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Abstract. Let S be a non-empty subset of positive integers. A partition of a positive
integer n into S is a finite nondecreasing sequence of positive integers a1, a2, . . . , ar in S with

repetitions allowed such that
r∑

i=1
ai = n. Here we apply Pólya’s enumeration theorem to find

the number P(n;S) of partitions of n into S, and the number DP(n;S) of distinct partitions
of n into S. We also present recursive formulas for computing P(n;S) and DP(n;S).

Keywords: Pólya’s enumeration theorem, partitions of a positive integer into a non-empty
subset of positive integers, distinct partitions of a positive integer into a non-empty subset
of positive integers, recursive formulas and algorithms

1. Introduction

Let S be a non-empty subset of positive integers. A partition of a positive integer n
into S is a finite nondecreasing sequence of positive integers a1, a2, . . . , ar in S with

repetitions allowed such that
r∑

i=1

ai = n. The ai’s are called the parts of a partition

of n.

Example 1. (a) Let S be the set of positive integers. Then the partition of posi-
tive integer n into S is the “usual” partition of n. For instance, there are 7 partitions

of 5. Namely, 5, 1 + 4, 2 + 3, 1 + 1 + 3, 1 + 2 + 2, 1 + 1 + 1 + 2 and 1 + 1 + 1 + 1 + 1.
(Usually, one writes the sequence as a series to indicate the sum is 5.) We note that

each of the first three has distinct parts.

(b) Let S be the set of all odd positive integers. Then there are 3 odd partitions
of 5. Namely, 5, 1 + 1 + 3 and 1 + 1 + 1 + 1 + 1.

611



(c) Let S be the set of all positive integers each of which is not a multiple of 3.
Then there are 7 partitions of 6. Namely, 5+1, 4+2, 4+1+1, 2+2+2, 2+2+1+1,
2 + 1 + 1 + 1 + 1 and 1 + 1 + 1 + 1 + 1 + 1.
(d) Let S be the set of all positive integers each of which is not a multiple of 3, 4

or 5. Then there are 4 partitions of 6. Namely, the last 4 partitions in (c).

(e) Let S = {1, 2, 4}. Then there are 4 partitions of 5. Namely, 1 + 4, 1 + 2 + 2,
1 + 1 + 1 + 2 and 1 + 1 + 1 + 1 + 1. There are 3 partitions of 9 with 1, 2, 3, 4 or
5 parts. Namely, 1 + 4 + 4, 1 + 2 + 2 + 4 and 1 + 2 + 2 + 2 + 2.

There are many results on the partitions of positive integers. (See [1].) Here we

will apply Pólya’s enumeration theorem ([5], [2], [4], [6]) to the partitions of positive
integers into S for any non-empty subset S of positive integers. Based on this

application, we obtain a recursive formula for the number P(n; S) of partitions of a
positive integer n into S and a recursive formula for the numberDP(n; S) of partitions
of a positive integer n into S with distinct parts. Based on these recursive formulas,
we present computer programs for computing P(n; S) and DP(n; S); in particular,
P(n; I), P(n; 0), DP(n; I) and DP(n; 0) as well as some subsets of positive integers
where I is the set of positive integers and O is the set of positive odd integers.

2. Pólya’s Enumeration Theorem

We shall state Pólya’s Enumeration Theorem. Let G be a permutation group
acting on a set {1, 2, . . . , n}. Since every permutation can be uniquely written as a
product of disjoint cycles, the cycle index G is defined as the following polynomial
in Q[x1, x2, . . . , xn] where Q is the field of rational numbers and xixj = xjxi for

i, j = 1, 2, . . . , n:

ZG(x1, x2, . . . , xn) =
1
|G|

∑

σ∈G

xb1
1 xb2

2 . . . xbn
n

where |G| is the order of G and bi is the number of cycles of length i in the disjoint

cycle decomposition of σ for i = 1, 2, . . . , n.

