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Abstract. In this paper we study sets of some special monomials which form bases for
the mod-p Steenrod algebra A .
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1. Introduction and main results

Let Ap be the mod-p Steenrod algebra where p is an odd prime number. We

use A to denote Ap generated by the Steenrod pth powers because Bocksteins play
no part in our work. Thus A is a connected graded Hopf algebra over the field � p

of p elements. As an associative algebra, A is generated by the Steenrod powers P i,
to which we assign the grading i(p−1), with P 0 equal to the identity element. These

generators are subject to the Adem relations

P iP j =
[ i

p ]∑

k=0

(−1)i+k

(
(j − k)(p− 1)− 1

i− pk

)
P i+j−kP k, 0 < i < pj

where [i/p] denotes the greatest integer 6 i/p and the binomial coefficients are taken
modulo p.

There are many descriptions of bases for the mod-2 Steenrod algebra in literature.
There are bases developed by Milnor [3], Wall [4], D. Arnon [1], and R. Wood [6]. In
this paper we generalize results of Arnon [1] to odd primes.

We begin by making the convention that a finite sequence of integers is to be

identified with the infinite sequence obtained from it by adding final zeros, and that
a sequence whose terms are named by lower-case Roman letters is denoted by the
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corresponding capital Roman letter. This applies to the sequence T = (t1, t2, . . . , tm)
which indexes the string of Steenrod powers (the monomial) P T = P t1P t2 . . . P tm .
The sequence T and the monomial P T are called admissible if tj > ptj+1 for j > 1.
The set of admissible monomials is a vector space basis of A . The admissible

monomial can be defined in the following equivalent manner. Define a monomial
P t1P t2 . . . P tm to be smaller than P s1P s2 . . . , P sn if the sequence T = (t1, t2, . . . , tm)
is smaller than S = (s1, s2, . . . , sn) when read from left to right. Then the admis-
sible monomials are those which cannot be expressed as a combination of larger

monomials. This point of view naturally leads to the following definition.

Definition 1.1. Let F be the free (non-commutative) graded algebra over a
field k generated by the set of symbols {xi}i∈I and assume that for any integer N

only a finite number of symbols have degrees smaller than N . Let 6 be any linear
ordering on the monomials in F , and let U be a two sided homogeneous ideal in F .

A monomial M is called maximal (minimal) with respect to (U,6) if M is not
equivalent, mod U , to a linear combination of monomials larger (smaller) than M

under 6.

Then following corollary is immediate.

Corollary 1.2. Given F , U and 6 as above, the set of maximal (minimal) monic
monomials forms a vector space basis for F/U .

Definition 1.3. Let S = (s1, s2, . . . , sn) and T = (t1, t2, . . . , tm) be finite se-
quences of integers. Write T 6R S if T is less than S in lexicographic order from
the right, i.e. if either m < n or else m = n and there exists i such that ti < si and

tj = sj for all j > i. If T 6R S, we say T is right lexicographic less than S. We
introduce a similar definition for left lexicographic order, i.e. T 6L S if there exists i

such that ti < si and tj = sj for all j < i (where we take tk = 0 for k > m and
sk = 0 for k > n). If T 6L S, we will say T is left lexicographic less than S.

Similarly, for two sequences of positive integers T , S, define

P T 6R PS if T 6R S

and

P T 6L P
S if T 6L S.

For two polynomials G =
∑
Mi and H =

∑
Nj , define G 6L H if Mi 6L Nj for

all i, j.
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Remark. Notice that the order relation was defined on formal monomials and
polynomials. To avoid confusion, monomials and polynomials will be always con-
sidered as elements of the free algebra generated by {P i}∞i=0. Identity in A will be
denoted by ≡. However, a basis of monomials will always mean a basis in A .

The standard basis is the basis of maximal monomials with respect to the ideal

generated by the Adem relations and the left hand lexicographic ordering.

Definition 1.4.
(1) The basis the ξ-monomials has the form

Xn
k = P pn

P pn−1
. . . P pk

.

(2) The basis the ζ-monomials has the form

Zn
k = P pk

P pk+1
. . . P pn

.

(3) A monomial of the form P tmP tm−1 . . . P t1 is said to be C-admissible if ti+1 6 pti
for 1 6 i < m and ti is divisible by pi−1.

