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Abstract. Let H(K) be the Hilbert space with reproducing kernel K. This paper char-
acterizes some sufficient conditions for a sequence to be a universal interpolating sequence
for H(K).
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1. Introduction

Let H be a Hilbert space of complex-valued analytic functions on the open unit
disc � such that point evaluations are bounded linear functionals on H . Then for

every w ∈ � there exists a function kw in H such that f(w) = 〈f, kw〉 for all f ∈ H .
Now if we define K : � × � −→ � by K(z, w) = kw(z), then K is a positive definite

function with the reproducing property f(w) = 〈f(·), K(·, w)〉 for every w ∈ � and
f ∈ H . The function K is called the reproducing kernel for H .

Recall that a function K : � × � −→ � is positive definite (denoted K � 0)
provided

n∑

j,k=1

ajakK(wj , wk) > 0

for any finite set of complex numbers a1, . . . , an and any finite subset w1, . . . , wn

of � . Conversely, if K : � × � −→ � is positive definite then
{ n∑

j=1

ajK(·, wj) : a1, . . . , an ∈ � and w1, . . . , wn ∈ �
}
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has dense linear span in a Hilbert space H(K) of functions with

∥∥∥∥
n∑

j=1

ajK(·, wj)
∥∥∥∥

2

=
n∑

j,k=0

ajakK(wj , wk)

and f(w) = 〈f(·), K(·, w)〉 for every w in � and f in H(K). Thus evaluation at w

is a bounded linear functional for each w in � . Note also that convergence in H(K)
implies uniform convergence on compact subsets of � .
Now ifK is a kernel on � × � which is analytic in the first variable and consequently

coanalytic in the second variable, then K(z, w) is an analytic function on � × � in
the two variables z and w. Hence K(z, w) can be represented by the double power

series
∞∑

j,k=0

ajkzjwk. In this case K is called an analytic kernel. If C denotes the

matrix [ajk ], then such a K can be written more compactly in the form

K(z, w) = Z∗CW =
〈
CW, Z

〉
`2

where Z denotes the column vector whose transpose is (1, z, z2, . . .). (Here `2 denotes
the usual space of all square summable sequences.) It is well known that K � 0
if and only if C > 0. Henceforth for positive matrices C, H(C) will denote the
space H(K) where K = Z∗CW . For more information about reproducing kernels
the reader is referred to [1], [2]. Some good sources on spaces of analytic functions

are [4], [5], [6], [8], [9], [12], [13]. Throughout this paper, K will be an analytic kernel.

Following the interpolation theory for the Hardy space H2 in [10] and for cer-

tain Banach spaces of analytic functions in [11], we call {wn}n a universal inter-
polating sequence for H(K) when the linear operator T : H(K) −→ `2 defined by

Tf = {f(wn)/‖kwn‖}n is surjective. From this definition, we see that a universal
interpolating sequence consists of distinct points and has no limit point in � .
In the next section we give some sufficient conditions for existence of a se-

quence {fn}n of vectors in H(K) such that {〈f, fn〉}n belongs to `2 for all f

in H(K). We also investigate some conditions on a sequence of points in � for being
a universal interpolating sequence.

2. Main results

Related to the universal interpolating sequences, there are really two questions
involved here: first, is the sequence always in `2 for every f ∈ H(K), and second, is
every `2 sequence obtained in this manner? Both of these questions can be formulated
in an abstract Hilbert space as follows (see N. Bari [3]). We shall say that a sequence
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of elements in a Hilbert space H is a Bessel sequence with bound M if

∑

n

| 〈x, xn〉 |2 6 M‖x‖2

for all x ∈ H . Also we shall say that {xn}n is a Riesz-Fischer sequence with boundm

if to each sequence {cn}n ∈ `2 there corresponds at least one x ∈ H for which

〈x, xn〉 = cn (n = 1, 2, . . .) and ‖x‖2 6 m
∑

n

|cn|2.

