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Abstract. Usually, an abelian `-group, even an archimedean `-group, has a relatively
large infinity of distinct a-closures. Here, we find a reasonably large class with unique and
perfectly describable a-closure, the class of archimedean `-groups with weak unit which
are “ " -convex”. ( " is the group of rationals.) Any C(X, " ) is " -convex and its unique
a-closure is the Alexandroff algebra of functions on X defined from the clopen sets; this is
sometimes C(X).
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Introduction

A lattice-ordered group (or `-group for short) is a group (G, +) with a partial order
that is a lattice (infimum and supremum are denote by ∧ and ∨, respectively) such
that the ordering is compatible with the group operation. That is, for all g, h, k ∈ G

with g 6 h we have g + k 6 h + k. The set of positive elements of G is written as
G+; note that the additive identity is an element of this set.

Elements g, h ∈ G+ are archimedean equivalent (or a-equivalent), denoted g ∼a h,

if there exist natural numbers n, m for which g 6 nh and h 6 mg. If G is an
`-subgroup of H then H is an a-extension of G if every positive element of H is

a-equivalent to a positive element of G. We write G 6a H in this case. The
divisible hull of an abelian `-group is an a-extension, for example. If G has no proper
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a-extension, then G is a-closed. By Holland’s Embedding Theorem, a-closures exist

(see [7]); however, a-closures are not necessarily unique (see [4]).

Throughout, we use # , $ and % to represent the naturals, rationals and reals,
respectively.

Over the past 30 years, several researchers have sought a-closures in various classes

of `-groups. Recently, the authors of [6] sought a-closures via valuation mappings of
an `-group onto a distributive lattice. Also, in [14] the authors considered a class of

`-groups that generalizes the class of hyperarchimedean `-groups (see also [5]) and
determined the a-closures of these groups. In particular, they explicitly describe the

a-closures of C(X, & ), the ring of continuous integer-valued functions on X . In the
present article we are interested in determining a-extensions and a-closures of certain

more general objects in the category,W, of archimedean `-groups with weak unit.

In this section we introduce standard concepts needed throughout the paper.

The `-group G is archimedean if whenever 0 6 g 6 nh for all n ∈ # , then g = 0.
All archimedean `-groups are necessarily abelian. This is explained in [7].

An element u ∈ G+ is a weak order unit if u∧ g = 0 implies g = 0. W denotes the

category whose objects are the archimedean `-groups with designated weak order
unit and whose morphisms are the lattice-preserving group homomorphisms that

also preserve the unit. (G, u) denotes an object inW.
Recall that an `-subgroup K 6 G is convex if 0 6 g 6 k ∈ K implies that g ∈ K.

Let (G, u) be a W-object. By Zorn’s Lemma, there exist convex `-subgroups of G

that are maximal with respect to not containing u. We let Y G denote the set of
these. In the hull-kernel topology, Y G is a compact Hausdorff space. Define

D(Y G) = {f : Y G → % ∪ {±∞} : f is continuous and f−1 % ⊆ Y G is dense}.

ThoughD(Y G) is rarely a group under pointwise addition, it is known that G may be
mapped bijectively, via an `-group isomorphism, onto an `-group Ĝ of D(Y G), which
maps u to the constant function 1 and so that the elements of Ĝ separate the points
of Y G. This representation is unique: If G ∼= G̃ 6 D(X) is an `-isomorphism with
X compact Hausdorff and ũ = 1, then there is a continuous surjection τ : X → Y G

such that g̃ = ĝ ◦ τ for each g ∈ G; moreover, G̃ separates the points of X if and only
if τ is a homeomorphism. We identify G with its image Ĝ. This representation is

the “Yosida Embedding” (see [21] and [16]) and Y G is called the Yosida space of G.

We now turn to topological considerations and to C(X), the `-group of real-valued
continuous functions on the space X with the pointwise ordering. See [9] for details.

We assume that all spaces are Tychonoff, that is, completely regular and Hausdorff.

