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PRIMITIVE LATTICE POINTS INSIDE AN ELLIPSE
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To Professor Ekkehard Krätzel on his 70th birthday

Abstract. Let Q(u, v) be a positive definite binary quadratic form with arbitrary real
coefficients. For large real x, one may ask for the number B(x) of primitive lattice points
(integer points (m,n) with gcd(M, n) = 1) in the ellipse disc Q(u, v) 6 x, in particular,
for the remainder term R(x) in the asymptotics for B(x). While upper bounds for R(x)
depend on zero-free regions of the zeta-function, and thus, in most published results, on
the Riemann Hypothesis, the present paper deals with a lower estimate. It is proved that
the absolute value or R(x) is, in integral mean, at least a positive constant c time x1/4.
Furthermore, it is shown how to find an explicit value for c, for each specific given form Q.
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1. Introduction

Let Q = Q(m, n) = am2 + bmn+ cn2 be a positive definite binary quadratic form,

where a, b, c are arbitrary real numbers with a > 0, D := 4ac− b2 > 0. For a large
parameter x, we consider the lattice point quantities

A(x) = #{(m, n) ∈ � 2 : Q(m, n) 6 x},(1.1)

B(x) = #{(m, n) ∈ � 2 : Q(m, n) 6 x, gcd(m, n) = 1},

which count the number of all, resp., of all primitive lattice points in the ellipse disc
Q 6 x. It is well known that

(1.2) A(x) =
2π√
D

x + P (x), B(x) =
12

π
√

D
x + R(x),
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where P (x), R(x) are error terms on which a lot of research has been done. (For an
enlightening presentation of this theory, see the monograph of Krätzel [11].) As far
as P (x) is concerned, the sharpest published1 results read

P (x) � x23/73(log x)315/146,(1.3)

lim inf
x→∞

P (x)
x1/4(log x)1/4

< 0,(1.4)

and
∫ T

0

(P (t2))2 dt ∼ CQT 2.(1.5)

They are due to M. Huxley [6], [7], the author [15], P. Bleher [1] and the author [16].2

All these estimates have been proved for general convex planar domains with smooth
boundary of nonvanishing curvature.

The question for analogous results about R(x) remains much more enigmatic. To
see why, we recall that the generating Dirichlet series corresponding to P (x), resp.,
A(x), is the Epstein zeta-function

(1.6) ζQ(s) =
∑

(m,n)∈ � 2
∗

Q(m, n)−s (<(s) > 1),

where � 2
∗ := � 2\{(0, 0)}. It possesses an analytic continuation to the whole complex

plane, with the exception of a simple pole at s = 1, and satisfies a functional equation

(1.7) ζQ(s) =
(

2π√
D

)2s−1 Γ(1− s)
Γ(s)

ζQ(1− s).

(See Potter [18], or, for a multivariate version, Krätzel’s monograph [12], p. 202.)

By Vinogradov’s Lemma, the generating function of B(x) reads, for <(s) > 1,

(1.8)
∑

(m,n)∈ � 2
∗

gcd(m,n)=1

Q(m, n)−s =
∞∑

k=1

µ(k)
∑

(m,n)∈ � 2
∗

Q(km, kn)−s =
ζQ(s)
ζ(2s)

.

1Actually, M. Huxley has meanwhile improved further his upper bound, essentially replac-
ing the exponent 2373 = 0.315068 . . . by 131416 = 0.314903 . . . [8]. The author is indebted to
Professor Huxley for sending him a copy of his unpublished manuscript.

2 In this latter reference, actually a short interval version of this asymptotics is established.
We omit the discussion of a possible error term in (1.5) which, for the case of a general
ellipse, is by no means simple.
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By Perron’s formula, for every value of x > 0 which is not attained by Q(m, n),
(m, n) ∈ � 2

∗,

B(x) =
1

2πi

∫ 2+i∞

2−i∞

ζQ(s)
ζ(2s)

xs

s
ds.

Shifting the line of integration to the left, we are confronted with the lack of infor-
mation about the zeros of the Riemann zeta-function3: These might come close to

<(s) = 1, hence an estimate R(x) � xθ cannot be proved for any θ < 1
2 , at the

present state of art. The best known upper bound is

R(x) = O
(
x1/2 exp

(
−C(log x)3/5(log log x)−1/5

))
.