Pólya’s Enumeration Theorem. Let D be a finite set and S a countable set, SD the

set of all functions from the domain D into the codomain S, G a permutation group
acting on D, w a function, called the weight function, from S into R where R is a

commutative ring with an identity containing the field of rational numbers Q, and
let a relation be defined on SD such that for f, g ∈ SD, f ∼ g if and only if there

exists a σ ∈ G with

f(σd) = g(d) for every d ∈ D.
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(Since G is a group, the relation ∼ is an equivalence relation. Consequently, SD is

partitioned into disjoint equivalence classes each of which is called a pattern.) Then
the total pattern or the counting series is

(1) ZG

(∑

s∈S

w(s),
∑

s∈S

(w(s))2, . . . ,
∑

s∈S

(w(s))t, . . .

)
.

3. Counting partitions of a positive integer

Theorem 1. (a) For any positive integer k, let Dk = {1, 2, . . . , k}, let S be a

non-empty subset of positive integers, SDk the set of all functions from Dk into S,

let the symmetric group Sk act on Dk, let the weight function w : S → Q[x] be
defined as w(i) = xi for all i in S, and for f, g ∈ SDk , f ∼ g if and only if there exists

a σ ∈ Sk such that f(σd) = g(d) for every d in Dk. Then the number of partitions of

a positive integer n with k parts into S is the coefficient of xn in the counting series

(2) ZSk

(∑

i∈S

xi,
∑

i∈S

x2i, . . . ,
∑

i∈S

xki

)
;

(b) the number P(n; S) of partitions of n into S is the coefficient of xn in the counting

series

(3)
∞∑

k=1

ZSk

(∑

i∈S

xi,
∑

i∈S

x2i, . . . ,
∑

i∈S

xki

)
.

���������
. (a) We claim that each equivalence class in SDk with weight n (i.e., every

function in the equivalence class has weight n) determines a partition of n into S

with k parts. Let E be an equivalence class with weight n in SDk , and let f be a
function in E. Then f has k values with repetition allowed in S such that w(f) =
xn. Since S is a subset of positive integers, we may arrange the k values of f in
a nondecreasing order, say, j1 6 j2 6 . . . 6 jk. Since w(f) = xn and w(f) =
k∏

i+1

w(f(i)) = xj1+j2+...+jk , we have j1 + j2 + . . . + jk = n. Thus, f corresponds to a

partition of n into S with k parts. Since Sk acts on Dk and f(σd) = g(d) for some
σ ∈ Sk and all d ∈ Dk, the equivalence class containing f consists of all functions

in SDk such that each has the function values {j1, j2, . . . , jk}. Thus, each equivalence
class with weight n corresponds to a partition of n into S with k parts.

Conversely, each partition t1 6 t2 6 . . . 6 tk of n into S with k parts determines
an equivalence class with weight n in SDk . Clearly, h(i) = ti for i = 1, 2, . . . , k is a
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function in SDk , and w(h) =
k∏

i=1

xti = xt1+t2+...+tk = xn. Thus, the partition of n

into S with k parts determines the equivalence class containing h in SDk .

By Pólya’s enumeration theorem, the coefficient of xn in the counting series

(2) ZSk

(∑

i∈S

xi,
∑

i∈S

x2i, . . . ,
∑

i∈S

xki

)

is the number of partitions of n into S with k parts.

(b) Summing over k = 1, 2, . . ., we obtain

(3)
∞∑

k=1

ZSk

(∑

i∈S

xi,
∑

i∈S

x2i, . . . ,
∑

i∈S

xki

)
.

In (3), the coefficient of xn is the number of partitions of n into S with k parts for

k = 1, 2, . . ., i.e., the coefficient of xn is the number of partitions of n into S. �

Example 2. Let D3 = {1, 2, 3}, let S be the set of all positive integers =
{1, 2, . . . , n, . . .}, SD3 the set of all functions from D3 into S, let

S3 = {1, (123), (132), (12), (13), (23)}

act on D3, and let let w : S → Q[x] be defined as w(i) = xi for i = 1, 2, 3, . . . Then
the cycle index is

ZS3(x1, x2, x3) = 1
6 (x3

1 + 2x3 + 3x1x2),

and
∑
i∈S

w(i) =
∞∑

i=1

xi (a formal power series),
∑
i∈S

(w(i))2 =
∞∑

i=1

x2i,
∑
i∈S

(w(i))3 =

∞∑
i=1

x3i. By (2), we have

ZS3

( ∑

i∈S

xi,
∑

i∈S

x2i,
∑

i∈S

x3i

)
= ZS3

( ∞∑

i=1

xi,

∞∑

i=1

x2i,

∞∑

i=1

x3i

)

= 1
6

(
(x1 + x2 + x3 + . . . + xm + . . .)3 + 2(x3 + x6 + x9 + . . . + x3m + . . .)