βX denotes the Stone-Čech compactification of X , and we note that the Yosida space
of C(X) is homeomorphic to βX . C∗(X) is the `-subgroup containing the bounded
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elements of C(X). There is a natural isomorphism between C∗(X) and C(βX),
given by extension (and inversely, restriction) of functions to βX (inversely, to X).
Whenever C(X) = C∗(X), we call X pseudocompact.
Recall that a space is called zero-dimensional if it has a base of clopen sets and

that every zero-dimensional space has a maximal zero-dimensional compactification

called the Banaschewski compactification (see [20]) denoted by β0X . The space β0X

is homeomorphic to the Yosida spaces of C(X, & ) and C(X, $ ) and the map β0 is

the compact zero-dimensional reflection. When βX = β0X , the space βX is zero-
dimensional and we call X strongly zero-dimensional.

2. Unique a-closure and convex `-groups

Let (G, u) be in W and g ∈ G. The zeroset of g is Z(g) = {p ∈ Y G : g(p) = 0}
and the cozeroset of g is Y G \ Z(g). We use Z G to denote the set of all zerosets
of G.

Theorem 2.1. Let (G, u) be in W. If G 6a H then G majorizes H (that is,

for every h ∈ H+ there exists g ∈ G+ such that h 6 g); u is a weak unit in H ,

Y (G, u) = Y (H, u) and in the Yosida representation G 6 H 6 D(Y (G, u)) and
Z H = Z G.
')(+*�*-,

. Let (G, u) be in W and assume that G 6a H . That G majorizes H

follows directly from the definition of a-extension. If there is h ∈ H+ such that
u∧h = 0, then for any g ∈ G such that g ∼a h, we have that u∧ g = 0. Hence g = 0
and 0 6 h 6 mg = 0 for some m and therefore, h = 0. It follows from Theorem 2.1
of [4] that Y (G, u) = Y (H, u); hence, G 6 H 6 D(Y (G, u)) and Z H = Z G. �

For g ∈ G, let g+ = g ∨ 0 and g− = (−g) ∨ 0. Then g = g+ − g− and we define

|g| = g+ + g−.

Definition 2.2. Let (G, u) be inW.
(a) Gc = {f ∈ D(Y G) : |f | 6 g for some g ∈ G}.
(b) From [2]: G is convex if G = Gc.

Gc is usually not an `-group, as we discuss shortly.

Corollary 2.3. InW:
(a) If G 6a H then H ⊆ Gc.

(b) If G is convex, then G is a-closed.

(c) If Gc is an `-group and if G 6a Gc then Gc is the unique a-closure of G.

(d) If H is convex and G 6a H , then H is the unique a-closure of G.
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')(+*�*-,
. It is clear that Theorem 2.1 implies statements (a) and (b) which

together imply (c). To verify (d), note that G 6a H implies H ⊆ Gc by (a). But
also, Gc ⊆ Hc = H . Thus, Gc = H , and (c) applies. �

The statement of Corollary 2.3 (c) and (d) present us with the following two ver-
sions of the same questions, which the sequel examines.

Question 2.4. Let G be an archimedean `-group.

1. (a) For which G is Gc an `-group?

(b) For which G is Gc an `-group and G 6a Gc?

2. For convex H , whatW-subobjects G have G 6a H?

The following compendium from the literature illustrates what the class of convex
`-groups encompasses. Recall that an f -ring is a subdirect product of totally ordered

rings, [3].

Theorem 2.5. For the following classes of W-objects, for each n, the class (n)
is contained the class (n + 1).
(1) Rings of continuous functions, C(X).
(2) Alexandroff algebras: `-subalgebras of % X containing 1 that are closed under
uniform convergence and inversion (see § 5 below).

(3) W-objects closed under countable composition.
(4) Archimedean f -rings with identity, that are divisible and uniformly complete.

