Czechoslovak Mathematical Journal

Alireza Medghalchi; Taher Yazdanpanah
 Problems concerning n-weak amenability of a Banach algebra

Czechoslovak Mathematical Journal, Vol. 55 (2005), No. 4, 863-876

Persistent URL: http: //dml.cz/dmlcz/128029

Terms of use:

(C) Institute of Mathematics AS CR, 2005

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz

PROBLEMS CONCERNING n-WEAK AMENABILITY OF A BANACH ALGEBRA

Alireza Medghalchi, Teheran, and Taher Yazdanpanah, Boushehr
(Received October 24, 2002)

Abstract. In this paper we extend the notion of n-weak amenability of a Banach algebra \mathscr{A} when $n \in \mathbb{N}$. Technical calculations show that when \mathscr{A} is Arens regular or an ideal in $\mathscr{A}^{* *}$, then \mathscr{A}^{*} is an $\mathscr{A}^{(2 n)}$-module and this idea leads to a number of interesting results on Banach algebras. We then extend the concept of n-weak amenability to $n \in \mathbb{Z}$.

Keywords: Banach algebra, weakly amenable, Arens regular, n-weakly amenable
MSC 2000: 46H20, 46H40

1. Introduction

Let \mathscr{A} be a Banach algebra, X a Banach \mathscr{A}-bimodule. Then we denote by X^{*} the topological dual space of X; the value of $x^{*} \in X^{*}$ at $x \in X$ is denoted by $\left\langle x, x^{*}\right\rangle$. We recall that X^{*} is a Banach \mathscr{A}-bimodule under the actions

$$
\left\langle x, a x^{*}\right\rangle=\left\langle x a, x^{*}\right\rangle, \quad\left\langle x, x^{*} a\right\rangle=\left\langle a x, x^{*}\right\rangle \quad\left(a \in \mathscr{A}, x \in X, x^{*} \in X^{*}\right) .
$$

A derivation $D: \mathscr{A} \longrightarrow X$ is a (bounded) linear map such that

$$
D(a b)=D(a) b+a D(b) \quad(a, b \in \mathscr{A}) .
$$

For each $x \in X, \delta_{x}(a)=a x-x a$ is a derivation, which is called inner. The first cohomology group $H^{1}(\mathscr{A}, X)$ is the quotient of the space of derivations by the inner derivations, and in many situations triviality of this space is of considerable importance. In particular, \mathscr{A} is called contractible if $H^{1}(\mathscr{A}, X)=\{0\}$ for every Banach \mathscr{A}-bimodule X, \mathscr{A} is called amenable if $H^{1}\left(\mathscr{A}, X^{*}\right)=\{0\}$ for every Banach \mathscr{A}-bimodule X, \mathcal{A} is called n-weakly amenable if $H^{1}\left(\mathscr{A}, \mathscr{A}^{(n)}\right)=\{0\}$, and
weakly amenable if \mathscr{A} is 1 -weakly amenable. For the theory of amenable and weakly amenable Banach algebras see [1], [2], [4], [6], [8] and [9] for example.

Let \mathscr{A} be a Banach algebra. Given $a^{*} \in \mathscr{A}^{*}$ and $F \in \mathscr{A}^{* *}$, then $F a^{*}$ and $a^{*} F$ are defined in \mathscr{A}^{*} by the formulae

$$
\left\langle a, F a^{*}\right\rangle=\left\langle a^{*} a, F\right\rangle, \quad\left\langle a, a^{*} F\right\rangle=\left\langle a a^{*}, F\right\rangle \quad(a \in \mathscr{A}) .
$$

Next, for $F, G \in \mathscr{A}^{* *}, F \square G$ and $F \triangle G$ are defined in $\mathscr{A}^{* *}$ by the formulae

$$
\left\langle a^{*}, F \square G\right\rangle=\left\langle G a^{*}, F\right\rangle, \quad\left\langle a^{*}, F \triangle G\right\rangle=\left\langle a^{*} F, G\right\rangle \quad\left(a^{*} \in \mathscr{A}^{*}\right) .
$$

Then $\mathscr{A}^{* *}$ is a Banach algebra with respect to either of the products \square and \triangle. These products are called the first and second Arens products on $\mathscr{A}^{* *}$, respectively. The algebra \mathscr{A} is called Arens regular if the two products \square and \triangle coincide. For the general theory of Arens products, see [5] and [10], for example.