Several authors have investigated this problem under the assumption of the Riemann

Hypothesis. After previous work by Huxley & Nowak [9] and by W. Müller [14], the
sharpest conditional results of this kind are due to W. Zhai [25] and read R(x) �
x221/608+ε for a rational form Q, and R(x) � x33349/84040+ε in general. (Note that
221
608 = 0.3634 . . ., 33349

84040 = 0.3968 . . . .) See also Zhai & Cao [24] and Wu [23].

There is little hope to establish estimates for R(x) which are directly analogous
to (1.4) and (1.5).

Nevertheless, in the present paper we shall prove a result which says that at least
the lower bound part of (1.5) holds true for R(x) also.4 Trivially, this implies a
pointwise Ω-result for R(x), which is comparable to, though slightly weaker than,
formula (1.4).

Theorem. The error term R(x) defined in (1.1), (1.2) satisfies

(1.9)
1
Y

∫ Y

1

|R(x)| dx � Y 1/4,

as Y →∞, the �-constant depending on the form Q.

3 For an enlightening presentation of its theory the reader is referred to the monograph of
A. Ivić [10].

4 Ironically, our analysis actually will yield this result not although there is the cumbersome
denominator ζ(2s) in (1.8), but because it is there.
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2. A zero-density bound for Epstein zeta-functions.5

Lemma. For any positive definite binary quadratic form Q, σ ∈ � and T ∈ � + ,

denote by N∗
Q(σ, T ) the number of zeros (counted with multiplicity) of ζQ(s) with

<(s) = σ, |=(s)| 6 T , and put NQ(σ, T ) =
∑

σ′>σ

N∗
Q(σ′, T ). Then, as T →∞,

N∗
Q

(1
4
, T

)
= N∗

Q

(3
4
, T

)
6 NQ

(3
4
, T

)
= o(T log T ).

���������
. First of all, N∗

Q( 1
4 , T ) = N∗

Q( 3
4 , T ) is clear by the functional equa-

tion (1.7). To establish the o-assertion, one can follow the classical example of
Titchmarsh’s monograph [20], section 9.15. We rewrite (1.6), for <(s) > 1, as

ζQ(s) =
∞∑

k=1

rkλ−s
k = λ−s

1 (r1 + U(s)),

where rk ∈ � ∗ and (λk) is a strictly increasing sequence of positive reals. Since
U(σ + it) → 0 as σ →∞, uniformly in t, there exists some σ∗ > 1 (depending on Q)

such that |U(σ + it)| 6 1
2r1 for σ > σ∗ and all t. As a consequence,

(2.1) |ζQ(σ∗ + it)| > 1
2
r1λ

−σ∗

1

for all t, and ζQ(s) 6= 0 for <(s) > σ∗. Let further TQ := {t ∈ � : cos(t log λ1) > 3
4},

then

(2.2) |<(ζQ(σ∗ + it))| > 1
4
r1λ

−σ∗
1

for all t ∈ TQ.

We use a variant of formula (9.9.1) in [20] (“Littlewood’s Lemma”): If α > 0 and
T > 0, T ∈ TQ

6 are such that there are no zeros of ζQ(s) on <(s) = α and on

|=(s)| = T , then

(2.3)
∫

R

log ζQ(s) ds = −2πi
∫ σ∗

α

NQ(σ, T ) dσ + O(1),

5 The result stated suffices for our purpose and will be believed at first glance by the
expert. However, it is difficult to find it explicitly in the literature. Further, it cannot be
improved substantially: As Davenport & Heilbronn [3], [4], and M. Voronin [21] showed,
if Q is an integral form of class number exceeding 1, then NQ(1, T ) � T and also
NQ(α, T )−NQ(1, T )� T for 12 < α < 1.