(5) ConvexW-objects.
')(+*�*-,

. That (1) ⊆ (2) is clear; (2) ⊆ (3) ⊆ (4) can be found in [18]; and
(4) ⊆ (5) is in [17]. (One has to recognize that the representation in [17] and [18] of
an f -algebra is the Yosida representation of the underlyingW-object). �

As a class of study, “convex” was introduced in [2], and there shown to be monore-

flective inW: for each (G, u) there is a group cG such that G 6 cG with cG convex
such that each ϕ : G → H inW with H convex has a unique extension cϕ : cG → H

in W. Usually, Y cG is much larger than Y G, but it is easy to see that if Gc is an
`-group then Gc = cG.

Remark 2.6. (a) Recall that V ∈ Y G is real if G/V ↪→ % and RG ⊆ Y G

denotes the set of all such points. Let G|RG = {g|RG : g ∈ G}. In Theorem 2.1
and Corollary 2.3 (a), suppose that

⋂
RG = (0), so that G|RG ⊆ C(RG) is a

representation of G; then Gc|RG ⊆ C(RG) also and G 6a H implies that H ⊆
C(RG). Within the categoryW, this sharpens an observation in Example 6.2 of [4].
(b) By Theorem 2.5, C(X) is convex for any X . Here’s another proof: The Yosida

embedding of C(X) is given by {βf ∈ D(βX) : f ∈ C(X)}, therefore, C(X)c =

412



C(X). Thus, by Corollary 2.3 (b), C(X) is convex. This improves Example 6.2 of [4]
in which Conrad shows that C(X) is a-closed.

(c) If G is hyperarchimedean, then the converse of Theorem 2.1 holds (see [13]),
but the converse fails in general. Let α # be the one-point compactification of #
and let G 6 C(α # ) be given by g ∈ G if and only if there exist r, s ∈ % such that
eventually g(n) = r + s/n. Then Z G = Z C(α # ), though G is not a-extended

by C(α # ) since f(n) = e−1/n ∈ C(α # ) has no a-equivalent element in G.

3. Relatively convex `-groups

Definition 3.1. Let A be a subgroup of % containing 1 and (G, u) inW.

(a) For a compact Hausdorff space X , let

DA(X) = {f ∈ D(X) : f(p) ∈ % ⇒ f(p) ∈ A}.

(b) G is A-convex if for f ∈ DA(Y G), |f | 6 g ∈ G implies f ∈ G. When A 6= % ,
we assume that Y G is zero-dimensional.

(c) WAG = G ∩DA(Y G).

Note that an A-convex group is Z-convex. In fact, we are really only interested in

Z- and $ -convex objects.
In this section, we show that G is A-convex if and only if Gc is a convex `-group

for which Y Gc = Y G is zero-dimensional and

WAG = WAGc 6 G 6 Gc.

This relates the two queries in Question 2.4 and addresses Question 2.4.1 (a). We
also note the rarity of WZG 6a G.

In the next section we show thatW . G 6a G for convex groups G. Thus, $ -convex
is the answer to Question 2.4.

Remark 3.2. The operator WZ is studied in [15], there denoted Ws. It is a

coreflection of W onto the full subcategory whose objects satisfy G = WZG (called
singular). The situation with WA is analogous, but we won’t pursue that here. Note

that Z-convexity is an extension of the singularly convex condition in [14].
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Proposition 3.3. Gc is an `-group (hence it is convex and Y Gc = Y G) if and

only if βg−1 % = Y G for each g ∈ G.
')(+*�*-,

. ⇒: Suppose that g−1 % is not C∗-embedded (without loss of generality,
we may take g ∈ G+), say f ∈ C∗(g−1 % ) fails to extend over Y G. Choose m > |h|
and define h(x) = f(x) + g(x) if x ∈ g−1 % and f(x) = +∞ if x /∈ g−1 % . Then
|h| 6 g + m ∈ G, so that h ∈ Gc. But h − g /∈ D(Y G), so Gc is not closed under

addition.
⇐: The lattice operations are inherited from D(Y G). Suppose that fi ∈ D(Y G)

with |fi| 6 gi ∈ G+ for i = 1, 2. Then f−1
i % ⊇ g−1

i % so that

f1 + f2 ∈ C(g−1
1 % ∩ g−1

2 % ).