Let \mathscr{A} be a Banach algebra, $n \in \mathbb{N} \cup\{0\}$ and let $P_{n}: \mathscr{A}^{(n)} \longrightarrow \mathscr{A}^{(n+2)}$ be the natural embedding, i.e., $\left\langle\varphi_{n+1}, P_{n} \varphi_{n}\right\rangle=\left\langle\varphi_{n}, \varphi_{n+1}\right\rangle\left(\varphi_{n} \in \mathscr{A}^{(n)}, \varphi_{n+1} \in \mathscr{A}^{(n+1)}\right)$, where $\mathscr{A}^{(0)}=\mathscr{A}$ and $\mathscr{A}^{(n)}$ is the nth dual of \mathscr{A}. We shall require the following standard properties of the Arens products. Suppose $\left(a_{\alpha}\right)$ and $\left(b_{\beta}\right)$ are nets in \mathscr{A} with $P_{0} a_{\alpha} \longrightarrow F$ and $P_{0} b_{\beta} \longrightarrow G$ in $\left(\mathscr{A}^{* *}, \sigma\right)$, where $\sigma=\sigma\left(\mathscr{A}^{* *}, \mathscr{A}^{*}\right)$ is the weak ${ }^{*}$ topology on $\mathscr{A}^{* *}$. Then $F \square G=\lim _{\alpha} \lim _{\beta} P_{0}\left(a_{\alpha} b_{\beta}\right)$ and $F \triangle G=\lim _{\beta} \lim _{\alpha} P_{0}\left(a_{\alpha} b_{\beta}\right)$ in $\left(\mathscr{A}^{* *}, \sigma\right)$. Also, for $a \in \mathscr{A}$ and $F \in \mathscr{A}^{* *}$, we have $P_{0}(a) \triangle F=P_{0}(a) \square F$ and $F \triangle P_{0}(a)=F \square P_{0}(a)$.

By easy calculations we can obtain the following properties of the P_{n} maps.
Lemma 1.1. Let $m \in \mathbb{N}$ and $n \in \mathbb{N} \cup\{0\}$. Then
(i) $P_{n}^{* *} P_{n}=P_{n+2} P_{n}$;
(ii) $P_{n}^{*} P_{n+1}=\mathrm{id}$;
(iii) $P_{n}^{(2 m+1)} P_{n+2 m+1} \ldots P_{n+3} P_{n+1}=P_{n+2 m-1} \ldots P_{n+3} P_{n+1}$;
(iv) $P_{n}^{(2 m)} P_{n+2 m-2}=P_{n+2 m} P_{n}^{(2 m-2)}$.

Lemma 1.2. Let \mathscr{A} be a Banach algebra, $n \in \mathbb{N}$ and let $D: \mathscr{A} \longrightarrow \mathscr{A}^{(n)}$ be a derivation. Then $P_{n-1}^{*} P_{n+1}^{*} \ldots P_{n+2 m-3}^{*} D^{(2 m)} P_{2 m-2} P_{2 m-4} \ldots P_{0}=D(m \in \mathbb{N})$.

