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PROBLEMS CONCERNING n-WEAK AMENABILITY
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Abstract. In this paper we extend the notion of n-weak amenability of a Banach algebra A
when n ∈ � . Technical calculations show that when A is Arens regular or an ideal in A ∗∗,
then A ∗ is an A (2n)-module and this idea leads to a number of interesting results on
Banach algebras. We then extend the concept of n-weak amenability to n ∈ � .
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1. Introduction

Let A be a Banach algebra, X a Banach A -bimodule. Then we denote by X∗ the

topological dual space of X ; the value of x∗ ∈ X∗ at x ∈ X is denoted by 〈x, x∗〉.
We recall that X∗ is a Banach A -bimodule under the actions

〈x, ax∗〉 = 〈xa, x∗〉, 〈x, x∗a〉 = 〈ax, x∗〉 (a ∈ A , x ∈ X, x∗ ∈ X∗).

A derivation D : A −→ X is a (bounded) linear map such that

D(ab) = D(a)b+ aD(b) (a, b ∈ A ).

For each x ∈ X , δx(a) = ax − xa is a derivation, which is called inner. The first
cohomology group H1(A , X) is the quotient of the space of derivations by the in-
ner derivations, and in many situations triviality of this space is of considerable
importance. In particular, A is called contractible if H1(A , X) = {0} for every
Banach A -bimodule X , A is called amenable if H1(A , X∗) = {0} for every Ba-
nach A -bimodule X , A is called n-weakly amenable if H1(A ,A (n)) = {0}, and
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weakly amenable if A is 1-weakly amenable. For the theory of amenable and weakly

amenable Banach algebras see [1], [2], [4], [6], [8] and [9] for example.
Let A be a Banach algebra. Given a∗ ∈ A ∗ and F ∈ A ∗∗, then Fa∗ and a∗F are

defined in A ∗ by the formulae

〈a, Fa∗〉 = 〈a∗a, F 〉, 〈a, a∗F 〉 = 〈aa∗, F 〉 (a ∈ A ).

Next, for F,G ∈ A
∗∗, F �G and F 4G are defined in A

∗∗ by the formulae

〈a∗, F �G〉 = 〈Ga∗, F 〉, 〈a∗, F 4G〉 = 〈a∗F,G〉 (a∗ ∈ A
∗).

Then A ∗∗ is a Banach algebra with respect to either of the products � and4. These
products are called the first and second Arens products on A ∗∗, respectively. The

algebra A is called Arens regular if the two products � and 4 coincide. For the
general theory of Arens products, see [5] and [10], for example.

Let A be a Banach algebra, n ∈ � ∪ {0} and let Pn : A (n) −→ A (n+2) be the
natural embedding, i.e., 〈ϕn+1, Pnϕn〉 = 〈ϕn, ϕn+1〉 (ϕn ∈ A (n), ϕn+1 ∈ A (n+1)),
where A (0) = A and A (n) is the nth dual of A . We shall require the following
standard properties of the Arens products. Suppose (aα) and (bβ) are nets in A

with P0aα −→ F and P0bβ −→ G in (A ∗∗, σ), where σ = σ(A ∗∗,A ∗) is the weak∗

topology on A ∗∗. Then F � G = lim
α

lim
β
P0(aαbβ) and F 4 G = lim

β
lim
α
P0(aαbβ)

in (A ∗∗, σ). Also, for a ∈ A and F ∈ A ∗∗, we have P0(a) 4 F = P0(a) � F and

F 4 P0(a) = F � P0(a).
By easy calculations we can obtain the following properties of the Pn maps.

Lemma 1.1. Let m ∈ � and n ∈ � ∪ {0}. Then
(i) P ∗∗n Pn = Pn+2Pn;

(ii) P ∗nPn+1 = id;
(iii) P (2m+1)

n Pn+2m+1 . . . Pn+3Pn+1 = Pn+2m−1 . . . Pn+3Pn+1;

(iv) P (2m)
n Pn+2m−2 = Pn+2mP

(2m−2)
n .

Lemma 1.2. Let A be a Banach algebra, n ∈ � and let D : A −→ A (n) be a

derivation. Then P ∗n−1P
∗
n+1 . . . P

∗
n+2m−3D

(2m)P2m−2P2m−4 . . . P0 = D (m ∈ � ).
���! " $#

. It is enough to show that P ∗n+(2m−3)D
(2m)P2m−2 = D(2m−2) for all

m ∈ � . For ϕ ∈ A (2m−2) and ψ ∈ A (n+2m−3) we have

〈ψ, P ∗n+2m−3D
(2m)P2m−2(ϕ)〉 = 〈D(2m−1)Pn+2m−3(ψ), P2m−2(ϕ)〉

〈ϕ,D(2m−1)Pn+2m−1(ψ)〉 = 〈ψ,D(2m−2)(ϕ)〉,

and so P ∗n+(2m−3)D
(2m)P2m−2 = D(2m−2). �
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2. When A (m) is an A (2n)-module?