+ 3(x1 + x2 + x3 + . . . + xm + . . .)(x2 + x4 + x6 + . . . + x2m + . . .)
)

= 1
6

(
(x3 + 3x4 + 6x5 + 10x6 + 15x7 + 21x8 + . . .) + (2x3 + 2x6 + . . .)

+ (3x3 + 3x4 + 6x5 + 6x6 + 9x7 + 9x8 + . . .)
)

= x3 + x4 + 2x5 + 3x6 + 4x7 + 5x8 + . . . ,

which means:
For n = 1 or 2, there is no partition of n with 3 parts.
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For n = 3, there is 1 partition of 3 with 3 parts. (Namely, 1 + 1 + 1.)
For n = 4, there is 1 partition of 4 with 3 parts. (Namely, 1 + 1 + 2.)
For n = 5, there are 2 partitions of 5 with 3 parts. (Namely, 1+1+3 and 1+1+2.)
For n = 6, there are 3 partitions of 6 with 3 parts. (Namely, 1 + 1 + 4, 1 + 2 + 3

and 2 + 2 + 2.)
For n = 7, there are 4 partitions of 7 with 3 parts. (Namely, 1 + 1 + 5, 1 + 2 + 4,

1 + 3 + 3 and 2 + 2 + 3.)
For n = 8, there are 5 partitions of 8 with 3 parts. (Namely, 1 + 1 + 6, 1 + 2 + 5,

1 + 3 + 4, 2 + 2 + 4 and 2 + 3 + 3.)

Example 3. Let S = {1, 2, 4}. Let Dt = {1, 2, . . . , t} for t = 1, 2, 3, 4, let SDt , w

and St be defined similarly to Example 2. We know the following cycle indices:

ZS1(x1) = x1,

ZS2(x1, x2) = 1
2 (x2

1 + x2),

ZS3(x1, x2, x3) = 1
6 (x3

1 + 3x1x2 + 2x3),

and

ZS4(x1, x2, x3, x4) = 1
24 (x4

1 + 6x2
1x2 + 8x1x3 + 3x2

2 + 6x4).

Then

4∑

k=1

ZSk

(∑

i∈S

xi,
∑

i∈S

x2i, . . .

)

= [(x + x2 + x4)] +
1
2
[(x + x2 + x4)2 + (x2 + x4 + x8)]

+
1
6
[(x + x2 + x4)3 + 3(x + x2 + x4)(x2 + x4 + x8) + 2(x3 + x6 + x12)]

+
1
24

[(x + x2 + x4)4 + 6(x + x2 + x4)2 + 8(x + x2 + x4)(x3 + x6 + x12)

+ 3(x2 + x4 + x8)2 + 6(x4 + x8 + x16)]

= x + 2x2 + 2x3 + 4x4 + 3x5 + 4x6 + 3x7 + 4x8 + 2x9 + 3x10 + x11

+ 2x12 + x13 + x14 + x16,

which means, for instance, for n = 6, there are 4 partitions of 6 with 1, 2, 3 or
4 parts. (Namely, 2 + 4, 1 + 1 + 4, 2 + 2 + 2 and 1 + 1 + 2 + 2.)

Using Theorem 1 we can obtain a recursive formula for P(n; S) with n > 1. Clearly,
P(1; S) = 1 if 1 ∈ S, and P(1; S) = 0 if 1 6∈ S.
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Corollary 1.1.

(4) P(n; S) =
1
n

( ∑

i|n,i∈S

i +
n−1∑

k=1

( ∑

i|k, i∈S

i

)
P(n− k; S)

)
for n > 1.

Remark. If there exists no positive integer i such that i | k and i ∈ S, then∑
i|k, i∈S

i = 0.

