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Abstract. We shall prove that if M is a finitely generated multiplication module and
Ann(M) is a finitely generated ideal of R, then there exists a distributive lattice M such
that Spec(M) with Zariski topology is homeomorphic to Spec(M) to Stone topology. Finally
we shall give a characterization of finitely generated multiplication R-modules M such that
Ann(M) is a finitely generated ideal of R.
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1. Introduction

Throughout this note all rings are commutative with identity and all modules are
unital.

For any submodule N of an R-moduleM , we define (N : M) = {r ∈ R : rM ⊆ N}
and denote (0 : M) by Ann(M). A submodule P of M is called prime if P 6= M

and whenever r ∈ R, m ∈ M and rm ∈ P , then m ∈ P or r ∈ (P : M). It is easy
to show that if P is a prime submodule of an R-module M , then (P : M) is a prime
ideal of R. The set of all prime submodules ofM is denoted by Spec(M). As defined
in [4] the radical of a submodule N of an R-module M is given by rad(N) =

⋂
P ,

where the intersection is over all prime submodules of M containing N . If there is

no prime submodule containing N , then we define rad(N) = M . The radical of an
ideal I of R is denoted by

√
I .

An R-module M is called a multiplication module provided for any submodule N
of M there exists an ideal I of R such that N = IM . It is easy to check that M is

a multiplication module if and only if N = (N : M)M for every submodule N of M
(see [8]).
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In this paper at first we shall construct a distributive lattice M and discuss some

properties of Spec(M), where Spec(M) is the set of all prime ideals in the latticeM .
We shall then prove that if M is a finitely generated multiplication module and
Ann(M) is a finitely generated ideal of R, then Spec(M) and Spec(M) are homeo-
morphic. Finally we shall generalize the notion of reticulated and semi-reticulated
rings for modules and characterize some classes of semi-reticulated modules.

2. On the lattice M and its prime spectrum

Let R be a ring and let FI(R) be the set of all finitely generated ideals of R. Now
let M be an R-module and su(M) the FI(R)-semimodule generated by the principal
R-submodules of M and M under the operations N +K, IN , where N,K ∈ su(M)
and I ∈ FI(R). Hence

su(M) =
{ k∑

i=1

IiRmi + JiM : Ii, Ji ∈ FI(R), mi ∈M, k ∈ �
}
.

It is clear that if M is a finitely generated R-module then su(M) is the set of all
finitely generated submodules of M .

Define the equivalence relation on su(M), “∼” by N ∼ L if and only if rad(N) =
rad(L) [6, p. 1470], and denote the resulting set of equivalence classes byM ; i.e.,M =
{[K] : K ∈ su(M)}.

Lemma 2.1. Let N,N ′,K,K ′ ∈ su(M) and I, I ′ ∈ FI(R). If N ∼ N ′ and

K ∼ K ′, then we have

(i) (N +K) ∼ (N ′ +K ′);
(ii) if

√
I =

√
I ′ then IN ∼ I ′N ′.

��������
. (i) By [6, Lemma 1.5].

(ii) Let P ∈ Spec(M) and IN ⊆ P . Hence N ⊆ P or I ⊆ (P : M). If N ⊆ P then

I ′N ′ ⊆ N ′ ⊆ rad(N ′) = rad(N) ⊆ P . Suppose that I ⊆ (P : M) ∈ Spec(R). Hence
I ′ ⊆

√
I ′ =

√
I ⊆ (P : M). Thus I ′N ′ ⊆ I ′M ⊆ P . Therefore rad(I ′N ′) ⊆ rad(IN).

Similarly rad(IN) ⊆ rad(I ′N ′) and hence IN ∼ I ′N ′. �

Let [N ], [K] belong to M and I ∈ FI(R).
We define [N ]+[K] := [N+K] and I [N ] := [IN ]. Then by Lemma 2.1,M becomes

an FI(R)-semimodule. Furthermore we define [N ] 6 [K] if for each P ∈ Spec(M),
K ⊆ P implies that N ⊆ P . Therefore (M,6) is a partially ordered set.
Let N be a subset of M .
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We define M(N) = {[L] ∈ M : L ∼ K, for some K ⊆ N}. If 0 ∈ N then

[0] ∈M(N) and hence M(N) 6= ∅.
Now let N be a subset of M . We define M [N ] = {x ∈M : [Rx] ∈ N}. If [0] ∈ N

then 0 ∈M [N ] and hence M [N ] 6= ∅.