Now we can state our results which are mod-p analogues of Arnon [1].

Theorem 1.5.
(i) The set of all monomials of the formXn0

k0
Xn1

k1
. . . Xnr

kr
such that (n0, k0)<L . . .<L

(nr, kr) forms a basis for A .

(ii) The set of all monomials of the form Zn0
k0
Zn1

k1
. . . Znr

kr
such that (nr, kr)<L . . .<L

(n0, k0) forms a basis for A .

(iii) The set of all C-admissible monomials forms a basis for A .

2. Preliminaries

In this section the details, notation, and background will be presented.

We introduce useful notation: each natural number a has a unique p-adic expan-
sion

a =
∞∑

i=0

αi(a)pi

with 0 6 αi(a) < p. It is a fact that

(2.1)

(
a

b

)
≡

∞∏

i=0

(
αi(a)
αi(b)

)
mod p.
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Definition 2.1. Let S be the set of finite sequences of nonnegative integers,

T ⊂ S the subset of admissible sequences and T ′ ⊂ S the subset of C-admissible
sequences. Define

α : T −→ T
′, (tm, tm−1, . . . , t1) 7−→ α(tm, tm−1, . . . , t1) = (sm, sm−1, . . . , s1)

where sk = pk−1

[
tm−k+1 − (p− 1)

m−k∑
l=1

tl

]
.

Note that
∑
sk =

∑
tk, so α is degree preserving. We need to check if the new

sequence is in T ′:

p · sk − sk+1 = pk

(
tm−k+1 − (p− 1)

m−k∑

l=1

tl

)
− pk

(
tm−k − (p− 1)

m−k−1∑

l=1

tl

)

= pk(tm−k+1 − ptm−k) > 0.

Hence sk+1 6 psk. It is clear that pk−1 divides sk. So the map α is well defined.

The inverse β of α is defined as

β : T
′ −→ T , (sm, sm−1, . . . , s1) 7−→ α(sm, sm−1, . . . , s1) = (tm, tm−1, . . . , t1)

where tk = p−m+k−1
(
p · sm−k+1 + (p − 1)

m∑
l=m−k+2

sl

)
. This proves the following

result.

Lemma 2.2. There is a bijection between the standard basis monomials and the
C-monomials.

Proposition 2.3. Assume that tk = psk for 1 6 k 6 m. A monomial M =
P t1P t2 . . . P tm is not of the form required in part (ii) of Theorem 1.5 if and only if
at least one of the following holds:

(1) For some k, sk+1 > sk + 1.
(2) The sequence P pm

Zn
k with k < m < n appears in M .

(3) The sequence Zn
kZ

n
k appears in M .

��������
. To handle the first case, use the following relation, which holds when

t > s+ 1:

P ps

P pt ≡ P pt

P ps

+ P ps+1
P pt−(p−1)ps

+
s−1∑

i=0

(
(p− 1)(pt − pi)− 1

ps − pi+1

)
P pt+ps−pi

P pi

.
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To resolve the second case, we need more effort. Without loss of generality we can

assume n = m + 1. We now reduce the monomial P pm

Zm+1
k in several steps. One

can prove by descending induction on k that

Zm
k ≡ P pm+1−pk

+ L

where L <R P pm

. This yields

P pm

Zm+1
k ≡ P pm

Zm
k P

pm+1 ≡ P pm

P pm+1−pk

P pm+1
+ P pm

LP pm+1
.

The-right hand summand is already lexicographically lower than P pm

Zm+1
k , so we

have to deal with the left-hand summand. Now we use the Adem relation

P pm

P pm+1−pk ≡ P pm+1+pm−pk

+ L′

where L′ <R P pm

. Again using the Adem relation, we get

P pm+pm+1−pk

P pm+1 ≡
(

pm+1 − 1
pm+1 + pm − pk

)
P pm+2+pm−pk

+ L′′

where L′′ 6R P pm+pm−1−pk−1
<R P pm+1

. By equation (2.1), we have

(
pm+1 − 1

pm+1 + pm − pk

)
≡

m+1∏

i=0

(
αi(pm+1 − 1)

αi(pm+1 + pm − pk)

)
.