6Obviously, for any given T0 ∈ � + , there exists some T ∈ TQ with T0 6 T � T0.
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where R is the rectangle (α ± iT ), (σ∗ ± iT ), and the logarithm is defined (almost
everywhere) by

log ζQ(σ + it) = log ζQ(σ∗) +
∫

C

ζ ′Q(s)
ζQ(s)

ds

where log ζQ(σ∗) ∈ � and C consists of the two straight line segments from σ∗ to

σ∗ + it and further to σ + it. Moreover, let arg ζQ(s) := =(log ζQ(s)). Taking the
imaginary part of (2.3), we get

2π
∫ σ∗

α

NQ(σ, T ) dσ =
∫ T

−T

log |ζQ(α + it)| dt−
∫ T

−T

log |ζQ(σ∗ + it)| dt

+
∫ σ∗

α

arg ζQ(σ + iT ) dσ −
∫ σ∗

α

arg ζQ(σ − iT ) dσ + O(1).

By (2.1), the second integral on the right-hand side is O(T ). We mimick the argument
in section 9.4 of [20] to show that (at least)

(2.4) arg ζQ(σ ± iT ) = O(T )

uniformly in α 6 σ 6 σ∗. This will readily yield

(2.5) 2π
∫ σ∗

α

NQ(σ, T ) dσ =
∫ T

−T

log |ζQ(α + it)| dt + O(T ),

for any fixed α > 0 and T → ∞. To prove (2.4), we note first that ζ ′Q(s)/ζQ(s) is
bounded on <(s) = σ∗, hence arg ζQ(σ∗±iT ) = O(T ). The variation of arg ζQ(σ±iT )
on α 6 σ 6 σ∗ is � 1 + q, q being the number of zeros of <(ζQ(σ ± iT )) on this
line segment. Further, q 6 n(σ∗ − α), if n(r) denotes the number of zeros (counted
with multiplicity) of the function G(s) := 1

2 (ζQ(s ± iT ) + ζQ(s ∓ iT )) in the disc
|s− σ∗| 6 r. Now

∫ σ∗− 1
2 α

0

n(r)
r

dr >
∫ σ∗− 1

2 α

σ∗−α

n(r)
r

dr � n(σ∗ − α),

and, by Jensen’s theorem,

∫ σ∗− 1
2 α

0

n(r)
r

dr =
1
2π

∫ 2 �
0

log
∣∣∣G

(
σ∗ +

(
σ∗ − 1

2
α
)
eiθ

)∣∣∣ dθ − log |G(σ∗)| � log T,

since |G(σ∗)| � 1 because of T ∈ Tq and (2.2). This establishes (2.4) and thus (2.5).
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According to W. Müller [14]7, Proposition 2, at least for every α > 2
3 ,

∫ T

0

|ζQ(α + it)|2 dt � T 1+ε

for any ε > 0. Hence, by Jensen’s inequality (e.g., [5], p. 1132) and the reflection
principle, for suitable α ∈ ] 23 , 3

4 [,

∫ T

−T

log |ζQ(α + it)| dt 6 T log
(

1
T

∫ T

0

|ζQ(α + it)|2 dt

)
� εT log T.

Thus, by (2.5), for σ0 = 1
2 (α + 3

4 ),

NQ(σ0, T ) 6 1
σ0 − α

∫ σ0

α

NQ(σ, T ) dσ � εT log T.

Since ε > 0 is arbitrary, this establishes the lemma. �

3. Proof of the Theorem

Following an idea due to Pintz [17], we consider the Mellin transform, for <(s) > 1,

H(s) :=
∫ ∞

1

R(x)x−s−1 dx(3.1)

=
∫ ∞

1

( ∑

Q(m,n)6x
gcd(m,n)=1

1− 12
π
√

D
x

)
x−s−1 dx

=
∑

(m,n)∈ � 2
∗

gcd(m,n)=1

∫ ∞

Q(m,n)

x−1−s dx− 12
π
√

D

∫ ∞

1

x−s dx

=
ζQ(s)
sζ(2s)

− 12
π
√

D

1
s− 1

=:
E(s)

s(s− 1)ζ(2s)(2s− 1)
.

