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WEIGHTED INEQUALITIES FOR INTEGRAL OPERATORS
WITH SOME HOMOGENEOUS KERNELS
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Abstract. In this paper we study integral operators of the form
Tf(@) = [fo—ary o~ amy] " f(0) .

a1 + ...+ am = n. We obtain the LP(w) boundedness for them, and a weighted (1,1) in-
equality for weights w in Ap satisfying that there exists ¢ > 1 such that w(a;z) < cw(zx)
for a.e. z € R", 1 < 4 < m. Moreover, we prove ||Tf|lsmo < ¢||f||ec for a wide family of
functions f € L (R"™).
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1. INTRODUCTION
In [7] the authors study the boundedness on L?(R) of the operator
Tfa) = [ o=yl "lo+ oI ) du,

0<a<l
In [3] the authors study integral operators of the form

Tfa) = [ o=yl e+l ) d

0 < a < n. They obtain the LP(R™,dz) boundedness and the weak type (1,1) of
them.
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In this paper we consider integral operators defined for f belonging to the Schwartz
class S(R™) by

(11) Tfa) = [ o=l o = a0 ) do

ag+...tan=n,a;>0and a; e R—{0} fori=1,...,m.
We take the Hardy-Littlewood maximal function as

1
M) =smp oo /Q ()] do

where the supremum is taken along all cubes @ such that x belongs to ). We recall
that a weight w is a measurable, non negative and locally integrable function. It is
well known that, for p > 1, M is bounded on LP(w) if and only if there exists ¢ > 0
such that

1 1 r-1
1.2 up| — [ w)| —= wl/(p1)> <ec
(12 SQP(|Q|/Q )<|Q|/Q s

The class of functions that satisfy (1.2) is denoted by A,. For p = 1, the class A, is
defined by
Muw(z) < cw(x)

for a.e. z € R™ and for some positive constant ¢. The weak type (1,1) of the maximal
function is equivalent to w € A;. These classes A, have been defined by Mucken-
houpt (see [6]) in the one dimensional case and for higher dimensions by Coifmann
and Fefferman (see [1]).

In this paper we obtain the boundedness of T on L?(R",w) and a weighted (1,1)
inequality for a wide class of weights w in A,. We prove the following result:

Theorem 1. Let T be defined by (1.1). Suppose there exists ¢ > 1 such that
w(a;z) < cw(z) for 1 < i < m and for almost every x € R™.

a) Ifwe A,, 1 <p< oo, then T is bounded on LP(R"™, w).

b) If w € A; then there exists k > 0 such that, for A > 0 and f € S(R"),

w({z: [T@)] > A}) < / 1 @) (e

We also analyze the boundedness of the operator 1" from L into BMO, the
classical space consisting of functions with bounded mean oscillation, defined by
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John and Nirenberg in [5]. Precisely, we say that f € L] _belongs to BMO if there
exist ¢ > 0 such that

7l

1Q

for all cubes @ C R™. The smallest bound ¢ for which the above inequality holds is

1
f(:c)—@/f‘dx@

called || f]|«. From the techniques used, the following result follows inmediately:
Theorem 2. Let T be defined by (1.1). Then there exists ¢ > 0 such that

ITfll« < ell flloo

for all f € S(R™).

If f is a positive constant then T f(z) = oo for all z € R™, so we cannot expect a
general boundedness from L into BMO. With techniques similar to those developed

in [8], we obtain

Theorem 3. Let T be defined by (1.1).
a) If f € L*™ and T|f|(x0) < oo for some xy € R™ then T f(x) is well defined for
allz #0 and Tf € L (R").

loc

b) There exists ¢ > 0 such that

1T £l < ell flloo

for all f as in a).

By ¢ we denote a positive constant, not the same at each occurrence.

PROOF OF THE MAIN RESULTS

We follow the argument developed in [2, p. 144] where the case of the Calderén-
Zygmund operators is treated. As there we define, for f € L{ (R™), the sharp

maximal function by

#(f)(x) = su 1 —
M) = s |Q|/Q|f fol(y) dy

with fo = |QI™* [, f.

We denote D = max |a; '| and d = min |a; '|. We need the following result:
1<is<m 1<i<m

X
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Lemma 1.3. If T is defined by (1.1) and s > 1 then there exists ¢ > 0 such that
for all f € S(R™),

M#(Tf)(x) < e[(Mf*(ay ' a)* + 4 (M (ay )],

Proof. We first observe that T is a bounded operator on LP(R™,dz), 1 < p < oo
(see [4]), so for f € S(R*), Tf € LL (R*) and M#(Tf)(x) is well defined for all

loc

x € R". We take x € R such that T'|f|(x) < co and @ a cube that contains z. We
set 1(Q) as the length of the side of @, denote by @ the cube with the same center
as @, such that 1(Q) > 2D/d-1(Q) and, for 1 <i < m, we also set Q; = a; ' Q. We
decompose f = f1 + fo, f1 = fXUlgkgm o, and take a = T fo(x). Then

1 1 .
@/QITf(y)aldy< @/QITfl(y)ldy+@/Q|Tf2(y)TfQ(x)|dy_

If s > 1 then T is bounded on L*(R™,dzx) (see [4]), so

1 1 . 1/s
& /Q T2 ()| dy < (@ /Q T ()| dy)

<C(<ﬁ /Ql |f(y)|5dy)1/s+...+ <|22_|/Qm If(y)lsdy)l/s>

<[(MfP(agta)Y* + .+ (M (ayte) ]

On the other hand,

dy

1 1
1] /Q T fa(y) — T folx)|dy < al /Q’/(Ulgkgm@)c(K@’z) ~K(z,2)f(z)dz

where we denote by K(z,y) the kernel |[x — a1y|™** ... |z — apy| *m.
We now estimate |K(y, z) — K(z, z)|.

