follows that either A = B or A is a section of B. If A � B, then let x = min(A−B).
Then Sx(A) ⊆ B. If Sx(A) 6= B, then since Sx(A) ∈ A, by (∗), Sx(A) = Sy(B) for
some y ∈ B. But then x = y by (vii), a contradiction since x /∈ B whereas y ∈ B.

Thus B = Sx(A), a section of A.
(ix) Let U = ∪A. Then U ∈ A.
To prove this, we first observe by (viii) that U is a chain. Consider any u ∈ U .

Then u ∈ A for some A ∈ A. We assert that

(∗∗) Su(U) = Su(A).

Clearly, Su(A) ⊆ Su(U). On the other hand if v ∈ Su(U), then v ∈ B for some
B ∈ A and v @ u. If B = A or B is a section of A, the clearly v ∈ A. Otherwise,

A = Sw(B) for some w ∈ B. But then v @ u @ w since u ∈ A = Sw(B). Thus v @ w

since v, u, w ∈ B, a chain. Therefore v ∈ Sw(B) = A. Hence (∗∗) holds. Using (∗∗)
it is easy to verify that U ∈ A.
Now, by (v), U ∪ {∨ U} ∈ A so that U ⊇ U ∪ {∨U} and hence ∨

U ∈ U . Let
m =

∨
U . Then m = max U . Hence, using (iv), U ∪ {f(m)} ∈ A, and this implies

f(m) ∈ U . Consequently, f(m) v maxU = m. Already, by (vi), m v f(m). Thus
f(m) = m. Hence f has a fixed point. �

We now present the main theorem of this paper.
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Theorem. Every weakly chain-complete psoset has the least FPP.
���������

. Let 〈P,v〉 be a weakly chain-complete psoset and f : P → P be an
isotone map. Let F = {x ∈ P | f(x) = x} and F ∗ denote the set of all lower bounds

of F in P . Then F ∗ is also a weakly chain-complete psoset with respect to v. In
fact, any well-ordered chain C in F ∗, being a well-ordered chain in P , has a join,∨

C = a, in P and clearly a ∈ F ∗. Further, the restriction of f to F ∗ is an isotone
map of F ∗ into itself. In fact, for any a ∈ F ∗ we have a v x for every x ∈ F so that

f(a) v f(x) = x, for every x ∈ F and therefore f(a) ∈ F ∗. Now an application of
our lemma to F ∗ yields a fixed point y ∈ F ∗ for f . Then clearly y ∈ F ∩ F ∗ so that

y is the least element of F . Thus y is the least fixed point for f in P . �

In view of the above theorem the following problems remain unsolved.

Problem 1. Is it necessary that in a weakly chain-complete psoset every chain
has a join?

Problem 2. Does the least FPP imply weak chain-completeness for psosets in
general?

It may be recalled that for psosets, these problems have an affirmative solution
(see [1] and [3]).
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