Lemma 2.2. Let P ∈ Spec(M). Then M [M(P )] = P .

��������
. Let x ∈ P . Then Rx ⊆ P and hence [Rx] ∈ M(P ). Therefore

x ∈M [M(P )]. Now let x ∈M [M(P )]. Then [Rx] ∈M(P ) and so Rx ∼ L for some

L ⊆ P . Thus Rx ⊆ rad(Rx) = rad(L) ⊆ P . Hence x ∈ P �

For the remainder of this section we let M be a finitely generated multiplication

R-module and Ann(M) a finitely generated ideal of R.

Proposition 2.3. Suppose thatM is an R-module. Then (M,6) is a distributive
lattice.

��������
. Put 0 := [0M ] and 1 := [M ].

Define for any N,K ∈ su(M); [N ] ∨ [K] := [N +K] and [N ] ∧ [K] = [(N : M)K].
Since M,N and Ann(M) are finitely generated, by [8, Proposition 13], (N : M) is
finitely generated. Therefore (N : M) ∈ FI(R) and so (N : M)K ∈ su(M). Since
M is a multiplication module, the infimum of [N ] and [K] is well-defined.
We now show that M is a distributive lattice. It is enough to show that

[(N : M)K + L] = [(N + L : M)(K + L)].

Let P ∈ Spec(M) be such that (N : M)K + L ⊆ P . Then (N : M)K ⊆ P and
L ⊆ P . Hence K ⊆ P or (N : M) ⊆ (P : M). If K ⊆ P then (N + L : M)K ⊆ P

and since (N+L : M)L ⊆ P , we get (N+L : M)(K+L) ⊆ P . If (N : M) ⊆ (P : M),
then since M is a multiplication module, N = (N : M)M ⊆ P . Hence (N + L) ⊆ P

and so (N + L : M)K ⊆ P . Therefore

[(N : M)K + L] 6 [(N + L : M)(K + L)].

Similarly [(N + L : M)(K + L)] 6 [(N : M)K + L]. �

Let N be an ideal of M . Since R(x + y) ⊆ Rx + Ry and R(rx) ⊆ Rx, where

x, y ∈M and r ∈ R, we see that M(N) is an R-submodule of M .
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Lemma 2.4. If M is a finitely generated R-module, then M(M [N ]) = N , for all

ideals N of M .

��������
. It is clear that N ⊆ M(M [N ]). Let [L] ∈ M(M [N ]). Then for some

finitely generated K ∈ su(M), K ∈ [L] and K ⊆M [N ]. Suppose that K =
n∑

i=1

miR.

Therefore we have [L] = [K] =
n∑

i=1

[miR] ∈ N . We conclude that M(M [N ]) = N

and the proof is complete. �

Lemma 2.5. LetM be an R-module and N ∈ Spec(M). ThenM [N ] ∈ Spec(M).
��������

. If M [N ] = M then by Lemma 2.4, N = M(M [N ]) = M(M) = M ,

which is a contradiction. Suppose that N ∈ Spec(M) and rm ∈ M [N ], r ∈ R,
m ∈ M . Then [Rrm] ∈ M(M [N ]) = N . Since M is a multiplication module, so
(Rm : M)M = Rm. Hence [(Rm : M)rM ] = [Rm] ∧ [rM ] = [Rrm] ∈ N , and so

[Rm] ∈ N or [rM ] ∈ N . If [Rm] ∈ N then m ∈ M [N ]. Now if [rM ] ∈ N , then
rM ⊆M [N ]. �

Proposition 2.6.
(i) If N ∈ Spec(M) then M(M [N ]) = N .

(ii) For every ideal N of M ,

N ⊆M(M [N ]) ⊆ rad(N) =
⋂
{P ∈ Spec(M) : N ⊆ P}.

��������
. (i) Clearly N ⊆ M(M [N ]). Let [K] ∈ M(M [N ]). Hence there exists

L ⊆ M [N ] such that L ∼ K. By Lemma 2.5, M [N ] ∈ Spec(M) and so K ⊆ M [N ].