Proof. It is enough to show that $P_{n+(2 m-3)}^{*} D^{(2 m)} P_{2 m-2}=D^{(2 m-2)}$ for all $m \in \mathbb{N}$. For $\varphi \in \mathscr{A}^{(2 m-2)}$ and $\psi \in \mathscr{A}^{(n+2 m-3)}$ we have

$$
\begin{gathered}
\left\langle\psi, P_{n+2 m-3}^{*} D^{(2 m)} P_{2 m-2}(\varphi)\right\rangle=\left\langle D^{(2 m-1)} P_{n+2 m-3}(\psi), P_{2 m-2}(\varphi)\right\rangle \\
\left\langle\varphi, D^{(2 m-1)} P_{n+2 m-1}(\psi)\right\rangle=\left\langle\psi, D^{(2 m-2)}(\varphi)\right\rangle,
\end{gathered}
$$

and so $P_{n+(2 m-3)}^{*} D^{(2 m)} P_{2 m-2}=D^{(2 m-2)}$.

2. WHEN $\mathscr{A}^{(m)}$ IS AN $\mathscr{A}^{(2 n)}$-MODULE?

Let \mathscr{A} be a Banach algebra. Clearly $\mathscr{A}^{(4)}$ is a Banach algebra with four Arens products. We denote these algebras by $\left(\mathscr{A}^{4}, \square \square\right)=\left(\left(\mathscr{A}^{* *}, \square\right)^{* *}, \square\right),\left(\mathscr{A}^{4}, \triangle \square\right)=$ $\left(\left(\mathscr{A}^{* *}, \triangle\right)^{* *}, \square\right),\left(\mathscr{A}^{4}, \square \triangle\right)=\left(\left(\mathscr{A}^{* *}, \square\right)^{* *}, \triangle\right),\left(\mathscr{A}^{4}, \triangle \triangle\right)=\left(\left(\mathscr{A}^{* *}, \triangle\right)^{* *}, \triangle\right)$. For $a \in \mathscr{A}$ and $\varphi \in \mathscr{A}^{(4)}$ it is easy to check that

$$
\begin{aligned}
& P_{2} P_{0}(a) \square \square \varphi=P_{2} P_{0}(a) \square \triangle \varphi=P_{2} P_{0}(a) \triangle \square \varphi=P_{2} P_{0}(a) \triangle \triangle \varphi, \\
& \varphi \square \square P_{2} P_{0}(a)=\varphi \square \triangle P_{2} P_{0}(a)=\varphi \triangle \square P_{2} P_{0}(a)=\varphi \triangle \triangle P_{2} P_{0}(a) .
\end{aligned}
$$

Let \mathscr{A} be a Banach algebra and $n \in \mathbb{N}$. Consider the maps $\left(a^{*}, \varphi_{2 n}\right) \mapsto a^{*} \cdot \varphi_{2 n}$ and $\left(a^{*}, \varphi_{2 n}\right) \mapsto \varphi_{2 n} \cdot a^{*}$ from $\mathscr{A}^{*} \times \mathscr{A}^{(2 n)}$ into \mathscr{A}^{*} defined by

$$
\begin{aligned}
& \left\langle a, a^{*} \cdot \varphi_{2 n}\right\rangle=\left\langle P_{2 n-3} \ldots P_{3} P_{1}\left(a a^{*}\right), \varphi_{2 n}\right\rangle, \\
& \left\langle a, \varphi_{2 n} \cdot a^{*}\right\rangle=\left\langle P_{2 n-3} \ldots P_{3} P_{1}\left(a^{*} a\right), \varphi_{2 n}\right\rangle \quad(a \in \mathscr{A}) .
\end{aligned}
$$