Let A be a Banach algebra. Clearly A (4) is a Banach algebra with four Arens

products. We denote these algebras by (A 4,��) = ((A ∗∗,�)∗∗,�), (A 4,4�) =
((A ∗∗,4)∗∗,�), (A 4,�4) = ((A ∗∗,�)∗∗,4), (A 4,44) = ((A ∗∗,4)∗∗,4). For
a ∈ A and ϕ ∈ A

(4) it is easy to check that

P2P0(a) �� ϕ = P2P0(a) �4 ϕ = P2P0(a)4� ϕ = P2P0(a)44 ϕ,

ϕ�� P2P0(a) = ϕ�4 P2P0(a) = ϕ4� P2P0(a) = ϕ44 P2P0(a).

Let A be a Banach algebra and n ∈ � . Consider the maps (a∗, ϕ2n) 7→ a∗ · ϕ2n and

(a∗, ϕ2n) 7→ ϕ2n · a∗ from A ∗ ×A (2n) into A ∗ defined by

〈a, a∗ · ϕ2n〉 = 〈P2n−3 . . . P3P1(aa∗), ϕ2n〉,
〈a, ϕ2n · a∗〉 = 〈P2n−3 . . . P3P1(a∗a), ϕ2n〉 (a ∈ A ).

Then a∗ · ϕ2n = a∗P ∗1 P
∗
3 . . . P

∗
2n−3(ϕ2n) and ϕ2n · a∗ = P ∗1 P

∗
3 . . . P

∗
2n−3(ϕ2n)a∗.

Clearly these maps are continuous and bilinear. Note that with respect to these
actions A ∗ is not necessarily a Banach A (2n)-module. By dualizing these actions

we obtain continuous bilinear maps from A (m) ×A (2n) into A (m) for every m ∈ � .
For example, for F ∈ A ∗∗ and ϕ2n ∈ A (2n) we have

〈a∗, F · ϕ2n〉 = 〈ϕ2n · a∗, F 〉
= 〈P ∗1 P ∗3 . . . P ∗2n−3(ϕ2n)a∗, F 〉
= 〈a∗, F � P ∗1 P

∗
3 . . . P

∗
2n−3(ϕ2n)〉 (a∗ ∈ A

∗),

and so F ·ϕ2n = F�P ∗1 P ∗3 . . . P ∗2n−3(ϕ2n). Similarly, ϕ2n ·F = P ∗1 P
∗
3 . . . P

∗
2n−3(ϕ2n)4

F . From now on we regard these actions asA (2n)-actions onA (m) induced fromA ∗.
Now consider the maps (F, ϕ2n) 7→ F ·ϕ2n and (F, ϕ2n) 7→ ϕ2n·F fromA ∗∗×A (2n)

into A ∗∗ defined by

〈a∗, F · ϕ2n〉 = 〈P2n−3 . . . P3P1(a∗F ), ϕ2n〉,
〈a∗, ϕ2n · F 〉 = 〈P2n−3 . . . P3P1(Fa∗), ϕ2n〉 (a∗ ∈ A

∗).

Clearly these are continuous bilinear maps, F · ϕ2n = F 4 P ∗1 P
∗
3 . . . P

∗
2n−3(ϕ2n) and

similarly ϕ2n · F = P ∗1 P
∗
3 . . . P

∗
2n−3(ϕ2n) � F . Note that these actions are different

from the actions induced from A ∗. Again by dualizing these actions we have con-

tinuous bilinear maps from A (m) ×A (2n) into A (m) for every m > 2. So we have
A (2n)-actions on A (m) (m > 2) induced from A ∗∗.
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Let A be a Banach algebra and let n, k ∈ � be such that n > 2k. Set B =
(A (2k), ·), where · is one of the 2k Arens products on A

(2k). Then B is a Banach
algebra and B∗ is a Banach B-module. By a similar argument we have continuous
bilinear maps from B∗ ×A (2n) into B∗ and from B∗∗ ×A (2n) into B∗∗. Therefore

for every m > 2k+1 we have A (2n)-actions on A (m) induced from B∗ and for every
m > 2k + 2 we have A (2n)-actions on A (m) induced from B∗∗.

Proposition 2.1. Let A be an Arens regular Banach algebra and n ∈ � . Then
A

∗ is a Banach A
(2n)-bimodule with actions induced from A

∗ and any of Arens

products on A (2n). In particular, A (m) is a Banach A (2n)-bimodule by actions

induced from A
∗.

���! " $#
. When n = 1, one can immediately see that A ∗ is a left Banach

(A ∗∗,�)-module and a right Banach (A ∗∗,4)-module. Since A is Arens regular,

A ∗ is a left and right Banach A ∗∗-module. For a ∈ A , a∗ ∈ A and F,G ∈ A ∗∗ we
have

〈a, (Fa∗)G〉 = 〈(aF )a∗, G〉 = 〈a∗, G� (aF )〉
= 〈a∗G,P0(a) � F 〉 = 〈F (a∗G), P0(a)〉
= 〈a, F (a∗G)〉,

and so (Fa∗)G = F (a∗G). Hence A ∗ is a Banach A ∗∗-bimodule. Now suppose the
result has been proved for n. We may assume that A (2n+2) = ((A (2n))∗∗,�). Let
a ∈ A , a∗ ∈ A ∗, ϕ, ψ ∈ A (2n+2) and let (ϕα) , (ψβ) be nets in A (2n) such that
P2n(ϕα) −→ ϕ and P2n(ψβ) −→ ψ in the weak∗ topology. Then