Obviously H(s) possesses a meromorphic continuation to all of � , with E(s) an
entire function. Now choose z0 = 1

4 + iβ0 such that 2z0 is a zero of the Riemann
zeta-function and ζQ(z0) 6= 0. (The existence follows from the above lemma and a

7 In fact, Müller proves this bound more generally for the Hlawka zeta-function of a convex
planar domain with smooth boundary of nonvanishing curvature. Similar results can be
found in Huxley & Nowak [9] and in W. Zhai [25].
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celebrated result of Selberg [19], refined further by Levinson [13] and Conrey [2].)

The function

(3.2) g(s) :=
s(s− 1)ζ(2s)(2s− 1)

(s− z0)(s + 2)7

is regular in <(s) > −2, and so is

(3.3) g(s)H(s) =
E(s)

(s− z0)(s + 2)7
,

apart from a simple pole at s = z0, since E(z0) = (z0 − 1)(2z0 − 1)ζQ(z0) 6= 0. By
the functional equation (1.7), ζQ(−1 + it) � |t|3, and similarly ζ(−2 + 2it) � |t|5/2,
as |t| → ∞, hence the integrals

∫ β+i∞
β−i∞ |g(s)| ds and

∫ β+i∞
β−i∞ |g(s)H(s)| ds converge for

β ∈ {−1, 2}. For η > 0, we define a weight function

(3.4) w(η) :=
∫ 2+i∞

2−i∞
g(s)ηs+1 ds,

which satisfies

(3.5) w(η) =

{
O(1) for η > 1,

0 for 0 < η < 1.

(To see this, one can shift the line of integration to
∫ −1+i∞
−1−i∞ in the first case and

to
∫ C+i∞

C−i∞ , with C →∞, in the second case.) Thus, for Y > 0,

V (Y ) :=
1
Y

∫ ∞

1

R(x)w
(Y

x

)
dx(3.6)

=
1
Y

∫ ∞

1

R(x)
(∫ 2+i∞

2−i∞
g(s)

(Y

x

)s+1

ds

)
dx

=
∫ 2+i∞

2−i∞
g(s)Y s

(∫ ∞

1

R(x)x−s−1 dx

)
ds

=
∫ 2+i∞

2−i∞
g(s)H(s)Y s ds.

Shifting the line of integration to <(s) = −1, we get, for Y large,

V (Y ) = 2πi Res
s=z0

(g(s)H(s)Y s) +
∫ −1+i∞

−1−i∞
g(s)H(s)Y s ds(3.7)

= 2πiα0Y
z0 + O(Y −1),
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where

(3.8) α0 =
E(z0)

(z0 + 2)7
=

(z0 − 1)(2z0 − 1)ζQ(z0)
(z0 + 2)7

.

From this it is evident that, as Y →∞,

(3.9) |V (Y )| � |Y z0 | = Y 1/4

and, on the other hand, in view of (3.5),

(3.10) |V (Y )| =
∣∣∣∣
1
Y

∫ Y

1

R(x)w
(Y

x

)
dx

∣∣∣∣ �
1
Y

∫ Y

1

|R(x)| dx,

which completes the proof of our theorem. �

4. How to get an estimate with an explicit constant

The above argument was clearly non-effective, as far as the �-constant in (1.9) is
concerned: In particular, our lemma only guarantees the existence of a Riemann-zeta

zero 2z0 for which ζQ(z0) 6= 0, but gives no possibility to estimate it.
In this final section, we shall therefore show how to obtain a lower bound8 for

K0 := lim inf
Y→∞

(
Y −5/4

∫ Y

1

|R(x)| dx

)
,

for any specific given form Q(m, n). Our first step is to show that

(4.1) |w(η)| 6 0.33,

for all η > 0 and any Q. In fact, by (3.4) and (3.2),

|w(η)| =
∣∣∣∣
∫ −1+i∞

−1−i∞
g(s)ηs+1 ds

∣∣∣∣ 6
∫ ∞

−∞
|g(−1 + it)| dt

6
∫ ∞

−∞

∣∣∣(−1 + it)(−2 + it)(−3 + 2it)
(1 + it)7(− 5

4 + i(t− β0))

∣∣∣|ζ(−2 + 2it)| dt,

if we recall that z0 = 1
4 + iβ0. We further use the functional equation (e.g., [20],

formulæ (2.1.9), (2.1.10))

ζ(−2 + 2it) = π−5/2+2it Γ( 3
2 − it)

Γ(−1 + it)
ζ(3− 2it),

8However, we shall not invest too much effort to make this bound as large as possible.
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along with well-known identities for the Γ-function (in particular formula 8.332 in [5])
which imply ∣∣∣∣

Γ( 3
2 − it)

Γ(−1 + it)

∣∣∣∣ 6
∣∣∣
(1

2
+ it

)
(−1 + it)

∣∣∣
√
|t|.