Then $a^{*} \cdot \varphi_{2 n}=a^{*} P_{1}^{*} P_{3}^{*} \ldots P_{2 n-3}^{*}\left(\varphi_{2 n}\right)$ and $\varphi_{2 n} \cdot a^{*}=P_{1}^{*} P_{3}^{*} \ldots P_{2 n-3}^{*}\left(\varphi_{2 n}\right) a^{*}$. Clearly these maps are continuous and bilinear. Note that with respect to these actions \mathscr{A}^{*} is not necessarily a Banach $\mathscr{A}^{(2 n)}$-module. By dualizing these actions we obtain continuous bilinear maps from $\mathscr{A}^{(m)} \times \mathscr{A}^{(2 n)}$ into $\mathscr{A}^{(m)}$ for every $m \in \mathbb{N}$. For example, for $F \in \mathscr{A}^{* *}$ and $\varphi_{2 n} \in \mathscr{A}^{(2 n)}$ we have

$$
\begin{aligned}
\left\langle a^{*}, F \cdot \varphi_{2 n}\right\rangle & =\left\langle\varphi_{2 n} \cdot a^{*}, F\right\rangle \\
& =\left\langle P_{1}^{*} P_{3}^{*} \ldots P_{2 n-3}^{*}\left(\varphi_{2 n}\right) a^{*}, F\right\rangle \\
& =\left\langle a^{*}, F \square P_{1}^{*} P_{3}^{*} \ldots P_{2 n-3}^{*}\left(\varphi_{2 n}\right)\right\rangle \quad\left(a^{*} \in \mathscr{A}^{*}\right),
\end{aligned}
$$

and so $F \cdot \varphi_{2 n}=F \square P_{1}^{*} P_{3}^{*} \ldots P_{2 n-3}^{*}\left(\varphi_{2 n}\right)$. Similarly, $\varphi_{2 n} \cdot F=P_{1}^{*} P_{3}^{*} \ldots P_{2 n-3}^{*}\left(\varphi_{2 n}\right) \triangle$ F. From now on we regard these actions as $\mathscr{A}^{(2 n)}$-actions on $\mathscr{A}^{(m)}$ induced from \mathscr{A}^{*}.

Now consider the maps $\left(F, \varphi_{2 n}\right) \mapsto F \cdot \varphi_{2 n}$ and $\left(F, \varphi_{2 n}\right) \mapsto \varphi_{2 n} \cdot F$ from $\mathscr{A}^{* *} \times \mathscr{A}^{(2 n)}$ into $\mathscr{A}^{* *}$ defined by

$$
\begin{aligned}
\left\langle a^{*}, F \cdot \varphi_{2 n}\right\rangle & =\left\langle P_{2 n-3} \ldots P_{3} P_{1}\left(a^{*} F\right), \varphi_{2 n}\right\rangle \\
\left\langle a^{*}, \varphi_{2 n} \cdot F\right\rangle & =\left\langle P_{2 n-3} \ldots P_{3} P_{1}\left(F a^{*}\right), \varphi_{2 n}\right\rangle \quad\left(a^{*} \in \mathscr{A}^{*}\right)
\end{aligned}
$$

Clearly these are continuous bilinear maps, $F \cdot \varphi_{2 n}=F \triangle P_{1}^{*} P_{3}^{*} \ldots P_{2 n-3}^{*}\left(\varphi_{2 n}\right)$ and similarly $\varphi_{2 n} \cdot F=P_{1}^{*} P_{3}^{*} \ldots P_{2 n-3}^{*}\left(\varphi_{2 n}\right) \square F$. Note that these actions are different from the actions induced from \mathscr{A}^{*}. Again by dualizing these actions we have continuous bilinear maps from $\mathscr{A}^{(m)} \times \mathscr{A}^{(2 n)}$ into $\mathscr{A}^{(m)}$ for every $m \geqslant 2$. So we have $\mathscr{A}^{(2 n)}$-actions on $\mathscr{A}^{(m)}(m \geqslant 2)$ induced from $\mathscr{A}^{* *}$.