〈a, a∗ · (ϕ� ψ)〉 = lim
α

lim
β
〈P2n−3 . . . P3P1(aa∗), ϕαψβ〉

= lim
α

lim
β
〈a, a∗ · (ϕαψβ)〉

= lim
α

lim
β
〈a, (a∗ · ϕα) · ψβ〉

= lim
α

lim
β
〈a, a∗P ∗1 P ∗3 . . . P ∗2n−3(ϕα)P ∗1 P

∗
3 . . . P

∗
2n−3(ψβ)〉

= lim
α

lim
β
〈P2n−3 . . . P3P1(aa∗P ∗1 P

∗
3 . . . P

∗
2n−3(ϕα)), ψβ〉

= lim
α
〈aa∗P ∗1 P ∗3 . . . P ∗2n−3(ϕα), P ∗1 P

∗
3 . . . P

∗
2n−1(ψ)〉

= lim
α
〈P ∗1 . . . P ∗2n−1(ψ)aa∗, P ∗1 P

∗
3 . . . P

∗
2n−3(ϕα)〉

= 〈a, a∗P ∗1 . . . P ∗2n−1(ϕ)P ∗1 . . . P
∗
2n−1(ψ)〉

= 〈a, (a∗ · ϕ) · ψ〉,
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and so a∗ · (ϕ � ψ) = (a∗ · ϕ) · ψ. Similarly (ϕ � ψ) · a∗ = ϕ · (ψ · a∗). On the other
hand,

(ϕ · a∗) · ψ = (P ∗1 . . . P
∗
2n−1(ϕ)a∗)P ∗1 . . . P

∗
2n−1(ψ)

= P ∗1 . . . P
∗
2n−1(ϕ)(a∗P ∗1 . . . P

∗
2n−1(ψ))

= ϕ · (a∗ · ψ).

Hence A ∗ is a Banach A (2n+2)-bimodule. So we are done by induction. �

Proposition 2.2. Let A be an Arens regular Banach algebra and n ∈ � . Then
with any of the Arens products onA (2n), theA (2n)-actions onA ∗∗ induced fromA ∗

and A ∗∗ coincide. In particular, A ∗∗ is a Banach A (2n)-bimodule with any of these

actions.

���! " $#
is straightforward. �

Let A be a Banach algebra and m,n ∈ � . Then A (2m) is a Banach algebra
with one of the 2m Arens products. We recall that every closed subalgebra of an

Arens regular Banach algebra is Arens regular. In particular, when A (2m) is Arens
regular for a Banach algebra A and m ∈ � , then A ∗∗,A (4), . . . ,A (2m−2) are Arens

regular, and these algebras have only one Arens product. The following proposition
is a generalization of Proposition 2.1 and Proposition 2.2.

Proposition 2.3. Let A be a Banach algebra and let n,m ∈ � be such
that n > 2m. If A (2m) is Arens regular, then A (2m+1) and A (2m+2) are Banach

A (2n)-bimodules with actions induced from A (2m+1). Moreover, the A (2n)-actions

on A (2m+2) induced from A (2m+1) and A (2m+2) coincide.

Definition 2.4. Let A be a Banach algebra. A is called completely Arens

regular, if for every n ∈ � , A (2n) is Arens regular.

It is well known that every C∗-algebra is Arens regular and the second dual of a

C∗-algebra is a C∗-algebra. Therefore, every C∗-algebra is completely Arens regular.

Proposition 2.5. Let A be a completely Arens regular Banach algebra. Then

A (m) is a Banach A (2n)-module with actions induced A (m).

���! " $#
. A direct consequence of Proposition 2.3. �
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Lemma 2.6. Let A be a Banach algebra and P0(A ) a left (right) ideal in A ∗∗.

Then A
∗ is a Banach (A ∗∗,�)-module((A ∗∗,4))-module).

���! " $#
. For a∗ ∈ A ∗, a ∈ A and F,G ∈ A ∗∗ we have

〈a, a∗(F �G)〉 = 〈G(aa∗), F 〉 = 〈G4 P0(a)a∗, F 〉
= 〈a∗, F 4G4 P0(a)〉 = 〈(a∗F )G,P0(a)〉
= 〈a, (a∗F )G〉

and

〈a, F (a∗G)〉 = 〈a∗G� P0(a), F 〉 = 〈a∗, G� P0(a) � F 〉
= 〈F (a∗G), P0(a)〉 = 〈a, F (a∗G)〉.

Therefore A
∗ is a Banach (A ∗∗,�)-module. �

Lemma 2.7. Let A be a Banach algebra. Then P0(A ) is an ideal in A ∗∗ with

any of the Arens products if and only if P2P0(A ) is an ideal in A (4) with any of the

Arens products.
���! " $#

. Let P0(A ) be an ideal in A ∗∗. For a ∈ A and ϕ ∈ A (4), one can

immediately see that

P2P0(a) � �ϕ = P2(P0(a) � P ∗1 (ϕ)) and ϕ� �P2P0(a) = P2(P ∗1 (ϕ) � P0(a)).