Since K ∈ su(M), we have K =
t∑

i=1

IimiR + JiM , where Ii, Ji ∈ FI(R) and mi ∈
M . Therefore IimiR ⊆ M [N ] and JiM ⊆ M [N ], for all i. Thus mi ∈ M [N ] or
Ii ⊆ (M [N ] : M). If mi ∈ M [N ] then [miR] ∈ N . Since [IimiR] 6 [miR], we get
[IimiR] ∈ N . Now if Ii ⊆ (M [N ] : M) then [IimiR] ∈ N . Therefore [IimiR] ∈ N ,

for all i. By a similar proof [JiM ] ∈ N . We conclude that [K] ∈ N .
(ii) Let N be any ideal of M . If N = M then clearly N = M(M [N ]). Therefore

assume that N 6= M . Let [K] ∈ M(M [N ]). Hence K ∼ L, for some L ⊆ M [N ].
Choose a P ∈ Spec(M), with N ⊆ P , then M [N ] ⊆M [P ]. By Lemma 2.5, M [P ] ∈
Spec(M) and hence K ⊆ rad(L) ⊆ rad(M [N ]) ⊆ M [P ]. Thus [K] ∈ M(M [P ]) = P

(by (i)). So [K] ∈ rad(N). Therefore M(M [N ]) ⊆ rad(N). The proof is complete.
�
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Lemma 2.7. Let M be an R-module and N a submodule of M . Then M(N) is
an ideal in the lattice M .

��������
. Let [L1], [L2] ∈ M(N). Then there exist K1 ⊆ N and K2 ⊆ N such

that K1 ∼ L1 and K2 ∼ L2. By Lemma 2.1, (K1 + K2) ∼ (L1 + L2) and so
[L1] ∨ [L2] = [L1 + L2] ∈ M(N). Now assume that [L] ∈ M(N), [K] ∈ M and

[K] 6 [L]. We must show that [K] ∈ M(N). There exists L′ ⊆ N , L′ ∼ L. Put
L1 = (K : M)L′. It is clear that L1 ⊆ N . Let Q ∈ Spec(M) and L1 ⊆ Q. Then

L′ ⊆ Q or (K : M) ⊆ (Q : M). If L′ ⊆ Q then L ⊆ rad(L) = rad(L′) ⊆ Q and
hence K ⊆ Q, because [K] 6 [L]. Now if (K : M) ⊆ (Q : M) then K ⊆ Q. Clearly

(K : M)L′ ⊆ K ⊆ Q. Thus K ∼ L1 and so [K] ∈M(N). �

Let N be a submodule of M .

Put (N : M) = {J ∈ FI(R): for all [K] ∈ M , there exists [L] ∈ N ; J [K] 6 [L]}.
It is easy to show that (N : M) is an ideal of FI(R), i.e. J1 + J2 ∈ (N : M),
IJ ∈ (N : M), where J1, J2, J ∈ (N : M) and I ∈ FI(R).

Proposition 2.8. Let M be an R-module. Then P ∈ Spec(M) if and only if
(P : M) ∈ Spec(FI(R)).
��������

. Let (P : M) = FI(R). By assumption P 6= M , so there exists [K] ∈
M \ P . Since R ∈ (P : M), we have R[K] = [K] 6 [L], for some [L] ∈ P . So
[K] ∈ P , which is a contradiction. Therefore (P : M) 6= FI(R). Assume that
I, J ∈ FI(R) are such that IJ ∈ (P : M). Let [K] ∈ M . Then there exists [L] ∈ P

such that IJ [K] 6 [L] and so [IJK] ∈ P . Clearly [(IK : M)JM ] 6 [IJK]. Hence
[IK] ∧ [JM ] = [(IK : M)JK] = [IJK] ∈ P , and so [IK] ∈ P or [JM ] ∈ P . We
conclude that I ∈ (P : M) or J ∈ (P : M) and (P : M) ∈ Spec(FI(R)). Conversely,
let [K]∧[L] = [(K : M)L] ∈ P and [T ] ∈M . Since [(K : M)(L : M)T ] 6 [(K : M)L],
we have (K : M) ∈ (P : M) or (L : M) ∈ (P : M). If (K : M) ∈ (P : M) then
[(K : M)M ] ∈ P . Since M is a multiplication module, [K] = [(K : M)M ] ∈ P .
Similarly [L] ∈ P and hence P ∈ Spec(M). �

Lemma 2.9. Let M be an R-module. If P ∈ Spec(M) then M(P ) ∈ Spec(M).
��������

. Assume that M(P ) = M . By Lemma 2.2, P = M [M ] = M , which is

a contradiction. Now let [K] ∧ [L] = [(K : M)L] ∈M(P ). Then there exists L′ ⊆ P

such that (K : M)L ∼ L′. Therefore (K : M)L ⊆ rad(L′) ⊆ P . So L ⊆ P or

K = (K : M)M ⊆ P . Thus [K] ∈M(P ) or [L] ∈M(P ). �
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3. Topologies on Spec(M) and Spec(M)

We begin this section by introducing a topology called the Zariski topology
on Spec(M) for any R-module M , in which closed sets are varieties

V (N) = {P ∈ Spec(M) : (N : M) ⊆ (P : M)}

of all submodules N of M [2, Proposition 1.1]. Similarly, for any ideal L of M , put

V (L) = {Q ∈ Spec(M) : L ⊆ Q}.

For the remainder of this section we let M be a finitely generated multiplication
R-module and Ann(M) a finitely generated ideal of R.

Lemma 3.1. Let M be an R-module. Put T = {V (L) | L is an ideal of M}.
Then T is the collection of closed sets of the Stone topology on Spec(M).
��������

. It is easy to show that V ([0]) = Spec(M) and V (M) = ∅. Let L
and N be ideals of M . We show that V (L) ∪ V (N) = V (L ∩ N). Suppose that
Q ∈ Spec(M) is such that L ∩ N ⊆ Q and L 6⊆ Q. Then there exists [K] ∈ L \Q.
Let [K1] ∈ N . Clearly [K] ∧ [K1] ∈ L ∩N . Therefore [K1] ∈ Q. Hence V (L ∩N) ⊆
V (L)∪V (N). It is clear that V (L)∪V (N) ⊆ V (L∩N). Let {Ni | i ∈ I} be a family
of ideals of M . Then

⋂
i∈I

V (Ni) = V
(∑

i∈I

Ni

)
. �

For any subset X ⊆ Spec(M), let X = {M(P ) : P ∈ X}. Since M is a finitely
generated multiplication R-module and Ann(M) is a finitely generated ideal of R,
by Lemma 2.9 X ⊆ Spec(M).

Lemma 3.2. LetM be an R-module. Then for each submodule N ofM , V (N) =
V (M(N)).
��������

. Let M(P ) ∈ V (N), so P ∈ V (N). Thus (N : M) ⊆ (P : M). Let
[L] ∈M(N). Then L ∼ L′, for some L′ ⊆ N . But (N : M)M = N and hence L′ ⊆ P .
Therefore [L] ∈M(P ). We conclude thatM(N) ⊆M(P ) and so V (N) ⊆ V (M(N)).
Now let Q ∈ V (M(N)), then M(N) ⊆ Q. By Lemma 2.5, M [Q] = P ∈ Spec(M).
Hence by Lemma 2.4, M(P ) = M(M [Q]) = Q. We claim that (N : M) ⊆ (P : M).
If rM ⊆ N then [rM ] ∈ M(N) ⊆ Q and so rR[M ] ∈ Q. Hence rM ⊆ M [Q] = P .
We conclude that Q ∈ V (N). �

Put T = {V (N) | N is a submodule of M}.
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Theorem 3.3. Let M be a finitely generated multiplication R-module and

Ann(M) a finitely generated ideal of R. Then the topological spaces (Spec(M), T )
and (Spec(M), T ) are homeomorphic.
��������

. Define

ϕ : Spec(M) −→ Spec(M); ϕ(P ) = M(P )

and

ψ : Spec(M) −→ Spec(M); ψ(L) = M [L].

By Lemmas 2.9 and 2.5, ϕ and ψ are well-defined. By Lemmas 2.2 and 2.4, we have

ψ ◦ ϕ(P ) = ψ(M(P )) = M [M(P )] = P

and

ϕ ◦ ψ(L) = ϕ(M [L]) = M(M [L]) = L.