In order to prove Corollary 1.1, we need two identities which can be found in [4].
First,

(5) 1 +
∞∑

k=1

ZSk
(f(x), f(x2), . . . , f(xk)) = exp

( ∞∑

k=1

f(xk)
k

)

where f(x) is a function of x or a series of x.
Second, if

(6)
∞∑

m=0

Amxm = exp
( ∞∑

m=1

amxm

)
,

then, for m > 1,

am = Am −m−1

(m−1∑

k=1

kakAm−k

)
.

���������
of Corollary 1.1. By Theorem 1, we have

(7) 1 +
∞∑

n=1

P(n; S)xn = 1 +
∞∑

k=1

ZSk

(∑

i∈S

xi,
∑

i∈S

x2i, . . . ,
∑

i∈S

xki

)
.

By (5), the right-hand side of (7) is exp
( ∞∑

k=1

(∑
i∈S

xki/k
))
. So,

1 +
∞∑

n=1

P(n; S)xn = exp
( ∞∑

k=1

(∑

i∈S

xki

k

))
= exp

( ∞∑

k=1

(∑

i∈S

ixki

ki

))

= exp
( ∞∑

n=1

1
n

( ∑

i|n, i∈S

i

)
xn

)
.

By (6), we have

1
n

∑

i|n, i∈S

i = P(n; S)− 1
n

(n−1∑

k=1

k · 1
k

( ∑

i|k, i∈S

i

)
P(n− k; S)

)
.
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Hence,

P(n; S) =
1
n

( ∑

i|n, i∈S

i +
n−1∑

k=1

( ∑

i|k, i∈S

i

)
P(n− k, S)

)
.

Now we consider the set of positive integers I = {1, 2, . . . , n, . . .} and the set of
positive odd integers O = {1, 3, . . . , 2n − 1, . . .}. By using Corollary 1.1, we obtain
recursive formulas P(n; I) and P(n; O) where n is a positive integer.

Corollary 1.2. (a) P(1; I) = 1 and for n > 1,

(8) P(n; I) =
1
n

( ∑

i|n, i∈S

i +
n−1∑

k=1

( ∑

i|k, i∈S

i

)
P(n− k; I)

)
.

(b) P(I ; O) = 1 and for n > 1,

(9) P(n; O) =
1
n

( ∑

i|n, i∈O

I +
n−1∑

k=1

( ∑

i|k, i∈O

i

)
P(n− k; O)

)
.

���������
. (a) (8) is obtained by substituting I for S in (4) in Corollary 1.1 and

(9) is obtained by substituting O for S in (4) in Corollary 1.1. �

Example 4. We use Corollary 1.2 to compute P(n; I) and P(n; O) for n =
1, 2, 3, 4, 5.

P(1; I) = 1,

P(2; I) = 1
2 (3 + P(1; I)) = 1

2 (3 + 1) = 2,

P(3; I) = 1
3 (4 + P(2; I) + 3P(1; I) = 1

3 (4 + 2 + 3) = 3,

P(4; I) = 1
4 (7 + P(3; I) + 3P(2; I) + 4P(1; I)) = 1

4 (7 + 3 + 6 + 4) = 5,

P(5; I) = 1
5 (6 + P(4; I) + 3P(3; I) + 4P(2; I) + 7P(1; I))

= 1
5 (6 + 5 + 9 + 8 + 7) = 7,

P(1; O) = 1,

P(2; O) = 1
2 (1 + P(1; O)) = 1

2 (1 + 1) = 1,

P(3; O) = 1
3 (4 + P(2; O) + P(1; O) = 1

3 (4 + 1 + 1) = 2,

P(4; O) = 1
4 (1 + P(3; O) + P(2; O) + 4P(1; O)) = 1

4 (1 + 2 + 1 + 4) = 2,

P(5; O) = 1
5 (6 + P(4; O) + P(3; O) + 4P(2; O) + P(1; O))

= 1
5 (6 + 2 + 2 + 4 + 1) = 3.
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4. Counting partitions of a positive integer into distinct parts

Theorem 2. (a) Let k, Dk, S, Sk, SDk and w be the same as in Theorem 1.