Therefore P2P0(A ) is an ideal in A (4) with any of the Arens products on A (4).

Conversely, let P2P0(A ) be an ideal in A (4). Take a ∈ A and F ∈ A ∗∗. It is easy
to see that P2(P0(a)�F ) = P2P0(a)��P2(F ) ∈ P2P0(A ). Hence P0(a)�F ∈ P0(A )
and similarly F � P0(a) ∈ P0(A ). Therefore P0(A ) is an ideal in A ∗∗. �

Proposition 2.8. Let A be a Banach algebra and P0(A ) an ideal in A ∗∗. Then

A ∗ is a Banach A (2n)-module with any of the Arens products on A (2n) (n ∈ � ).
���! " $#

. When n = 1 the result is true by Lemma 2.6. Now suppose, inductively,
the result has been proved for n−1. We may assume that A (2n+2) = ((A (2n))∗∗,�).
Let a ∈ A , a∗ ∈ A ∗ and ϕ, ψ ∈ A (2n+2), and let (ϕα), (ψβ) be nets in A (2n) such

that P2n(ϕα) −→ ϕ and P2n(ψβ) −→ ψ in the weak∗ topology. Now we have

〈a, a∗ · (ϕ� ψ)〉 = 〈P2n−1 . . . P3P1(aa∗), ϕ� ψ〉
= lim

α
lim
β
〈a∗, P ∗1 P ∗3 . . . P ∗2n−3(ϕα)4 P ∗1 P

∗
3 . . . P

∗
2n−3(ψβ)4 P0(a)〉

= lim
α
〈aa∗P ∗1 P ∗3 . . . P ∗2n−3(ϕα), P ∗1 P

∗
3 . . . P

∗
2n−1(ψ)〉
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= lim
α
〈a∗, P ∗1 P ∗3 . . . P ∗2n−3(ϕα) � P ∗1 P

∗
3 . . . P

∗
2n−1(ψ) � P0(a)〉

= 〈aa∗, P ∗1 P ∗3 . . . P ∗2n−1(ϕ) � P ∗1 P
∗
3 . . . P

∗
2n−1(ψ)〉

= 〈a, (a∗ · ϕ) · ψ〉,

and so a∗ · (ϕ� ψ) = (a∗ · ϕ) · ψ. Similarly (ϕ� ψ) · a∗ = ϕ · (ψ · a∗). Since A ∗ is a

Banach A ∗∗-module,

(ϕ · a∗) · ψ = (P ∗1 P
∗
3 . . . P

∗
2n−1(ϕ)a∗)P ∗1 P

∗
3 . . . P

∗
2n−1(ψ)

= P ∗1 P
∗
3 . . . P

∗
2n−1(ϕ)(a∗P ∗1 P

∗
3 . . . P

∗
2n−1(ψ))

= ϕ · (a∗ · ψ).

Consequently, A ∗ is a Banach A (2n)-module. �

Proposition 2.9. LetA be a Banach algebra. Then P2((A ∗∗,�)) is a left (right,
two-sided) ideal in (A (4),��) if and only if P ∗2 is an A (4)-module homomorphism

between left (right, two-sided) Banach A (4)-modules.
���! " $#

. Let P2((A ∗∗,�)) be a left ideal in (A (4),��). For F ∈ A
∗∗, ϕ4 ∈ A

(4)

and ϕ5 ∈ A (5) we have

〈F, P ∗2 (ϕ4ϕ5)〉 = 〈P2(F ), ϕ4ϕ5〉 = 〈P2(F ) �� ϕ4, ϕ5〉
= 〈P ∗2 (ϕ5), P2(F ) �� ϕ4〉 = 〈F, ϕ4P

∗
2 (ϕ5)〉.

Hence P ∗2 is an A (4)-module homomorphism between left Banach A (4)-modules.

Conversely, for F ∈ A ∗∗, ϕ4 ∈ A (4) it is easy to see that

P2(F ) �� ϕ4 = P2(P ∗1 (P2(F ) �� ϕ4)),

so P2((A ∗∗,�)) is a left ideal in (A (4),��). �

3. N-weak amenability for N ∈ Z

Lemma 3.1. Let A be a Banach algebra and D : A −→ A
∗ a derivation. Then

(i) D∗∗ : (A ∗∗,�) −→ (A∗∗)∗ is satisfied in

D∗∗(F �G) = D∗∗(F )G+ P ∗∗0 (F )D∗∗(G) (F,G ∈ A
∗∗),

(ii) D∗∗ : (A ∗∗,4) −→ (A ∗∗)∗ is satisfied in

D∗∗(F 4G) = D∗∗(F )P ∗∗0 (G) + FD∗∗(G) (F,G ∈ A
∗∗).