Let \mathscr{A} be a Banach algebra and let $n, k \in \mathbb{N}$ be such that $n \geqslant 2 k$. Set $\mathscr{B}=$ $\left(\mathscr{A}^{(2 k)}, \cdot\right)$, where \cdot is one of the 2^{k} Arens products on $\mathscr{A}^{(2 k)}$. Then \mathscr{B} is a Banach algebra and \mathscr{B}^{*} is a Banach \mathscr{B}-module. By a similar argument we have continuous bilinear maps from $\mathscr{B}^{*} \times \mathscr{A}^{(2 n)}$ into \mathscr{B}^{*} and from $\mathcal{B}^{* *} \times \mathscr{A}^{(2 n)}$ into $\mathscr{B}^{* *}$. Therefore for every $m \geqslant 2 k+1$ we have $\mathscr{A}^{(2 n)}$-actions on $\mathscr{A}^{(m)}$ induced from \mathscr{B}^{*} and for every $m \geqslant 2 k+2$ we have $\mathscr{A}^{(2 n)}$-actions on $\mathscr{A}^{(m)}$ induced from $\mathscr{B}^{* *}$.

Proposition 2.1. Let \mathscr{A} be an Arens regular Banach algebra and $n \in \mathbb{N}$. Then \mathscr{A}^{*} is a Banach $\mathscr{A}^{(2 n)}$-bimodule with actions induced from \mathscr{A}^{*} and any of Arens products on $\mathscr{A}^{(2 n)}$. In particular, $\mathscr{A}^{(m)}$ is a Banach $\mathscr{A}^{(2 n)}$-bimodule by actions induced from \mathscr{A}^{*}.

Proof. When $n=1$, one can immediately see that \mathscr{A}^{*} is a left Banach $\left(\mathscr{A}^{* *}, \square\right)$-module and a right Banach $\left(\mathscr{A}^{* *}, \triangle\right)$-module. Since \mathscr{A} is Arens regular, \mathscr{A}^{*} is a left and right Banach $\mathscr{A}^{* *}$-module. For $a \in \mathscr{A}, a^{*} \in \mathscr{A}$ and $F, G \in \mathscr{A}^{* *}$ we have

$$
\begin{aligned}
\left\langle a,\left(F a^{*}\right) G\right\rangle & =\left\langle(a F) a^{*}, G\right\rangle=\left\langle a^{*}, G \square(a F)\right\rangle \\
& =\left\langle a^{*} G, P_{0}(a) \square F\right\rangle=\left\langle F\left(a^{*} G\right), P_{0}(a)\right\rangle \\
& =\left\langle a, F\left(a^{*} G\right)\right\rangle
\end{aligned}
$$

and so $\left(F a^{*}\right) G=F\left(a^{*} G\right)$. Hence \mathscr{A}^{*} is a Banach $\mathscr{A}^{* *}$-bimodule. Now suppose the result has been proved for n. We may assume that $\mathscr{A}^{(2 n+2)}=\left(\left(\mathscr{A}^{(2 n)}\right)^{* *}, \square\right)$. Let $a \in \mathscr{A}, a^{*} \in \mathscr{A}^{*}, \varphi, \psi \in \mathscr{A}^{(2 n+2)}$ and let $\left(\varphi_{\alpha}\right),\left(\psi_{\beta}\right)$ be nets in $\mathscr{A}^{(2 n)}$ such that $P_{2 n}\left(\varphi_{\alpha}\right) \longrightarrow \varphi$ and $P_{2 n}\left(\psi_{\beta}\right) \longrightarrow \psi$ in the weak ${ }^{*}$ topology. Then