Since g−1
1 % ∩ g−1

2 % = (|g1|+ |g2|)−1 % and we assume that this set is C∗-embedded,

we have the extension to h ∈ D(Y G) and |h| 6 g1 +g2 (since that holds on the dense
set g−1

1 % ∩ g−1
2 % ). Thus h ∈ Gc and h = f1 + f2 in Gc. �

Proposition 3.4. Suppose that G is Z-convex.

(a) If g ∈ G+ and there is 0 < r ∈ % such that g(x) > 0 implies g(x) > r, then

there is f ∈ WZG such that f ∼a g.

(b) For all g ∈ G, there exists f ∈ WZG such that f−1 % = g−1 % .
(c) For all g ∈ G, βg−1 % = Y G.

(d) Gc is a convex `-group with Y Gc = Y G.
')(+*�*-,

. The definition of Z-convex includes the assumption that Y G is zero-
dimensional, so any g−1 % is zero-dimensional and Lindelöf, thus strongly zero-
dimensional. See [9] and [20].
(a) Without loss of generality, r > 3. For every n > 3, choose a clopen set Un

with g−1[n− 1, n + 1] ⊆ Un ⊆ g−1(n− 2, n + 2) so that

n− 2 6
∧

n

g|Un 6
∨

n

g|Un 6 n + 2.

Let Vn = Un \
⋃

j<n

Uj . Then the functions g|Vn retain the preceding inequalities and

g−1 % = Z(g)
⊔

n Vn. Clearly, this set is open.
Now define f ∈ DZ(Y G) by f |Vn = n − 2, f |Y G−g−1 / = +∞ and f |Z(g) = 0. So

then f 6 g on g−1 % and hence, f 6 g. Also

g|Vn 6 n + 2 = (n− 2) + 4 = f |Vn + 4.

Then g 6 f + 4 6 5f , since 1 6 f .
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(b) Apply (a) to |g| ∨ 3 to get f .

(c) Since g−1 % is strongly zero-dimensional, it suffices to demonstrate that any
h ∈ C(g−1 % , {0, 1})+ extends over Y G. See [9] and [20]. By (b), we can assume that
g ∈ WZG. Define f ∈ DZ(Y G) by f(x) = g(x) + h(x) if x ∈ g−1 % and f(x) = +∞,
otherwise. Then f 6 g + 2 ∈ G. Since G is Z-convex, f ∈ G. Thus, g − f ∈ G and
this is the desired extension of h.

(d) By (c) and Proposition 3.3. �

Theorem 3.5. Let A be a proper subgroup of % containing 1.
(a) If H is convex with Y H zero-dimensional, then WAH is A-convex and H =

(WAH)c.

(b) If G is A-convex, then Gc is a convex `-group with Y Gc zero-dimensional and

WA(Gc) 6 G.

')(+*�*-,
. (a) If Y H is zero-dimensional, then C(Y H, Z) separates points of Y H .

Since C(Y H, Z) 6 WZH 6 WAH , the group WZH also separates points of Y H and
thus Y WAH = Y H . Now suppose that H is convex and f ∈ DA(Y WAH), such that
|f | 6 g ∈ WAH for some g. Then f ∈ D(Y H) and |f | 6 g ∈ H . Since H is convex,
f ∈ H . Since also f ∈ DA(Y H), we have that f ∈ WAH and, hence, WAH is

convex.

We know that WAH ⊆ H and so (WAH)c ⊆ H since H is convex. For the reverse,

H+ ⊆ (WZH)c by Proposition 3.4 (a); so H ⊆ (WZH)c since the larger set is an
`-group by the above and by Proposition 3.4 (d). Since we have the containment

(WZH)c ⊆ (WAH)c, the proof is complete.

(b) Assume that G is A-convex. Since Z 6 A, G is Z-convex, so Proposition 3.4 (d)

applies. Let f ∈ WAGc, that is, f ∈ DA(Y Gc) and |f | 6 g ∈ Gc. Thus, |f | 6 g 6
g′ ∈ G. Since G is A-convex, f ∈ G. �

Corollary 3.6. Let A be a proper subgroup of % containing 1.
(a) The following are equivalent:

(a1) H is convex with Y H zero-dimensional.