Since αm+1(pm+1 − 1) = 0 and αm+1(pm+1 + pm − pk) = 1, we conclude that
(

pm+1 − 1
pm+1 + pm − pk

)
≡ 0 mod p.

So we are done.
Resolving the third case we use the identity

Zn
k ≡ P pn+1−pk

+ L.

From this identity we obtain

(Zn
k )2 ≡ LZn

k + (P pn+1−pk

)2 + P pn+1−pk

L.

The first and second summands are lexicographically lower than (Zn
k )2. For the

right-hand summand we use the Adem relation

(P pn+1−pk

)2 =
pn−pk−1∑

i=0

ciP
pn+2−pk+1−iP i

where the ci’s are some binomial coefficients. Since i is bounded above by pn − 1,
we are done in this case as well. This completes the proof. �
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Now let us define a set isomorphism

γ : T −→ S ,

(tm, tm−1, . . . , t1) 7−→ γ((tm, tm−1, . . . , t1))

= (tm − ptm−1, tm−1 − ptm−2, . . . , t2 − pt1, t1).

Lemma 2.4. Let T ∈ S and S ∈ T be sequences of length k. Then

〈ξγ(S), P T 〉 =

{
0 if T <R S,

1 if T = S.

��������
. We will prove this by induction. It is trivial for S = (0, . . .). Let

S = (sm, . . . , s1) and T = (tm, tm−1, . . . , t1) where, assuming T 6R S, we have
s1 > b1 > 0, a1 > 1. Put S′ = (sm − pm−1, sm−1 − pm−2, . . . , s1 − 1). Since
γ(S) = γ(S′) except in the mth place, ξγ(S) = ξγ(S′)ξm where ξm is the dual of
P pm−1

P pm−2
. . . P pP 1. Calculating, we obtain

〈ξγ(S), P T 〉 = 〈ξγ(S′)ξm, P
T 〉 = 〈ψ∗(ξγ(S′) ⊗ ξm), P T 〉 = 〈ξγ(S′) ⊗ ξm, ψ(P T )〉.

Using the definition of the diagonal map ψ in A , we infer that

〈ξγ(S), P T 〉 =
〈
ξγ(S′) ⊗ ξm,

∑
P T1 ⊗ P T2

〉
=

∑
〈ξγ(S′), P T1〉〈ξm, P T2〉

where the summation is over sequences T1, T2 (not necessarily admissible) such that

T1 + T2 = T (in the sense of termwise addition).
Now if t1 = 0, then T2 has 0 at the mth place and hence

〈
ξm, P

T2
〉

= 0. If
t1 6= 0, we see that the only nonzero term in the above summation occurs for T2 =
(pm−1, . . . , p, 1). Thus 〈ξγ(S), P T 〉 = 〈ξγ(S′), P T ′〉 where T ′ = (tm − pm−1, . . . , t2 −
p, t1 − 1); for this is the only nonzero term in the above summation.
Descending on t1 and m we complete the proof. �

Definition 2.5. The halving endomorphism D on the free algebra generated by
the Steenrod powers is defined by setting D(P pn) = Pn and D(P pn+r) = 0 for n > 0
where r is a unit in mod-p. In fact it induces an endomorphism of A . The two

properties of D which we will need are
(1) for any cohomology class x and Θ ∈ A , Θ(xp) = (D(Θ)x)p,

(2) for any basis C-monomial P TP t1 , D(P T ) is also a basis C-monomial.

The following result is stated as a theorem in [2, p. 518].

704



Proposition 2.6. For each odd prime p, H∗(K( � p, n); � p) is the free commuta-
tive algebra on the generators Θ(in) where in ∈ Hn(K( � p, n); � p) is a generator and
Θ ranges over all admissible monomials of excess less than n.

Here ‘free commutative algebra’ means ‘polynomial algebra on even-dimensional
generators tensored exterior algebra on odd-dimensional generators’.

The proposition says in particular that the admissible monomials in A are lin-
early independent, hence form a basis. For if some linear combination of admissible

monomials were zero, then it would be zero when applied to the class in, but if we
choose n larger than the excess of each monomial in the linear combination, this

would contradict the freeness of the algebra H∗(K( � p, n); � p). Even though the
multiplicative structure of the Steenrod algebra is rather complicated, the Adem

relations provide a way of performing calculations algorithmically by systematically
reducing all products to sums of admissible monomials.