$$
\begin{aligned}
\left\langle a, a^{*} \cdot(\varphi \square \psi)\right\rangle & =\lim _{\alpha} \lim _{\beta}\left\langle P_{2 n-3} \ldots P_{3} P_{1}\left(a a^{*}\right), \varphi_{\alpha} \psi_{\beta}\right\rangle \\
& =\lim _{\alpha} \lim _{\beta}\left\langle a, a^{*} \cdot\left(\varphi_{\alpha} \psi_{\beta}\right)\right\rangle \\
& =\lim _{\alpha} \lim _{\beta}\left\langle a,\left(a^{*} \cdot \varphi_{\alpha}\right) \cdot \psi_{\beta}\right\rangle \\
& =\lim _{\alpha} \lim _{\beta}\left\langle a, a^{*} P_{1}^{*} P_{3}^{*} \ldots P_{2 n-3}^{*}\left(\varphi_{\alpha}\right) P_{1}^{*} P_{3}^{*} \ldots P_{2 n-3}^{*}\left(\psi_{\beta}\right)\right\rangle \\
& =\lim _{\alpha} \lim _{\beta}\left\langle P_{2 n-3} \ldots P_{3} P_{1}\left(a a^{*} P_{1}^{*} P_{3}^{*} \ldots P_{2 n-3}^{*}\left(\varphi_{\alpha}\right)\right), \psi_{\beta}\right\rangle \\
& =\lim _{\alpha}\left\langle a a^{*} P_{1}^{*} P_{3}^{*} \ldots P_{2 n-3}^{*}\left(\varphi_{\alpha}\right), P_{1}^{*} P_{3}^{*} \ldots P_{2 n-1}^{*}(\psi)\right\rangle \\
& =\lim _{\alpha}\left\langle P_{1}^{*} \ldots P_{2 n-1}^{*}(\psi) a a^{*}, P_{1}^{*} P_{3}^{*} \ldots P_{2 n-3}^{*}\left(\varphi_{\alpha}\right)\right\rangle \\
& =\left\langle a, a^{*} P_{1}^{*} \ldots P_{2 n-1}^{*}(\varphi) P_{1}^{*} \ldots P_{2 n-1}^{*}(\psi)\right\rangle \\
& =\left\langle a,\left(a^{*} \cdot \varphi\right) \cdot \psi\right\rangle
\end{aligned}
$$

and so $a^{*} \cdot(\varphi \square \psi)=\left(a^{*} \cdot \varphi\right) \cdot \psi$. Similarly $(\varphi \square \psi) \cdot a^{*}=\varphi \cdot\left(\psi \cdot a^{*}\right)$. On the other hand,

$$
\begin{aligned}
\left(\varphi \cdot a^{*}\right) \cdot \psi & =\left(P_{1}^{*} \ldots P_{2 n-1}^{*}(\varphi) a^{*}\right) P_{1}^{*} \ldots P_{2 n-1}^{*}(\psi) \\
& =P_{1}^{*} \ldots P_{2 n-1}^{*}(\varphi)\left(a^{*} P_{1}^{*} \ldots P_{2 n-1}^{*}(\psi)\right) \\
& =\varphi \cdot\left(a^{*} \cdot \psi\right) .
\end{aligned}
$$

Hence \mathscr{A}^{*} is a Banach $\mathscr{A}^{(2 n+2)}$-bimodule. So we are done by induction.

Proposition 2.2. Let \mathscr{A} be an Arens regular Banach algebra and $n \in \mathbb{N}$. Then with any of the Arens products on $\mathscr{A}^{(2 n)}$, the $\mathscr{A}^{(2 n)}$-actions on $\mathscr{A}^{* *}$ induced from \mathscr{A}^{*} and $\mathscr{A}^{* *}$ coincide. In particular, $\mathscr{A}^{* *}$ is a Banach $\mathscr{A}^{(2 n)}$-bimodule with any of these actions.

Proof is straightforward.
Let \mathscr{A} be a Banach algebra and $m, n \in \mathbb{N}$. Then $\mathscr{A}^{(2 m)}$ is a Banach algebra with one of the 2^{m} Arens products. We recall that every closed subalgebra of an Arens regular Banach algebra is Arens regular. In particular, when $\mathscr{A}^{(2 m)}$ is Arens regular for a Banach algebra \mathscr{A} and $m \in \mathbb{N}$, then $\mathscr{A}^{* *}, \mathscr{A}^{(4)}, \ldots, \mathscr{A}^{(2 m-2)}$ are Arens regular, and these algebras have only one Arens product. The following proposition is a generalization of Proposition 2.1 and Proposition 2.2.