Case 1(Q) > 2|z|. In this situation |J @, D {y: |y| < 3D|z|}. Indeed, if

1<k<m
2 € (Urckam Q) - then 2] > 2 = a; '] — |ay "] > UQ1) — Dlz| > di(Q) — Dla| >

3D|z|. Moreover, in this case |z — a1 2| < |2| + |a12] < (|a1| + 555) 2| then

1

1.4 —a;z| 2 |a;iz| — ><i*—>
(14 o~ a2l > laiz] ~ o] > (Jau] — o) 4
>(3|ai|D—1>1| |

> (o) =]z —a12].

3lay[D+1/2 !
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__\C
Thus we apply the mean value theorem to obtain, for z,y € Q and z € ( U Qk> ,

K (y,2) - Kz, y\z|£

—apz|™
l#1

for some £ between z and y. But |a; '€ —2| > |a; 'z —2|—|a; '€ —a; 'z| > L|a; 'w—2],

so (1.4) implies

|z -y

(1.5) (K (y,2) — K(z, 2)| <0m~

Thus

" / | / o gy )~ KD

|z —yl
————|f(2)|dzdy
|Q| Qk 1~/2kDI(Q)<|a1 z—z|<2K+1DI(Q) |a1 1I’fz|n+l

1 1

<d

< c(Q) ; 2kDI(Q) (2kDI(Q))™ /Iallw—z<2k+1Dz(Q)
-1

).

dy

|f(2)|dz
< M fay z) < o(Mf5(a;

Case 1(Q) < 2|x|. We decompose

Ji

To estimate the first integral, we proceed as before and we obtain (1.5) for z,y € @
and |z| > 3D|z|, then

ﬁ /Q ‘ /lZPBM(K(y,z)K(z,z»f(z) dz

We now study the second integral. For 1 < i < m, z,y € Q and z € {z: |2] <
3Dz} N ( U @k) , we have

1<k<m

B 2) — Klw 2))f(z) de = /z>3D|m| i /{z<3D|m|}m(U1<k<m6k)

— e
1<km Qk)

dy < (M f* (a7 '2)) /",

la; 'z — 2|

'y — 2 > o7 o — 2 = Jo; 'y — a7t a >

hence
|K(yaz) - K(maz)l < C‘K($7z)|
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So

~/{|z|<3Dz}ﬂ(U1<k< Q)

<m

wf e,
(z: |z|<3Dlz)} [T — a1z .o — amz|om
We define b = %1<l }Iim“al_l_aj_l')' Weset A; = {z: |ai_1:1c—z| <blxlh, 1<i<m,

m C
and A1 = (U Ai) and decompose

i=1

/ |f(2)]
(=: |zl<3Dlzl}y [T — @12 |2 — amz|om

] |
A A Ami1n{z: |z|<3D|z|}

For z € A; and | # i we have |a; 'z — 2| > b|z|, hence

[ £(2) .
A, T —arz| e — a2

¢« |f(2)]
<—5 SN VA2 .
|| ;/2 i

—1
i-1bjz|<|a] te—z|<2-iblz| |@; T — 2

. 1
< gilas—m) ___ —
2 (2 7bfz])"

Jj=1

x/ F(2)]d= < eMf(a7 z) < (M f*(ay 2)) ",
|zfa;1:v\<2*jb\:v\

Now

/ - |f(z)| - dz < Clxlfn/ |f(2)|d2
Apmi10{z: |2|<3D|z|} |z —a1z[or .. |z — apz]om {z: |z|<3D|z|}

<ceMflay'z) < c(MfS(al_lx))l/s,

and the lemma follows. |
Lemma 1.6. Let T be defined by (1.1), 1 < p < oo, w € A, and f € LP(w).
Then T'f € LP(w).

Proof. Ifsuppf C B(0,R) and |z| > 2R then |K(z,y)| < ¢/|z|™ and so in this
case |Tf(x)| < cr/|z|™. The proof follows as in Theorem 7.18 in [2], since T is a
bounded operator on L?(R™ dz) (see [4]). O
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Proof of Theorem 1. a) Taking account of Lemmas 1.3 and 1.6, we proceed as
in the proof of Theorem 7.18 in [2] to obtain, for f € S(R™),

[1rs@puts) o
1007 (@ ) 4 ot (a0 (o) do
c/|MfS(:c)|p/5w(a1x)d:v+...—|—/|Mf5(x)|p/sw(amx)d:c
<c / M F*(2) [P/ *w(x) dz.