(a2) H = Gc for some A-convex G.

(a3) H = Gc for a unique A-convex G with G = WAG, namely G = WAH .

(b) The following are equivalent:

(b1) G is A-convex.

(b2) WAH 6 G 6 H for some convex H with Y H zero-dimensional; such an H

is unique, namely H = Gc.

')(+*�*-,
. (a3) ⇒ (a2) is clear and (a2) ⇒ (a1) by Theorem 3.5 (b).
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(a1) ⇒ (a3): We know that H = (WAH)c by Theorem 3.5 (a). If also H = Gc for

some A-convex G = WAG, then

WAH = WA(Gc) 6 G 6 WAG 6 WA(Gc),

using Theorem 3.5 (b) and the fact that G 6 Gc implies that WAG 6 WAGc.

(b1) ⇒ (b2): Assume that G is A-convex. By Theorem 3.5 (a), if H satisfies (b2)
then H = Gc and by Theorem 3.5 (b) Gc does satisfy (b2).

(b2) ⇒ (b1): Suppose that G and H satisfy (b2). Then Y G = Y H and if f ∈
DA(Y G) with |f | 6 g ∈ G then f ∈ WAH so f ∈ G. Thus, G is A-convex. �

Remark 3.7. (a) Proposition 3.3 is the content of Remark 2.6 (e) in [2], where
no proof was given.

(b) Proposition 3.4 is related to a lemma in [2].

(c) AW-object (G, u) for which every g ∈ G+ satisfies the hypothesis of Proposi-

tion 3.4 (a) is called bounded away. So we have shown that when G is Z-convex and
bounded away, WZG 6a G. This is closely related to Corollary 4.5 of [14].

In Proposition 3.4 (a), the bounded away condition can not be dropped: LetX be a

compact and zero-dimensional space, then C(X) is Z-convex. However, WZC(X) =
C(X, Z) and C(X, Z) 6a C(X) if and only if X is finite. (See [13].)

(d) In fact, for H convex, WZH 6a H if and only if Y H is finite (whence H ∼= % n

for some n ∈ # ): sufficiency is easy to show, so let’s show necessity. If H is convex,
then H∗ = C(Y H) and if WZH 6a H , then

C(Y H, Z) = WZH∗ = (WZH)∗ 6a H∗ = C(Y H)

and we have the situation of the above. So Y H is finite.

(e) Proposition 3.4 shows that Z-convex answers Question 2.4.1 (a), while Corol-

lary 3.6 and Remark (d) above show that Z-convex fails to answer Question 2.4.1 (b),
equivalently, the condition WZH = G fails to answer Question 2.4.2.

4. The main theorem

We now replace Z by $ .
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Theorem 4.1. InW:
(a) If H is convex with Y H zero-dimensional, thenW . H 6a H and H is the unique

a-closure of W . H .

(b) If G is $ -convex, then G 6a Gc, so Gc is the unique a-closure of G.

(c) If H is $ -convex, then W . H 6a H .

')(+*�*-,
. By § 3, (a) and (b) two are the same statement, so we prove (a).

Statement (c) is a direct consequence of (a) and (b).

Let H be convex with Y H zero-dimensional and h ∈ H+. Choose a clopen set

U ⊆ Y H with h−1[0, 1
2 ] ⊆ U ⊆ h−1[0, 1). Let h1(p) = h(p) if p ∈ U , h1(p) = 0

otherwise and let h2(p) = h(p) if p /∈ U and h2(p) = 0 if p ∈ U . Since U is clopen,
h1, h2 ∈ D(Y H) and since 0 6 h1, h2 6 h, and H is convex, h1, h2 ∈ H . It suffices

to find g1, g2 ∈ W . H+ with gi ∼a hi when i = 1, 2 and then g1 + g2 ∼a h1 + h2 = h.