Proposition 2.3. Let \mathscr{A} be a Banach algebra and let $n, m \in \mathbb{N}$ be such that $n \geqslant 2 m$. If $\mathscr{A}^{(2 m)}$ is Arens regular, then $\mathscr{A}^{(2 m+1)}$ and $\mathscr{A}^{(2 m+2)}$ are Banach $\mathscr{A}^{(2 n)}$-bimodules with actions induced from $\mathscr{A}^{(2 m+1)}$. Moreover, the $\mathscr{A}^{(2 n)}$-actions on $\mathscr{A}^{(2 m+2)}$ induced from $\mathscr{A}^{(2 m+1)}$ and $\mathscr{A}^{(2 m+2)}$ coincide.

Definition 2.4. Let \mathscr{A} be a Banach algebra. \mathscr{A} is called completely Arens regular, if for every $n \in \mathbb{N}, \mathscr{A}^{(2 n)}$ is Arens regular.

It is well known that every C^{*}-algebra is Arens regular and the second dual of a C^{*}-algebra is a C^{*}-algebra. Therefore, every C^{*}-algebra is completely Arens regular.

Proposition 2.5. Let \mathscr{A} be a completely Arens regular Banach algebra. Then $\mathscr{A}^{(m)}$ is a Banach $\mathscr{A}^{(2 n)}$-module with actions induced $\mathscr{A}^{(m)}$.

Proof. A direct consequence of Proposition 2.3.

Lemma 2.6. Let \mathscr{A} be a Banach algebra and $P_{0}(\mathscr{A})$ a left (right) ideal in $\mathscr{A}^{* *}$. Then \mathscr{A}^{*} is a Banach $\left(\mathscr{A}^{* *}, \square\right)$-module $\left(\left(\mathscr{A}^{* *}, \triangle\right)\right)$-module $)$.

Proof. For $a^{*} \in \mathscr{A}^{*}, a \in \mathscr{A}$ and $F, G \in \mathscr{A}^{* *}$ we have

$$
\begin{aligned}
\left\langle a, a^{*}(F \square G)\right\rangle & =\left\langle G\left(a a^{*}\right), F\right\rangle=\left\langle G \triangle P_{0}(a) a^{*}, F\right\rangle \\
& =\left\langle a^{*}, F \triangle G \triangle P_{0}(a)\right\rangle=\left\langle\left(a^{*} F\right) G, P_{0}(a)\right\rangle \\
& =\left\langle a,\left(a^{*} F\right) G\right\rangle
\end{aligned}
$$

and

$$
\begin{aligned}
\left\langle a, F\left(a^{*} G\right)\right\rangle & =\left\langle a^{*} G \square P_{0}(a), F\right\rangle=\left\langle a^{*}, G \square P_{0}(a) \square F\right\rangle \\
& =\left\langle F\left(a^{*} G\right), P_{0}(a)\right\rangle=\left\langle a, F\left(a^{*} G\right)\right\rangle .
\end{aligned}
$$

Therefore \mathscr{A}^{*} is a Banach $\left(\mathscr{A}^{* *}, \square\right)$-module.

Lemma 2.7. Let \mathscr{A} be a Banach algebra. Then $P_{0}(\mathscr{A})$ is an ideal in $\mathscr{A}^{* *}$ with any of the Arens products if and only if $P_{2} P_{0}(\mathscr{A})$ is an ideal in $\mathscr{A}^{(4)}$ with any of the Arens products.