If one merely assumes the existence of x ∈ H such that 〈x, xn〉 = cn (n = 1, 2, . . .)
for each sequence {cn} ∈ `2, then the existence of the constant m follows from the

inverse mapping theorem.

So {wn} is a universal interpolating sequence for H(K) if and only if the sequence
{kwn/‖kwn‖}n is both Bessel and Riesz-Fischer.

We need the following two theorems in the proof of our main results.

Theorem 1. Let {xn} be an infinite sequence of elements in a separable Hilbert
space, and let A denotes the inner product matrix [〈xi, xj〉]i,j∈ � . Then
a) {xn}n is a Bessel sequence with bound M if and only if the matrix A is a

bounded operator on `2 with bound M .

b) {xn}n is a Riesz-Fischer sequence with bound m if and only if the matrix A is

bounded below on `2 with bound m.

���������
. See [3]. �

Theorem 2. Let A = [aij ]i,j∈ � be given. If ∑
i

|aij | 6 M for all j, and if
∑
j

|aij | 6 N for all i, then

∣∣∣∣
∑

i,j

aijxixj

∣∣∣∣ 6 (MN)1/2
∑

i

|xi|2

for all {xi}i in `2.

���������
. See [7]. �

775



Theorem 3. Let H = H(K) have a reproducing kernel of the form

kw(z) = log
1

(1− zw)t

for some t > 1. Also suppose that {wn}n is a sequence of points in the open unit

disc � which converges to a point in ∂ � and
1− |wn+1| 6 (1− |wn|)1/α

for all n and some α such that 0 < α < 1. Then for each ε > 0 there exists a
subsequence of {kwn/‖kwn‖} that is a Bessel sequence with bound (1 + ε)1/2(2 +
ε)(1 + α1/2)(1− α1/2)−1.
���������

. Let 0 < ε < 1 be given. We can choose an integer j0 = j0(ε) such that
if m, n > j0, then

Arg2 1
(1− wnwm)t

6 ε log2 1
(1− |wn|)t

,

log(1− |wn|)/ log 2(1− |wn|) < 2 + ε,

|1− wnwm| < 1

and
1
2

< |wn| < 1.

Put ni = j0 + i for i = 1, 2, . . .. We prove that {kwni
/‖kwni

‖}∞i=1 is a Bessel sequence
with bound (1 + ε)1/2(2 + ε)(1 + α1/2)(1− α1/2)−1. For this let At = [aij ]ij be the
infinite matrix defined by

aij =
kwni

(wnj )
‖kwni

‖‖kwnj
‖ ; (i, j ∈ � ).

By Theorem 1 it is sufficient to show that At is a bounded operator on `2 with bound

(1 + ε)1/2(2 + ε)(1 + α1/2)(1−α1/2)−1. Note that aii = 1 and aij = aji for all i and
j in � . We have

aij =
(

log
1

(1− |wni |2)t

)−1/2(
log

1
(1− |wnj |2)t

)−1/2

log
1

(1− wniwnj )t
.

If follows from the hypothesis that

1− |wni+p| 6 (1− |wni |)1/αp

,

|1− wniwnj | > 1− |wmin(ni,nj)|

and

1− |wni |2 6 2(1− |wni |)
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for all i, j and p in � . Therefore
log

1
2t(1− |wni |)t

6 log
1

(1− |wni |2)t
,

log
1

|1− wniwnj |t
6 log

1
(1− |wni |)t

and

log(1− |wni+p|)t 6 1
αp

log(1− |wni |)t

for all i, j and p in � . If i 6 j, by using the last inequality for p = nj − ni we get

log 2t(1− |wnj |)t 6 1
αp

log 2t(1− |wni |)t.