Also, let F be a subset of all one-to-one functions in SDk , and for f, g ∈ F, f ∼ g if

and only if there exists a σ ∈ Sk such that f(σd) = g(d) for every d in Dk. Then

the number of partitions of a positive integer n with k distinct parts into S is the

coefficient of xn in the counting series

(10) ZAk

(∑

i∈S

xi,
∑

i∈S

x2i, . . . ,
∑

i∈S

xki

)
− ZSk

(∑

i∈S

xi,
∑

i∈S

x2i, . . . ,
∑

i∈S

xki

)

where Ak is the alternating subgroup of Sk, and ZA1(x1) − ZS1(x1) is defined to
be x1.

(b) The number DP(n; S) of partitions of n into S with distinct parts is the

coefficient of xn in the counting series

(11)
∞∑

k=1

(
ZAk

(∑

i∈S

xi,
∑

i∈S

x2i, . . . ,
∑

i∈S

xki

)
− ZSk

(∑

i∈S

xi,
∑

i∈S

x2i, . . . ,
∑

x∈S

xki

))
.

The proofs are similar to those of Theorem 1 using the cycle indices of Ak and Sk

for one-to-one functions. (See p. 48 in [4].)
Similarly to (5), we have

1 +
∞∑

k=1

ZAk
(f(x), f(x2), . . . , f(xk))− ZSk

(f(x), f(x2), . . . , f(xk))(12)

= exp
( ∞∑

k=1

(−1)k+1 f(xk)
k

)

where f(x) is a function of x or a series of x. By using Theorem 2, (12) and (6), we
obtain a recursive formula for DP(n; S) with n > 1. Clearly, DP(1; S) = 1 if 1 ∈ S,
and DP(1; S) = 0 if 1 6∈ S.

Corollary 2.1.

DP(n; S) =
1
n

( ∑

i|n, i∈S

(−1)n/i+1 i +
n−1∑

k=1

( ∑

i|k, i∈S

(
(−1)k/i+1 i

)
DP(n− k; S)

))
(13)

for n > 1.

By using Corollary 1.2 and Corollary 2.1, we can prove a well-known result which

can be found in [1].
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Corollary 2.2 (Euler). DP(n; I) = P(n; O), i.e., the number of partitions of n

into distinct parts is equal to the number of partitions of n into odd parts.
���������

. For n = 1, DP(1; I) = P(I ; O) = 1. For n > 1, comparing the
formulas for P(n; O) in Corollary 1.2 with the formula for DP(n; S) with S = I in

Corollary 2.1, we need only to prove that

(14)
∑

i|n, i∈I

(−1)(n/i)+1 i +
∑

i|n, i∈O

i.

There are two cases to be considered.
Case 1. n is odd. i | n implies i and n/i are odd, so i ∈ O and (n/i) + 1 is even.

Thus, (14) holds.
Case 2. n is even. n can be written as n = 2td where t > 1 and d is odd. Thus, a

factor of n must have the form 2jh where 0 6 j 6 t and h | d, and

∑

i|n, i∈I

(−1)(n/i)+1 i =
∑

h|d, 06j6t

(−1)(2
td/(2jh))+1 2jh =

∑

h|d
h

( t∑

j=0

(−1)2
t−j(d/h)+1 2j

)
.

Since

t∑

j=0

(−1)2
t−j(d/h)+1 2j = − 1− 2− 22 − 23 − . . .− 2t−1 + 2t

= − (2t − 1) + 2t = 1,

we have
∑

i|n, i∈I

(−1)(n/i)+1 i =
∑

h|d
h =

∑

h|n, h∈O

h =
∑

i|n, i∈O

i.

Thus, (14) again holds. �

Example 5. Let D3, S, SD3 , S3 and w be the same as in Example 2. We know

that A3 = {1, (123), (132)} and ZA3(x1, x2, x3) = 1
3 (x3

1 + 2x3).
From Example 2 we have

ZS3

( ∞∑

i=1

xi,

∞∑

i=1

x2i,

∞∑

i=1

x3i

)
= x3 + x4 + 2x5 + 3x6 + 4x7 + 5x8 + . . .