3. Proof of main results

��������
of Theorem 1.5. In order to prove the theorem we need to show that

(1) any monomial which is not of the required form is not maximal (or minimal);

(2) the number of the monomials of degree k having the required form is equal to
the dimension of A at that degree.

First let’s prove case (2) in each part of the theorem. It is clear that we have
the same number of monomials at each degree in Parts (i) and (ii) so we can handle

them as one part. Notice that the basic ξ-monomial Xn
k has the same degree as the

dual algebra element (ξn−k)pk

. Each element in the dual algebra can be uniquely

written as a Steenrod-free polynomial in (ξn−k)pk

. Since the dual algebra has the
same dimension in each degree, the result follows. By Lemma 2.2, case (2) holds for

part (iii).

We now show case (1) for part (ii) of Theorem 1.5. LetM = P t1P t2 . . . P tm . If for

some k, tk is not a power of p, then P tk is decomposable, and so can be expressed as
a polynomial in lower Steenrod powers. Substituting this polynomial for P tk in M
will reduce it with respect to both the left and right lexicographic ordering. Then

by Proposition 2.3, part (ii) of the theorem is proved.

We now prove case (1) for part (i) of Theorem 1.5. Notice that by the same

argument we used for part (ii), the maximal monomials for part (i) must be comprised
of Steenrod p-powers only. Part (i) now easily follows from part (ii). Notice that

the monomials of part (i) are mirror images of the monomials of part (ii). Recall
that the Steenrod algebra admits an antiautomorphism χ : A −→ A . We use the
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following property of χ:

χ(P pn

) ≡ P pn

+ L

where L is a polynomial in lower Steenrod powers. In particular, substituting L
for P pn

in any monomial reduces it lexicographically with respect to both the left

and right orders. Given any monomial which is comprised of Steenrod p-powers
and which is not of the form (i), use part (ii) and two applications of χ to get an

expression of that monomial in terms of lower ones.

We are ready to prove case (1) for part (iii) of Theorem 1.5. Let M =
Pnr . . . Pn1Pn be any monomial, and let its expansion in the basis of part (iii)
be

M ≡ L+
∑

t>0

WtP
npt−1

Pnpt−2
Pn

where L, Wt are polynomials such that L >R Pn+1 and Wt <R Pnpt

. Notice that

W0 gives all the monomials in the expansion which are lower than P n.

Let M ′ = Pnr . . . Pn1 . Then

Min = M ′Pnin = M ′(in)n = (D(M ′)in)n,

Min = Lin +
∑

t>0

WtP
npt−1

Pnpt−2
Pnin =

∑

t>0

((DtWt)in)pt

.

We need to consider two cases. The first case is that M ′ contains Steenrod pow-

ers Pn where n is a unit in mod-p. The second case is that n1 > pn. In the first
case we have D(M ′) = 0 and hence Min. In the second case we also have Min = 0.
Therefore ∑

t>0

((DtWt)in)pt

= 0.

Notice that DtWt is a sum of basis C-elements, all of which are lexicographically

smaller than P n. Since those elements form a free polynomial basis when acting
on in, the above polynomial equation gives Dt(Wt) = 0 for all t, and since all
Steenrod powers in Wt have degrees divisible by pt, we have Wt = 0 for all t. So
M ≡ L in this case, where L >R Pn+r, r is a unit in mod-p, and therefore L >R M .

In case M ′ contains no Steenrod powers P n where n is a unit in mod-p, we can
assume by induction that D(M ′) ≡ L′ where L′ >R D(M ′). Lifting this equation we
get M ≡ L′′ +N where D(L′′) = L′ and all monomials of N contain the Steenrod
powers P n where n is a unit in mod-p. Then

M = M ′Pn ≡ L′′Pn +NPn
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where L′′Pn >R M and NPn can be made bigger thanM by the previous argument.

Therefore the above equation provides an expression of M as a sum of bigger mono-
mials unless L′′ = M and N = 0. In this case D(M ′) must be a basis C-monomial,
and therefore M would be a basis C-monomial unless n1 > pn. But that case has

already been dealt with, and so M is a basis C-monomial �
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