Thus

|w(η)| 6 ζ(3)
π5/2

∫ ∞

−∞

∣∣∣
(−1 + it)2(−2 + it)(−3 + 2it)( 1

2 + it)
(1 + it)7(− 5

4 + i(t− β0))

∣∣∣
√
|t| dt

6 ζ(3)
π5/2

(
2

∫ ∞

0

(4 + t2)(9 + 4t2)( 1
4 + t2)t

(1 + t2)5
dt

∫ ∞

−∞

dt
25
16 + (t− β0)2

)1/2

,

by Cauchy’s inequality. The integrals are evaluated to 143
32 (with a little help from

Mathematica [22], for instance) and 4
5π, which readily gives (4.1). By (3.10) and

(3.7), it follows that

(4.2) K0 > 6π|α0|,

thus it remains to estimate |α0| (see (3.8)), in particular |ζQ(z0)|, for any fixed formQ

and some fixed Riemann-zeta zero 2z0 on the critical line. To this end, we employ a
classical formula due to Potter [18], formula (2.22), which approximates the Epstein

zeta-function by a partial sum of its series, throughout the half-plane <(s) > − 1
4 ,

s 6= 1. In our notation,

(4.3) ζQ(s) = F1(Z, s) + F2(Z, s),

where Z is a positive real parameter,

F1(Z, s) :=
∑

(m,n)∈ � 2
∗

Q(m,n)6Z

Q(m, n)−s + sZ−s−1
∑

(m,n)∈ � 2

Q(m,n)6Z

Q(m, n)(4.4)

− (1 + s)Z−s
∑

(m,n)∈ � 2

Q(m,n)6Z

1 +
π√
D

s(s + 1)
(s− 1)

Z1−s,

F2(Z, s) := s(s + 1)
∫ ∞

Z

v−s−2P1(v) dv,(4.5)

where, for v > 0,

P1(v) :=
∫ v

0

P (w) dw =
√

D

2π
v

∑

(m,n)∈ � 2
∗

Q(m, n)−1J2

(
4π

√
v

D
Q(m, n)

)
,
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J2 being the usual Bessel function (see [18], Lemma 1). To estimate |F2(Z, s)|, we
use that |J2(x)| 6 x−1/2 for x > 0, which is easily verified by formula 8.451 in [5].
This gives

(4.6) |P1(v)| 6 D3/4

4π3/2
v3/4

∑

(m,n)∈ � 2
∗

Q(m, n)−5/4.

To bound this series, let κQ := inf
(u,v)∈ � 2

∗
Q(u, v)/(u2 + v2), then a calculus exercise

yields: If τ± := 1
b (a− c±

√
(a− c)2 + b2) for b 6= 0, then

(4.7) κQ =





min
(Q(τ+, 1)

τ2
+ + 1

,
Q(τ−, 1)
τ2
− + 1

)
if b 6= 0,

min(a, c) if b = 0.

Hence

∑

(m,n)∈ � 2
∗

Q(m, n)−5/4 6 κ
−5/4
Q

∞∑

k=1

r(k)k−5/4 = 4κ
−5/4
Q ζ

(5
4

)
L

(5
4

)
,

where r(k) counts the number of ways to express k as a sum of two squares, and
L(s) is the Dirichlet L-series9 corresponding to the non-principal Dirichlet character

mod 4. Combining this with (4.5) and (4.6), we obtain altogether, provided that10

<(s) = 3
4 ,

(4.8) |F2(Z, s)| 6 |s(s + 1)|D
3/4

π3/2
κ
−5/4
Q ζ(

5
4
)L(

5
4
)
1
Z

.