ZA3

( ∞∑

i=1

xi,

∞∑

i=1

x2i,

∞∑

i=1

x3i

)
=

1
3
(
(x3 + 3x4 + 6x5 + 10x6 + 15x7 + 21x8 + . . .)

+ 2(x3 + x6 + x9 + . . .)
)

= x3 + x4 + 2x5 + 4x6 + 5x7 + 7x8 + . . .
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By Theorem 2(a), the number of partitions of n with 3 distinct parts into the set

of positive integers is the coefficient of xn in the counting series

ZA3

( ∞∑

i=1

xi,

∞∑

i=1

x2i,

∞∑

i=1

x3i

)
= ZS3

( ∞∑

i=1

xi,

∞∑

i=1

x2i,

∞∑

i=1

x3i

)
= x6 + x7 + 2x8 + . . .

For n = 6, 1 + 2 + 3 is the only partition of 6 with 3 distinct parts.
For n = 7, 1 + 2 + 4 is the only partition of 7 with 3 distinct parts.
For n = 8, 1+2+5 and 1+3+4 are the only partitions of 8 with 3 distinct parts.

Example 6. Let Dk = {1, 2, . . . , k} and S = {1, 2, 4}. We want to compute
DP(n; S). Since S contains only 3 positive integers, none of the functions from Dk,
k > 4, into S can be one-to-one. Hence, to compute DP(n; S), we only have to
compute the following with ZA1(x1)− ZS1(x1) being defined to be x1:

3∑

k=1

(
ZAk

(∑

i∈S

xi,
∑

i∈S

x2i, . . . ,
∑

i∈S

xki

)
− ZSk

(∑

i∈S

xi,
∑

i∈S

x2i, . . . ,
∑

i∈S

xki

)

= (x + x2 + x4) + (x + x2 + x4)2 − 1
2

(
(x + x2 + x4)2 + (x2 + x4 + x8)

)

+ 1
3

(
(x + x2 + x4)3 + 2(x3 + x6 + x12)

)

− 1
6

(
(x + x2 + x4)3 + 3(x + x2 + x4)(x2 + x4 + x8) + 2(x3 + x6 + x12)

)

= (x + x2 + x4) + (x3 + x5 + x6) + x7 = x + x2 + x3 + x4 + x5 + x6 + x7.

Thus, the distinct partitions of n into S = {1, 2, 4} are 1, 2, 4, 1+2, 1+4, 2+4 and
1 + 2 + 4.

5. Algorithms

(a) An algorithm for computing P(n; S) where n is a positive integer and S is a
non-empty subset of positive integers.

Based on the recursive formula for P(n; S) from Corollary 1.1, an algorithm for
computing P(n; S) can be given as follows:

Step 1: Determine P(1; S), P(1; S) = 1 if 1 ∈ S; otherwise, P(1; S) = 0. This is
the base case of the algorithm.

Step 2: Compute the sum of factors of a positive integer k 6 n. The factors should

be in S. Use SumOfFactors (k, S) to denote the sum.
Step 3: Recursively compute P(n; S) using the formula. An implementation of the

algorithm is described as follows:
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Input n and S;

If (n == 1 and 1 ∈ S) then
P(n; S) := 1;

If (n == 1 and 1 6∈ S) then
P(n; S) := 0;

Sum := 0;
For k := 1 to n− 1 do
Begin

Sum := Sum + SumOfFactors(k, S) ∗ P(n− k; S);
End

Sum := Sum + SumOfFactors(n; S);
P(n; S) := Sum/n;

Using the algorithm we can obtain P(n; I) and P(n; O) for all positive integers n

where I is the set of all positive integers and O is the set of all positive odd integers.
The following is a table of P(n; I) and P(n; O) for n = 1, 2, . . . , 20.

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

P(n; I) 1 2 3 5 7 11 15 22 30 42 56 77 101 135 176 231 297 385 490 627

P(n;O) 1 1 2 2 3 4 5 6 8 10 12 15 18 22 27 32 38 46 54 64

(b) An algorithm for computing DP(n; S) where n is a positive integer and S is a
non-empty subset of positive integers.
Based on the recursive formula for DP(n; S) from Corollary 2.1, an algorithm for

computing DP(n; S) can be given as follows:

Step 1: Determine DP(1; S). DP(1; S) = 1 if 1 ∈ S; otherwise, DP(1; S) = 0. This
is the base case of the algorithm.