869



���! " $#
. (i) Let F,G ∈ A ∗∗ and let (aα), (bβ) be nets in A such that

P0(aα) −→ F and P0(bβ) −→ G in the weak∗ topology. We have

〈H,D∗∗(F �G)〉 = 〈D∗(H), F �G〉
= lim

α
lim
β
〈D(aα)bβ + aαD(bβ), H〉

= lim
α

lim
β
〈bβ, HD(aα) +D∗(Haα)〉

= lim
α
〈aα, D

∗(G�H) + P ∗0 (D∗∗(G)H)〉
= 〈H,D∗∗(F )G+ P ∗∗0 (F )D∗∗(G)〉

and so D∗∗(F �G) = D∗∗(F )G+ P ∗∗0 (F )D∗∗(G).
(ii) The proof is similar to (i). �

Corollary 3.2. Let A be a Banach algebra and D : A −→ A ∗ a derivation.

Then

(i) D∗∗ : (A ∗∗,�) −→ (A ∗∗)∗ is a derivation if and only if P ∗∗0 (F )D∗∗(G) =
FD∗∗(G) for F,G ∈ A ∗∗;

(ii) D∗∗ : (A ∗∗,4) −→ (A ∗∗)∗ is a derivation if and only if D∗∗(F )P ∗∗0 (G) =
D∗∗(F )G for F,G ∈ A ∗∗.

Definition 3.3. Let A be a Banach algebram,n ∈ � , and 1 6 m < 2n. The Ba-
nach algebra A (2n) is called (−m)-weakly amenable, if A (2n−m) is a Banach A (2n)-
bimodule with actions induced from A (2n−m) and H1(A (2n),A (2n−m)) = {0}.

Theorem 3.4. Let A be a Banach algebra and P0(A ) a left (right) ideal in A ∗∗.

If (A ∗∗,�)((A ∗∗,4)) is (−1)-weakly amenable, then A is weakly amenable.
���! " $#

. By Lemma 2.6, A ∗ is a Banach (A ∗∗,�)-module. Let D : A −→ A ∗

be a derivation. Put d = P ∗0D
∗∗ : (A ∗∗,�) −→ A ∗. For F,G ∈ A ∗∗, a ∈ A we

have

〈a, P ∗0 (D∗∗(F )G)〉 = 〈G� P0(a), D∗∗(F )〉 = 〈d(F ), G4 P0(a)〉 = 〈a, d(F )G〉

and

〈a, P ∗0 (P ∗∗0 (F )D∗∗(G))〉 = 〈P ∗0 (D∗∗(G)P0(a)), F 〉 = 〈d(G)P0(a), F 〉 = 〈a, Fd(G)〉.

Therefore, by Lemma 3.1, d is a derivation. Since H1((A ∗∗,�),A ∗) = {0}, there
exists a∗ ∈ A ∗ such that d = δa∗ . Using Lemma 1.2 we obtain

aa∗ − a∗a = P0(a)a∗ − a∗P0(a) = dP0(a)

= P ∗0D
∗∗P0(a) = D(a) (a ∈ A ).

Hence D = δa∗ is an inner derivation. �
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Theorem 3.5. Let A be a Banach algebra. If P0(A ) is an ideal in A ∗∗ and the

Banach algebra A
(2n) (n ∈ � ) with one of 2n Arens products is (−2n + 1)-weakly

amenable, then A is weakly amenable.
���! " $#

. Let D : A −→ A ∗ be a derivation. We claim that

dn = P ∗0 P
∗∗∗
0 . . . P

(2n−1)
0 D(2n) : A(2n) −→ A

∗

is a derivation. By Proposition 3.4, the result is true for n = 1. Now suppose,
inductively, that the result has been proved for n. We may suppose that A (2n+2) =
((A (2n))∗∗,�). For a ∈ A , a∗ ∈ A ∗, ϕ, ψ ∈ A (2n+2), let (ϕα) and (ψβ) be nets
in A (2n) such that P2n(ϕα) −→ ϕ and P2n(ψβ) −→ ψ in the weak∗ topology. Then

we have

〈a, dn+1(ϕ� ψ)〉 = lim
α

lim
β
〈a, dn(ϕα)ψβ + ϕαdn(ψβ)〉

= lim
α

lim
β
〈P2n−3 . . . P3P1(adn(ϕα)), ψβ〉

+lim
α

lim
β
〈ψβ , D

(2n+1)P
(2n)
0 . . . P ∗∗0 (aP ∗1 . . . P

∗
2n−3(ϕα))〉

= lim
α
〈adn(ϕα), P ∗1 . . . P

∗
2n−1(ψ)〉

+lim
α
〈dn+1(ψ)a, P ∗1 . . . P

∗
2n−3(ϕα)〉

= 〈a, dn+1(ϕ) · ψ + ϕ · dn+1(ψ)〉,

so dn+1 is a derivation. Since H1(A (2n),A∗) = {0}, there exists a∗ ∈ A ∗ such that

dn = δa∗ . Using Lemma 1.1 (iv) and Lemma 1.2, we conclude that

aa∗ − a∗a = P2n−2 . . . P2P0(a) · a∗ − a∗ · P2n−2 . . . P2P0(a)

= dnP2n−2 . . . P2P0(a) = D(a) (a ∈ A ).