The last inequality follows from the hypothesis about the weight w. The rest of the
proof is as in Theorem 7.18 in [2].

b) For A > 0 we perform the Calderén-Zygmund decomposition for f to obtain a
sequence of disjoint {Q,}jen such that f(x) < A for almost every x ¢ |J Q;. We

take e
f(x) if z¢ ‘q\‘ Qj,
9(55) = 1 . .
@ o, f ifxe Qj

and write f = g+ 0.
As usual, from a), we obtain

wiz: |Tg(x)| > A} < /If Yuw(a

For each i = 1,...,m and j € N we denote by Q_J the cube with the same center
as ; and such that [(Q;) > 2D/d-1(Q,), and Q,; = a;Q;. We obtain

w(U @) <Y uw@n<ey gﬂfm

jEN JeN JeN
sz le
) ]EZN'QJ Qi Z / Qi
y)|Mw(a;y) dy
<52 [, o

s [Vl ay< [ 11w a.

Then
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Now for each fixed i =1,...,m, if ¢; denotes the center of ();, we have

w({x: ITb(z)| > A} N (U @))

JEN
Y) (K (z,y) — K(z,¢;)) dy|w(z) d
%/ | vwosces /
K(z,y) — K(z,cj)|w(z) dz dy.
ST, 0 [ G - Koty

Now we observe that K(z,y) = c¢K(y,z) where K(z,y) = |z — aytylm . r —
~ly|=@m. Reasoning as in a) with K instead of K and using the hypothesis on w,

we get
K (2,y) — K (2, ¢;)|w(z) dr < cMw(aiy) < cw(y).
(Qj,i)°
So
w({:z:: |Tb(x)| > A} N ( U m) )
JEN,i=1,....m
<5 [t <s [Ifwlew
d
Proof of Theorem 2. It follows straightforward from Lemma 1.3. (]

Proof of Theorem 3. a)Let f € L°°(R"™) and let ¢ be such that T'| f|(z) < oc.
We take R = 4D|xgl|, denote B = B(0,R) = {x € R™: |z| < R}, define fi = |f|xB
and decompose |f| = f1 + f2. Then

Tfi(x /|:17—a1y| e = amyl T f(y) dy
< ||f||oo/ & — ary]™ .. |7 — amy| " dy.
B

If « # 0 we choose r > 0 such that r =
define B; = B(a; 'z,r). We have

ilé{l}%mm;l —a; | |z|. For 1 <i < m, we

/ |z —a1y| ™ ..z — apy| Y dy

< D> / [z —ary|™ o — amy| T dy

1<is<m

+/ e —aym e — amy|T Y dy.
Bﬂ(Ulgigm Bi)
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/ |z —a1y| ™ .. e — amy| O dy

B;
cHr / |z — a;y|~ O"dy<cHr hpm@itn — ¢
k#i k#i
If |a; 'z| < 2R for some 1 < i < m, then, for y € BN(B;)°, we have r < |a; 'z —y| <
3R and so
o

|t —ary S —amy| T dy

‘/Bﬁ(Ulgigm Bi)c
Lcl|r / |z — a;y] ™ dy
h H BA(B:)* '

k#i
3R
<c[[r / geitn—l gy
k#i
— CH Ok [(3R)a¢+n . T—a,--‘rn] —c <|x|2k¢i —ag + 1) ,
k#i

so for = # 0 and such that |a; ‘x| < 2R we obtain

(1.7) ITf1(@)] < ell flloo (14 |2fZee0%)
Now if |a; x| = 2R for all 1 <4 < m, then |a; 'z —y| > R for y € B(0, R) and so
T f1(@)] < [[flloo-
So (1.7) holds for all  # 0. Then T fi(x) < oo for all z # 0 and it belongs to
Lige(R").

Now T fo(xg) < oo so we write, for z € R™, T fa(x) = T fo(x) = T fo(x0) + T f2(x0).
Then we have to study

[ 1) = Kol 17105) dy

For x # 0 we have
[ 1K - Keopliiwdrs [ G~ Kol d

+ K ()] F1(0) dy -
BenB(0,4D|x|)
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To estimate the first integral, we proceed as in the proof of Lemma 1.3 to obtain
that, for y € B°N B(0,4D|x|)®,

|z — o]
(K (z,y) — K(zo,y)| < Te—argntt

SO

1)

K (z,y) — K(zo, )| [fl(y)dy < clz — 0| | 7
/BCﬁB(OADz)C pe [T — ary["t?

< = zol[| flloo-

To study the second integral, we observe that it appears ounly if D|x| > R/4, so we
proceed as in the previous estimate for T f; to obtain that, for = in this region,

/ K ()| 1) dy < el 7
BenB(0,4D|z|)

So, for & # 0, T'f2(z) < oo and it belongs to L{ (R™).

loc

b) If f satisfies the hypothesis of a) we obtain that M# (T f)(x) is well defined for
all © € R™, so Lemma 1.3 still holds for these functions, and b) follows. O
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