Hence the two mappings ϕ and ψ are inverses of each other. The bijection ϕ induces

a map ϕ : T −→ T by ϕ(V (N)) = V (N). By Lemma 3.2, V (N) = V (M(N)) and
so ϕ is well-defined. We claim that this induced map is also a bijection. Suppose

V (N) = V (L). By Lemma 3.2, we have V (M(N)) = V (M(L)). We must show that
V (N) = V (L). Let P ∈ Spec(M) and (N : M) ⊆ (P : M). Suppose that rM ⊆ L.

Hence [rM ] ∈ M(L). Since M(P ) ∈ V (M(N)) = V (M(L)), we get [rM ] ∈ M(P ).
Therefore rM ⊆ P . We conclude that P ∈ V (L) and so V (N) ⊆ V (L). By symmetry
we infer that V (L) = V (N). Hence ϕ is one-to-one. Now let V (L) ∈ T . Since L is
an ideal of M , we have ϕ(V (M [L])) = V (M(M [L])) = V (L) and so ϕ is onto. �

Following M. Hochster [3], we say that a topological space W is a spectral space

if W is homeomorphic to Spec(S) with the Zariski topology, for some ring S.

Definition. A semi-reticulation for an R-moduleM is a pair (M,λ) whereM is
a distributive lattice with 0, 1 and λ : M −→M is a mapping such that

(I) λ(x+ y) 6 λ(x) ∨ λ(y);
(II) λ(rx) 6 λ(x) ∧ λ(y), for some y ∈ rM ;
(III) λ(0) = 0;
(IV) the inverse image map induced by λ is a homeomorphism between Spec(M) and

Spec(M) (with the Stone and the Zariski topologies respectively).
Moreover, if λ(m) = 1, for some m ∈M , then we say that M has a reticulation (this
generalizes [7]).
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Theorem 3.5. LetM be a finitely generated R-module and Ann(M) be a finitely
generated ideal of R. Then the following are equivalent.

(i) M is a multiplication module;
(ii) there exists a semi-reticulation for M ;

(iii) Spec(M) is spectral.
��������

. (i) → (ii) Define λ : M −→ M by λ(x) = [Rx], where x ∈ M .

Clearly (I), (II) and (III) are satisfied. By Theorem 3.3, we have λ−1(Q) = ψ(Q).
Hence the inverse image map induced by λ is a homeomorphism between Spec(M)
and Spec(M).

(ii) → (iii) It is well known that the prime ideal space of a distributive lattice
with 0, 1, is spectral under the Stone topology (see [1]). By Proposition 2.3 and
Theorem 3.3, Spec(M) is spectral.

(iii) → (i) By [5, Corollary 6.6]. �

Corollary 3.6. Let M be a finitely generated R-module. Suppose that R is

a Noetherian ring or M is a faithful module (i.e. Ann(M) = 0). Then M is multi-

plication if and only if M has a semi-reticulation.

Corollary 3.7. Let M be a cyclic R-module. Suppose that R is a Noetherian

ring or M is a faithful module, then M has a reticulation.
��������

. By Corollary 3.6, M has a semi-reticulation. Since M is a cyclic
R-module, there exists m ∈ M such that Rm = M . Therefore λ(m) = [Rm] =
[M ] = 1. We conclude that M has a reticulation. �

References

[1] R. Balbes and P. Dwinger: Distributive Lattices. Univ. of Missouri Press, Missouri,
1974.

[2] T. Duraivel: Topology on spectrum of modules. J. Ramanujan Math. Soc. 9 (1994),
25–34.

[3] M. Hochster: Prime ideal structure in commutative rings. Trans. Amer. Math. Soc. 142
(1969), 43–60.

[4] C.P. Lu: M -radicals of submodules in modules. Math. Japon. 34 (1989), 211–219.
[5] C.P. Lu: The Zariski topology on the prime spectrum of a module. Houston J. Math.
25 (1999), 417–432.

[6] R.L. McCasland, M.E. Moore and P. F. Smith: Generators for the semimodule of va-
rieties of a free module. Rocky Mountain J. Math. 29 (1999), 1467–1482.

[7] H. Simmons: Reticulated rings. J. Algebra 66 (1980), 169–192.
[8] P.F. Smith: Some remarks on multiplication modules. Arch. Math. 50 (1998), 223–235.

Author’s address: Shahid Bahonar University, Department of Mathematics, Kerman,
Iran, e-mail: rnekooei@mail.uk.ac.ir.

510


		webmaster@dml.cz
	2020-07-03T15:23:00+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