Now h2(p) > 0 implies that h2(p) > 1
2 . So by Proposition 3.4 (a), there is g2 ∈

WZH with g2 ∼a h2.

For i = 1: since H is convex, H∗ = C(Y H). We finish by using the following
Lemma (with f = h1). �

Lemma 4.2. If X is compact and zero-dimensional and f ∈ C(X) such that
0 6 f 6 1, then there is g ∈ C(X, $ ) with g ∼a f .

')(+*�*-,
. By induction, choose clopen sets K0 ⊇ K2 ⊇ . . . as follows: K0 = X

and for each n,

f−1[0, 1/2n+1] ⊆ Kn+1 ⊆ Kn ∩ f−1[0, 1/2n).

Then we see that Z(f) =
⋂
n

Kn,

1/2n+1 6 f |Kn\Kn+1 6 1/2n−1

and coz(f) =
⋃
n
(Kn \Kn+1). Define g ∈ C(X, $ ) by g(x) = 0 when x ∈ Z(f) and

g(x) = 1/2n+1 when x ∈ Kn \Kn+1. Then g 6 f and f 6 4g. Thus, g ∼a f . �

5. Alexandroff algebras and C(X, $ )

Throughout, we assume that X is zero-dimensional; otherwise, C(X, $ ) may be
too small.
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Theorem 5.1. Suppose X is zero-dimensional.

(a) Each g ∈ C(X, $ ) has an extension ĝ ∈ D(β0X), and {ĝ : g ∈ C(X, $ )} is the
Yosida representation. In particular, Y C(X, $ ) = β0X .

(b) C(X, $ ) is $ -convex and so has a unique a-closure C(X, $ )c .

(c) W . C(X) = W . C(X, $ ) and W . C(X) 6a C(X, $ ).
(d) W . C(X) = C(X, $ ) if and only if X is pseudocompact.
')(+*�*-,

. (a) Consider the commutative diagram of continuous functions:

X //� �

��
g

β0X

��
β0g

$ //� �

��

� _
β0 $ = β $

��
f

% //� � % ∪ {±∞}
in which β0g exists with β0g|X = g, because β0 is the reflection functor to compact
zero-dimensional spaces. Since $ is strongly zero-dimensional, we have that β0 $ =
β $ . Then f is the extension of the inclusion $ ↪→ % ⊆ % ∪{±∞}, and ĝ = f ◦β0g ∈
D(β0X).
We have C(X, $ ) ⊇ C∗(X, Z) ∼= C(β0X, Z), and the last separates the points

of β0X , thus so does {ĝ : g ∈ C(X, $ )} hence this is the Yosida representation.
(b) Let f ∈ D . (β0X) and |f | 6 ĝ, where g ∈ C(X, $ ). Then f |X ∈ C(X, $ ) and

f̂ |X = f . Thus, C(X, $ ) is $ -convex. Then C(X, $ )c is the unique a-closure by

Theorem 4.1.
(c) Since C(X, $ ) 6 C(X) we have W . C(X, $ ) 6 W . C(X). For the reverse,

let f ∈ W . C(X). This means that f = βg for f |X = g ∈ C(X) and for p ∈ βX ,
whenever f(p) ∈ % necessarily means that f(p) ∈ $ . Thus g ∈ C(X, $ ). We have
f = βg = ĝ◦ϕ, where ϕ : βX → β0X is the canonical map. Then whenever ĝ(q) ∈ % ,
we necessarily have that ĝ(q) ∈ $ for all q ∈ β0X .