Hence D = δa∗ is inner. �

Lemma 3.6. Let A be a Banach algebra, n ∈ � and let D : A −→ A (2n) be a

derivation. Then for every F,G ∈ A ∗∗

(i) D∗∗ : (A ∗∗,�) −→ ((A (2n))∗∗,�) holds in

D∗∗(F �G) = D∗∗(F )�P ∗∗2n−2 . . . P
∗∗
2 P ∗∗0 (G)+P ∗∗2n−2 . . . P

∗∗
2 P ∗∗0 (F )�D∗∗(G).

(ii) D∗∗ : (A ∗∗,4) −→ ((A (2n))∗∗,4) holds in

D∗∗(F4G) = D∗∗(F )4P ∗∗2n−2 . . . P
∗∗
2 P ∗∗0 (G)+P ∗∗2n−2 . . . P

∗∗
2 P ∗∗0 (F )4D∗∗(G).

���! " $#
is straightforward. �
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Proposition 3.7. Let A be a Banach algebra, n ∈ � and let D : A −→ A (2n)

be a derivation. If A (2n) is Arens regular and

D∗∗(A ∗∗)A (2n+1) ∪A
(2n+1)D∗∗(A ∗∗) ⊆ P2n−1 . . . P3P1(A ∗),

then D∗∗ : A ∗∗ −→ (A (2n))∗∗ is a derivation.

���! " $#
. Since A (2n) is Arens regular, A is Arens regular. For ϕ2n+1 ∈ A (2n+1),

F,G ∈ A
∗∗, there exists a∗ ∈ A

∗ such that

ϕ2n+1 ·D∗∗(F ) = P2n−1 . . . P1(a∗).

By Lemma 1.1 we have

〈ϕ2n+1, D
∗∗(F ) � P ∗∗2n−2 . . . P

∗∗
0 (G)〉 = 〈P2n−1 . . . P1(a∗), P ∗∗2n−2 . . . P

∗∗
0 (G)〉

= 〈P2n−2 . . . P2(G), ϕ2n+1D
∗∗(F )〉

= 〈ϕ2n+1, D
∗∗(F )G〉.

Similarly, P ∗∗2n−2 . . . P
∗∗
0 (F ) � D∗∗(G) = FD∗∗(G). Hence D∗∗ is a derivation by

Lemma 3.6. �

Lemma 3.8. Let A be a Banach algebra and D : A −→ A (2n+1) (n ∈ � ) a
derivation. Then D∗∗ : (A ∗∗,�) −→ ((A (2n))∗∗,�)∗ is valid in

D∗∗(F �G) = D∗∗(F )P ∗∗2n−2 . . . P
∗∗
0 (G) + P ∗∗2n . . . P

∗∗
0 (F )D∗∗(G) (F,G ∈ A

∗∗).

���! " $#
is straightforward. �

Proposition 3.9. Let A be a Banach algebra and let D : A −→ A (2n+1)

(n ∈ � ) be a derivation. If

D∗∗(A ∗∗) ·A (2n+2) ∪A
(2n+2) ·D∗∗(A ∗∗) ⊆ P2n+1 . . . P1(A ∗),

then D∗∗ : (A ∗∗,�) −→ (A ∗∗)(2n+1) is a derivation.

���! " $#
. By Lemma 3.8, it is clear. �
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Lemma 3.10. Let A be a Banach algebra and D : A −→ A ∗ a derivation.

Then for every ϕ and ψ in A
(4)

(i) D(4) : (A (4),��) −→ (A (4),��)∗ holds in D(4)(ϕ��ψ) = D(4)(ϕ)ψ+P (4)
0 (ϕ)

D(4)(ψ);
(ii) D(4) : (A (4),44) −→ (A (4),44)∗ holds in D(4)(ϕ44ψ) = D(4)(ϕ)P (4)

0 (ψ)+
ϕD(4)(ψ).

���! " $#
. (i) Let ξ, ϕ, ψ ∈ A (4) and let (Fα), (Gβ) be nets in A ∗∗ such that

P2(Fα) −→ ϕ and P2(Gβ) −→ ψ in the weak∗ topology. By Lemma 3.1 we have

〈ξ,D(4)(ϕ� �ψ)〉 = lim
α

lim
β
〈D∗∗(Fα �Gβ), ξ〉

= lim
α

lim
β
〈D∗∗(Fα)Gβ + P ∗∗0 (Fα)D∗∗(Gβ), ξ〉

= lim
α
〈ξD∗∗(Fα) +D(3)(ξ �� P ∗∗0 (Fα)), ψ〉

= 〈D(3)(ψ �� ξ) + P
(3)
0 (D(4)(ψ)ξ), ϕ〉

= 〈ξ,D(4)(ϕ)ψ + P
(4)
0 (ϕ)D(4)(ψ)〉.

(ii) The proof is similar to (i). �

Proposition 3.11. Let A be a Banach algebra and D : A −→ A ∗ a derivation.

(i) If D(4)(A (4)) · A (4) ⊆ P3P1(A ∗), then D(4) : (A (4),��) −→ (A (4))∗ is a
derivation.

(ii) If A (4) · D(4)(A (4)) ⊆ P3P1(A ∗), then D(4) : (A (4),44) −→ (A (4))∗ is a
derivation.