Step 2: Compute the sum of signed factors of a positive integer k 6 n. The factors

should be in S. The sign of a factor i is + (or −) if k/i + 1 is even (or
odd). Use SumOfSignedFactors(k, S) to denote the sum.

Step 3: Recursively compute DP(n; S) using the formula. An implementation of
the algorithm is described as follows:

Input n and S;

If (n == 1 and 1 ∈ S) then
DP(n; S) := 1;

If (n == 1 and 6∈ S) then
DP(n; S) := 0;

Sum:= 0;
For k := 1 to n− 1 do
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Begin

Sum := Sum + SumOfSignedFactors(k, S) to denote the sum.
End

Sum := Sum + SumOfSignedFactors(n; S);
DP(n; S) := Sum/n;

Using the algorithm we can obtain DP(n; I) and DP(n; O) for all positive integers n

where I is the set of all positive integers and O is the set of all positive odd integers.

The following table shows DP(n; I) and DP(n; O) for n = 1, 2, . . . , 20.

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

DP(n; I) 1 1 2 2 3 4 5 6 8 10 12 15 18 22 27 32 38 46 54 64

DP(n;O) 1 0 1 1 1 1 1 2 2 2 2 3 3 3 4 5 5 5 6 7

(c) Let Ei be the set of all positive integers each of which is not a multiple of the
positive integer i for i = 3, 4, 5, 6. Using the first algorithm, we can obtain P(n; Ei)
for all positive integers n and for i = 3, 4, 5, 6. The following table gives (P(n; i) for
n = 1, 2, . . . , 20 and i = 3, 4, 5, 6.

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

P(n;E3) 1 2 2 4 5 7 9 13 16 22 27 36 44 57 70 89 108 135 163 202

P(n;E4) 1 2 3 4 6 9 12 16 22 29 38 50 64 82 105 132 166 208 258 320

P(n;E5) 1 2 3 5 6 10 13 19 25 34 44 60 76 100 127 164 205 262 325 409

P(n;E6) 1 2 3 5 7 10 14 20 27 39 49 65 85 111 143 184 234 297 374 470

Using the second algorithm, we have the following table.

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

DP(n;E3) 1 1 1 1 2 2 3 3 3 4 5 6 7 8 9 10 12 14 16 18

DP(n;E4) 1 1 2 1 2 3 3 4 5 6 7 8 9 11 13 16 18 21 24 27

DP(n;E5) 1 1 2 2 2 3 4 4 6 7 8 10 12 14 16 19 22 26 30 35

DP(n;E6) 1 1 2 2 3 3 4 5 6 8 9 11 13 16 19 22 26 30 35 41

(d) Using both algorithms, we have the following table for S = {1, 2, 4}.

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

P(n;S) 1 2 2 4 4 6 6 9 9 12 12 16 16 20 20 25 25 30 30 36

DP(n;S) 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0

622



(e) Let F be the set of all positive integers each of which is not a multiple of 3 or

4. Let G be the set of all positive integers each of which is not a multiple of 3, 4 or
5. Let H be the set of all positive integers each of which is not a multiple of 3, 4, 5
or 6. Using both algorithms, we have the following table:

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

P(n;F ) 1 2 2 3 4 5 7 8 10 13 16 20 24 30 36 43 52 61 73 86

DP(n;F ) 1 1 1 0 1 1 2 2 1 2 2 3 4 4 4 4 5 6 7 7

P(n;G) 1 2 2 3 3 4 5 6 7 8 10 11 14 17 20 23 27 31 36 41

DP(n;G) 1 1 1 0 0 0 1 1 1 1 1 1 2 3 2 2 2 2 3 4

P(n;H) 1 2 2 3 3 4 5 6 7 8 10 11 14 17 20 23 27 31 36 41

DP(n;H) 1 1 1 0 0 0 1 1 1 1 1 1 2 3 2 2 2 2 3 4
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