That W . C(X) 6a C(X, $ ) follows from (b) and Theorem 4.1.
(d) By (c), having W . C(X) = C(X, $ ) is equivalent to having the inclusion

W . C(X) ⊇ C(X, $ ), which means that for f ∈ D(β0X), f(X) ⊆ $ implies
f |f−1 / ⊆ $ .
Suppose that X is pseudocompact, f ∈ D(β0X) and f(X) ⊆ $ . Then f(X) is a

pseudocompact subset of $ , hence compact, so f−1 % = β0X and f(β0X) = f(X) ⊆
$ .
Suppose that X is not pseudocompact. Then, since X is zero-dimensional, X =⋃

n
Un for nonempty pairwise disjoint clopen sets Un. Let xn → r in % with xn ∈ $
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and r /∈ $ , and define g ∈ C(X, $ ) by g|Un = xn. Then the extension ĝ ∈ D(β0X)
must have ĝ(p) = r for some p therefore g /∈ W . C(X). �

Corollary 5.2. C(X, $ )c = C(X) (equivalently, C(X, $ ) 6a C(X)) if and only
if X is strongly zero-dimensional.

We now describe C(X, $ )c , in general.

If X is zero-dimensional, let clop(X) be the Boolean algebra of clopen sets of X
Then for U ∈ clop(X), the map U 7→ clU ∈ clop(β0X) is its Stone representation.
Define (clop(X))σ =

{⋃
n

Un : Un ∈ clop(X)
}
. Clearly, (clop(X))σ ⊆ coz(X), with

equality if and only if X is strongly zero-dimensional. In fact,

(clop(X))σ = {K ∩X : K ∈ coz(β0X)}.

Define A(X) = {f ∈ % X : f−1K ∈ (clop(X))σ for K ⊆ % open}. Then A(X) is
a W-object and A(X) 6 C(X) with equality if and only if X is strongly zero-
dimensional. See § 7 of [10] for a discussion.

Theorem 5.3.
(a) A(X) is of the type in Theorem 2.5. (2), thus is convex.
(b) C(X, $ ) 6 A(X) and for each f ∈ A(X) there is a sequence of functions

{gn}∞n=1 ∈ C(X, $ ) such that gn → f uniformly on X .

(c) Each f ∈ A(X) has an extension f̂ ∈ D(β0X) and {f̂ : f ∈ A(X)} is the Yosida
representation. In particular, Y A(X) = β0X .

(d) W . A(X) = W . C(X) 6 C(X, $ ) 6 A(X).
(e) A(X) = C(X, $ )c , that is, A(X) is the unique a-closure of C(X, $ ).
')(+*�*-,

. (a) This is easily verified, or one may see § 7 of [10].
(b) Let g ∈ C(X, $ ) and let A be an open set in % . Since $ is strongly zero-

dimensional, A ∩ $ =
⋃
n

Un for clopen sets Un ∈ $ . Thus, we can write g−1A =
⋃
n

g−1Un ∈ (clop(X))σ .

Let f ∈ A(X) and ε > 0. Let A be a countable cover of % by open intervals
of length less than ε. So, for A ∈ A , f−1A =

⋃
n

U(n, A) for clopen U(n, A) and

U = {U(n, A) : A ∈ A , n ∈ # , U(n, A) 6= ∅} is a countable cover of X by clopen

sets. We re-index the sets as U = {Un} and disjointify: Vn = Un \
⋃

i<n

Ui. Let

V = {Vn}n.
For each A ∈ A , choose rA ∈ A ∩ $ . Let g =

∑
n
{rAχVn : Vn ∈ V }, where χVn is

the characteristic function of Vn. Then g ∈ C(X, $ ) and |g(x) − f(x)| < ε for each
x ∈ X .
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(c) The extensions f̂ exist by Theorem 5.1 (a) and the fact that a uniform limit

of extendible functions is extendible. These extensions separate the points, since the
extensions ĝ for g ∈ C(X, $ ) do. The rest follows from this.
(d) This follows from Theorem 5.1 (c) and from C(X, $ ) 6 A(X) 6 C(X).
(e) By (a), (d) and § 4. �

Remark 5.4. (a) Theorem 5.3 (a), (b), and (c) are implicit in § 7 of [11].

(b) From a more general perspective, (clop(X))σ is an example of what is called
a cozero field, A(X) is its associated Alexandroff algebra, and Theorem 2.5 (2) is a
characterization of such things. One may see [10], [11], [12] and the original references
therein to Hausdorff, Lebesgue and A.D. Alexandroff.
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