���! " $#
. (i) Let ξ, ϕ, ψ ∈ A (4), there exists a∗ ∈ A ∗ such that D(4)(ϕ) · ξ =

P3P1(a∗). By Lemma 1.1 (iii) we have

〈ξ, P (4)
0 (ϕ)D(4)(ψ)〉 = 〈P (3)

0 P3P1(a∗), ϕ〉 = 〈ϕ,D(4)(ψ)ξ〉 = 〈ξ, ϕD(4)(ψ)〉.

Therefore D(4) is a derivation by Lemma 3.10.

(ii) The proof is similar to (i). �

We recall that an operator T : X −→ Y between Banach spaces is weakly compact

if and only if T ∗∗X∗∗ ⊂ Y (considered as a subspace of Y ∗∗) if and only if T ∗ is
weakly compact.
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Lemma 3.12. Let A be a Banach algebra and D : A −→ A ∗ a weakly compact

operator. Then D(2n)(A (2n)) ⊆ P2n−1 . . . P3P1(A ∗) (n ∈ � ).

���! " $#
. When n = 1, clearly the result is true. Now suppose, inductively, that

the result has been proved for n. Let ϕ, ξ ∈ A (2n+2) and let (ϕα) be a net in A (2n)

such that P2n(ϕα) −→ ϕ in the weak∗ topology. Then

〈ξ,D(2n+2)(ϕ)〉 = lim
α
〈D(2n)(ϕα), ξ〉 = lim

α
〈P ∗2n−1(ξ), D

(2n)(ϕα)〉

= 〈D(2n−1)P ∗2n−1(ξ), P
∗
2n−1(ϕ)〉 = 〈P ∗2n−1(ξ), D

(2n)P ∗2n−1(ϕ)〉
= 〈D(2n)P ∗2n−1(ϕ), ξ〉 = 〈ξ, P2n+1D

(2n)P ∗2n−1(ϕ)〉.

Consequently, D(2n+2)(ϕ) = P2n+1D
(2n)P ∗2n−1(ϕ) ⊆ P2n+1 . . . P3P1(A ∗). �

Dales, Rodrigues-Palacios and Velasco in [3] proved the following theorem.

Theorem 3.13. Let A be an Arens regular Banach algebra and D : A −→ A ∗

a weakly compact derivation. Then D(∗∗) : A (∗∗) −→ (A ∗∗)∗ is a derivation.

Now we have the same result for A
(4).

Theorem 3.14. Let A be an Arens regular Banach algebra and D : A −→
A ∗ a weakly compact derivation. Then D(4) : (A (4),��) −→ (A (4))∗ and D(4) :
(A (4),44) −→ (A (4))∗ are derivations.

���! " $#
. Let ξ, ϕ, ψ ∈ A (4) and (Fα), (Gβ), (Hγ) be nets in A ∗∗ such that

P2(Fα) −→ ϕ, P2(Gβ) −→ ψ and P2(Hγ) −→ ξ in the weak∗ topology, let a∗ ∈ A ∗

and let a∗α be a net in A ∗ such that P1(a∗α) = D∗∗(Fα) and P1(a∗) = D∗∗P ∗1 (ϕ). We
have

〈ξ,D(4)(ϕ)ψ〉 = 〈ψ �� ξ,D(4)(ϕ)〉 = lim
α

lim
β

lim
γ
〈a∗α, Gβ �Hγ〉

= lim
α

lim
β
〈a∗αGβ , P

∗
1 (ξ)〉 = lim

α
〈P ∗1 (ψ) � P ∗1 (ξ), D∗∗P ∗∗1 (ϕ)〉

= 〈ξ, P3(P1(a∗)P ∗1 (ψ))〉 = 〈ξ, P3P1(a∗P ∗1 (ψ))〉,

and so D(4)(A (4))A (4) ⊆ P3P1(A ∗) and by Proposition 3.11, D(4) : (A (4),��) −→
(A (4))∗ is a derivation. The other part is similar. �
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Corollary 3.15. Let A be an Arens regular Banach algebra such that

(A (4),��) or (A (4),44) is weakly amenable and each derivation from A to A
∗ is

weakly compact. Then A is weakly amenable.
���! " $#

. Let D : A −→ A ∗ be a derivation. We may suppose that (A (4),��) is
weakly amenable. By Theorem 3.14, D(4) : (A (4),��) −→ (A (4))∗ is a derivation.
So there exists ϕ5 ∈ (A (4))∗ such that D(4) = δϕ5 . Set a

∗ = P ∗0 P
∗
2 (ϕ5). Then by

Lemma 1.2 we have

aa∗ − a∗a = P ∗0 P
∗
2 (P2P0(a)ϕ5 − ϕ5P2P0(a))

= P ∗0 P
∗
2D

(4)P2P0(a) = D(a) (a ∈ A ).

Therefore D = δa∗ is inner. Hence A is weakly amenable. �

Proposition 3.16. Let A be a Banach algebra, D : A −→ A ∗ a derivation

and A (2n) = ((. . . ((A ∗∗,�)∗∗,�) . . .)∗∗,�) (n ∈ � ). Then
(i) D(2n) : A (2n) −→ (A (2n))∗ holds in

D(2n)(ϕ� ψ) = D(2n)(ϕ)ψ + P
(2n)
0 (ϕ)D(2n)(ψ) (ϕ, ψ ∈ A

(2n)).