Thus for i 6 j, we have

|aij | 6
∣∣∣∣log

1
(1− |wni |2)t

∣∣∣∣
−1/2∣∣∣∣log

1
(1− |wnj |2)t

∣∣∣∣
−1/2

×
[
log2 1

(1− |wni |)t
+ Arg2 1

(1− wniwnj )t

]1/2

6
∣∣∣∣log

1
2t(1− |wni |)t

∣∣∣∣
−1/2∣∣∣∣log

1
2t(1− |wnj |)t

∣∣∣∣
−1/2∣∣∣∣log

1
(1− |wni |)t

∣∣∣∣(1 + ε)1/2

6 (1 + ε)1/2α(nj−ni)/2

∣∣∣∣log
1

2t(1− |wni |)t

∣∣∣∣
−1∣∣∣∣log

1
(1− |wni |)t

∣∣∣∣
= (1 + ε)1/2α(j−i)/2(2 + ε).

Also if i > j, in the same way we obtain

|aij | 6 (1 + ε)1/2(2 + ε)α(i−j)/2.

Thus for all i and j we get

|aij | 6 (1 + ε)1/2(2 + ε)α|i−j|/2

and so

∑

i

|aij | =
j∑

i=1

|aij |+
∞∑

i=j+1

|aij |

6 (1 + ε)1/2(2 + ε)
[ j∑

i=1

α(j−i)/2 +
∞∑

i=j+1

α(i−j)/2

]

< (1 + ε)1/2(2 + ε)
(

1
1− α1/2

+
α1/2

1− α1/2

)

= (1 + ε)1/2(2 + ε)(1 + α1/2)(1− α1/2)−1.
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Similarly ∑

j

|aij | < (1 + ε)1/2(2 + ε)(1 + α1/2)(1− α1/2)−1.

So by Theorem (2), the matrix At = [aij ]i,j is bounded above by

(1 + ε)1/2(2 + ε)(1 + α1/2)(1− α1/2)−1.

Now Theorem 1 implies that {kwni
/‖kwni

‖}i is a Bessel sequence and the proof is

complete. �

The following corollary is an immediate consequence of Theorem 3.

Corollary 4. Under the conditions of the theorem, {f(wn)/‖kwn‖}n ∈ `2 for

all f in H(K).

Theorem 5. Let H = H(K) have a reproducing kernel of the form

kw(z) = log
1

(1− zw)t

for some t > 1. If {wn} converges to a point in ∂ � and

1− |wn+1| 6 (1− |wn|)1/α

for all n and some α such that 0 < α < 1
25 , then there exists a subsequence of

{kwn/‖kwn‖}n that is a universal interpolating sequence for H(K).

���������
. The function f : [0, 1] −→ � + defined by f(t) =

(
1+2(1+t)1/2(2+t)

)−2

is a nonnegative decreasing function on [0, 1] and lim
t→0+

f(t) = 1
25 . So there ex-

ists 0 < ε < 1 such that α < f(ε) 6 1
25 . By Theorem 3 there exists a subse-

quence {kwni
/‖kwni

‖}i that is a Bessel sequence and as we saw in the proof of
Theorem 3, if At = [aij ]i,j where

aij =
kwni

(wnj )
‖kwni

‖‖kwnj
‖ (i, j ∈ � ),

then for all i and j we get

|aij | 6 (1 + ε)1/2(2 + ε)α|i−j|/2.
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Now we estimate the operator norm of the difference ofAt and the identity operator I :

‖At − I‖op 6 sup
j

∑

i6=j

|aij |

= (1 + ε)1/2(2 + ε) sup
j

[∑

i<j

α(j−i)/2 +
∞∑

i=j+1

α(i−j)/2

]

6 (1 + ε)1/2(2 + ε)
2α1/2

1− α1/2
< 1,

since f(ε) > α. Hence At is invertible and so by Theorem 1, the proof is complete.

�

Remark. Note that in Theorems 3 and 5, the reproducing kernels kw are analytic
on the unit disc � when t ∈ [1, 2] and, in the special case, when t = 1 we have the
Bloch space.

The constant 1
25 in the Theorem may not be sharp. We conclude this paper by

raising the following question.

Question. Can we replace 1
25 by 1 in Theorem 5?
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