For a given form Q, one can therefore proceed as follows: Choose, e.g., z∗0 = 1
4 + iβ∗0

with β∗0 = 7.06736 . . . so that ζ(2z∗0) = 0, then by the functional equation (1.7),

|ζQ(z∗0)| =
( 2π√

D

)−1/2 |Γ(1− z∗0)|
|Γ(z∗0)| |ζQ(1− z∗0)|.

Combining this with (4.2), (3.8), and (4.3), we arrive at

K0 > 6π
∣∣(z∗0 − 1)(2z∗0 − 1)(z∗0 + 2)7

∣∣(4.9)

×
( 2π√

D

)−1/2 |Γ(1− z∗0)|
|Γ(z∗0)| (|F1(Z, 1− z∗0)| − |F2(Z, 1− z∗0)|)

9 The evaluation of L( 54 ) can be done by Mathematica [22], via the identity L(s) =
2−sΦ(−1, s, 12 ), where Φ is the Lerch Phi-function: see [5], formula 9.550.

10 For better convergence, our strategy is to bound |ζQ(1 − z0)| away from 0, and then to
appeal to the functional equation.
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where Z remains a free parameter and |F1(Z, 1−z∗0)|, |F2(Z, 1−z∗0)| can be evaluated,
resp., estimated by (4.4), (4.8). The only thing that could go wrong is that |ζQ(1−z∗0)|
is so small (or actually 0) that we cannot get a positive lower bound for the last
bracket in (4.9). In this case, we can take one of the next Riemann-zeta zeros

instead of 2z∗0 . �

Example. Let us consider the special (irrational) quadratic form

Q0(m, n) = m2 +
√

2 mn +
√

3n2.

Choosing Z = 1000 and employing Mathematica [22] to evaluate (4.4), resp., (4.8),
we obtain |F1(1000, 1− z∗0)| = 0.422182 . . ., |F2(1000, 1− z∗0)| 6 0.236529 . . ., hence
|F1(1000, 1− z∗0)| − |F2(1000, 1− z∗0)| > 0.185653 . . .. Using this in (4.9), we finally

arrive at

K0 = lim inf
Y→∞

(
Y −5/4

∫ Y

1

|R(x)| dx

)
> 4× 10−4

for this particular form Q0.

Applying to the integral
∫ −1+i∞
−1−i∞ g(s)H(s)Y s ds in (3.7) similar arguments as we

used to estimate w(η), one can replace the lim inf-bound by an inequality valid for
all Y > 0. For the form Q0 we obtain in this way

Y −5/4

∫ Y

1

|R(x)| dx > 4× 10−4 − 3.62 Y −5/4,

which is non-trivial for Y > 1500.

References

[1] P. Bleher: On the distribution of the number of lattice points inside a family of convex
ovals. Duke Math. J. 67 (1992), 461–481.

[2] J.B. Conrey: More than two fifth of the zeros of the Riemann zeta-function are on the
critical line. J. Reine Angew. Math. 399 (1989), 1–26.

[3] H. Davenport and H. Heilbronn: On the zeros of certain Dirichlet series I. J. London
Math. Soc. 11 (1936), 181–185.

[4] H. Davenport and H. Heilbronn: On the zeros of certain Dirichlet series II. J. London
Math. Soc. 11 (1936), 307–312.

[5] I. S. Gradshteyn and I.M. Ryzhik: Table of Integrals, Series, and Products, 5th ed.
(A. Jeffrey, ed.). Academic Press, San Diego, 1994.

[6] M.N. Huxley: Exponential sums and lattice points II. Proc. London Math. Soc. 66
(1993), 279–301.

[7] M.N. Huxley: Area, Lattice Points, and Exponential Sums. LMS Monographs, New Ser.
Vol. 13. Clarendon Press, Oxford, 1996.

[8] M.N. Huxley: Exponential sums and lattice points III. Proc. London Math. Soc. 87
(2003), 591–609.

529



[9] M.N. Huxley and W.G. Nowak: Primitive lattice points in convex planar domains. Acta
Arithm. 76 (1996), 271–283.
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