(ii) If D(2n)(A (2n)) ·A (2n) ⊆ P2n−1 . . . P3P1(A ∗), then D(2n) is a derivation.

(iii) If A (2n−2) is Arens regular and D is weakly compact, then D(2n) is a derivation.

Corollary 3.17. Let A be a completely regular Banach algebra such that

A (2n) is weakly amenable for some n ∈ � , and each derivation from A to A ∗ is

weakly compact. Then A is weakly amenable.

Lemma 3.18. Let A be an Arens regular Banach algebra such that (A (4),��)
or (A (4),44) is (−2)-weakly amenable. Then A is 2-weakly amenable.
���! " $#

. Let D : A −→ A ∗∗ be a derivation, and let (A (4),��) be (−2)-weakly
amenable. Set d = P ∗1D

∗∗P ∗1 : (A (4),��) −→ A ∗∗. For a∗ ∈ A ∗, ϕ, ψ ∈ A (4) let
(Fα), (Gβ) be nets in A ∗∗ such that P2(Fα) −→ ϕ and P2(Gβ) −→ ψ in the weak∗

topology. Then

〈a∗, d(ϕ�� ψ)〉 = 〈P1D
∗P1(a∗), ϕ�� ψ〉

= lim
α

lim
β
〈P1(a∗), D∗∗(Fα �Gβ)〉

= lim
α

lim
β
〈a∗, P ∗1D∗∗(Fα)Gβ + FαP

∗
1D

∗∗(Gβ)〉

= lim
α
〈a∗P ∗1D∗∗(Fα), P ∗1 (ψ)〉+ 〈D∗P1(a∗Fα), P ∗1 (ψ)〉

= 〈P ∗1 (ψ)a∗, d(ϕ)〉 + 〈d(ψ)a∗, P ∗1 (ϕ)〉
= 〈a∗, d(ϕ) · ψ + ϕ · d(ψ)〉.
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Therefore d is a derivation. Since H1(A (4),A ∗∗) = {0}, there exists F ∈ A ∗∗ such

that d = δF . It is easy to see that D = δF . So A is 2-weakly amenable. �

Proposition 3.19. Let A be an Arens regular Banach algebra such that

A (2n+2) (n ∈ � ) with one of Arens products is (−2n)-weakly amenable. Then
A is 2-weakly amenable.
���! " $#

. Let D : A −→ A ∗∗ be a derivation. By Lemma 3.18 and by in-

duction, d = P ∗1D
∗∗P ∗1 P

∗
3 . . . P

∗
2n−1 : A (2n+2) −→ A ∗∗ is a derivation. Since

H1(A (2n+2),A ∗∗) = {0}, there exists F ∈ A ∗∗ such that d = δF . It is easy to see

that D = δF is inner. �

Acknowledgement. We would like to thank the referee for carefully reading the
paper and giving some interesting and fruitful suggestions.

References

[1] W.G. Bade, P.G. Curtis and H.G. Dales: Amenability and weak amenability for Beurl-
ing and Lipschitz algebra. Proc. London Math. Soc. 55 (1987), 359–377.

[2] H.G. Dales, F. Ghahramanim and N. Gronbaek: Derivations into iterated duals of Ba-
nach algebras. Studia Math. 128 (1998), 19–54.

[3] H.G. Dales, A. Rodriguez-Palacios and M.V. Valasco: The second transpose of a deriva-
tion. J. London Math. Soc. 64 (2001), 707–721.

[4] M. Despic and F. Ghahramani: Weak amenability of group algebras of locally compact
groups. Canad. Math. Bull. 37 (1994), 165–167.

[5] J. Duncan and Hosseiniun: The second dual of a Banach algebra. Proc. Roy. Soc.
Edinburgh 84A (1978), 309–325.

[6] N. Gronbaek: Weak amenability of group algebras. Bull. London Math. Soc. 23 (1991),
231–284.

[7] U. Haagerup: All nuclear C ∗-algebras are amenable. Invent. Math. 74 (1983), 305–319.
[8] B.E. Johnson: Cohomology in Banach Algebras. Mem. Amer. Math. Soc. 127 (1972).
[9] B.E. Johnson: Weak amenability of group algebras. Bull. Lodon Math. Soc. 23 (1991),
281–284.

[10] T.W. Palmer: Banach Algebra, the General Theory of ∗-algebra. Vol. 1: Algebra and
Banach Algebras. Cambridge University Press, Cambridge, 1994.

Authors’ address: % & ' ( ) * + ,.-0/ + 1 , Faculty of Mathematical Science, Teacher Train-
ing University, 599, Taleghani Avenue, Tehran, 15614, Iran, e-mail: medghalchi@saba.tmu.
ac.ir; 2 & 3 ,.4 ) , 5 6$, 5 , + , Department of Mathematics, Persian Gulf University, 75168
Boushehr, Iran, e-mail: yazdanpanah@pgu.ac.ir.

876


		webmaster@dml.cz
	2020-07-03T15:35:18+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