Proof. Let $P_{0}(\mathscr{A})$ be an ideal in $\mathscr{A}^{* *}$. For $a \in \mathscr{A}$ and $\varphi \in \mathscr{A}^{(4)}$, one can immediately see that

$$
P_{2} P_{0}(a) \square \square \varphi=P_{2}\left(P_{0}(a) \square P_{1}^{*}(\varphi)\right) \quad \text { and } \quad \varphi \square \square P_{2} P_{0}(a)=P_{2}\left(P_{1}^{*}(\varphi) \square P_{0}(a)\right)
$$

Therefore $P_{2} P_{0}(\mathscr{A})$ is an ideal in $\mathscr{A}^{(4)}$ with any of the Arens products on $\mathscr{A}^{(4)}$. Conversely, let $P_{2} P_{0}(\mathscr{A})$ be an ideal in $\mathscr{A}^{(4)}$. Take $a \in \mathscr{A}$ and $F \in \mathscr{A}^{* *}$. It is easy to see that $P_{2}\left(P_{0}(a) \square F\right)=P_{2} P_{0}(a) \square \square P_{2}(F) \in P_{2} P_{0}(\mathscr{A})$. Hence $P_{0}(a) \square F \in P_{0}(\mathscr{A})$ and similarly $F \square P_{0}(a) \in P_{0}(\mathscr{A})$. Therefore $P_{0}(\mathscr{A})$ is an ideal in $\mathscr{A}^{* *}$.

Proposition 2.8. Let \mathscr{A} be a Banach algebra and $P_{0}(\mathscr{A})$ an ideal in $\mathscr{A}^{* *}$. Then \mathscr{A}^{*} is a Banach $\mathscr{A}^{(2 n)}$-module with any of the Arens products on $\mathscr{A}^{(2 n)}(n \in \mathbb{N})$.

Proof. When $n=1$ the result is true by Lemma 2.6. Now suppose, inductively, the result has been proved for $n-1$. We may assume that $\mathscr{A}^{(2 n+2)}=\left(\left(\mathscr{A}^{(2 n)}\right)^{* *}, \square\right)$. Let $a \in \mathscr{A}, a^{*} \in \mathscr{A}^{*}$ and $\varphi, \psi \in \mathscr{A}^{(2 n+2)}$, and let $\left(\varphi_{\alpha}\right),\left(\psi_{\beta}\right)$ be nets in $\mathscr{A}^{(2 n)}$ such that $P_{2 n}\left(\varphi_{\alpha}\right) \longrightarrow \varphi$ and $P_{2 n}\left(\psi_{\beta}\right) \longrightarrow \psi$ in the weak* topology. Now we have

$$
\begin{aligned}
\left\langle a, a^{*} \cdot(\varphi \square \psi)\right\rangle & =\left\langle P_{2 n-1} \ldots P_{3} P_{1}\left(a a^{*}\right), \varphi \square \psi\right\rangle \\
& =\lim _{\alpha} \lim _{\beta}\left\langle a^{*}, P_{1}^{*} P_{3}^{*} \ldots P_{2 n-3}^{*}\left(\varphi_{\alpha}\right) \triangle P_{1}^{*} P_{3}^{*} \ldots P_{2 n-3}^{*}\left(\psi_{\beta}\right) \triangle P_{0}(a)\right\rangle \\
& =\lim _{\alpha}\left\langle a a^{*} P_{1}^{*} P_{3}^{*} \ldots P_{2 n-3}^{*}\left(\varphi_{\alpha}\right), P_{1}^{*} P_{3}^{*} \ldots P_{2 n-1}^{*}(\psi)\right\rangle
\end{aligned}
$$

$$
\begin{aligned}
& =\lim _{\alpha}\left\langle a^{*}, P_{1}^{*} P_{3}^{*} \ldots P_{2 n-3}^{*}\left(\varphi_{\alpha}\right) \square P_{1}^{*} P_{3}^{*} \ldots P_{2 n-1}^{*}(\psi) \square P_{0}(a)\right\rangle \\
& =\left\langle a a^{*}, P_{1}^{*} P_{3}^{*} \ldots P_{2 n-1}^{*}(\varphi) \square P_{1}^{*} P_{3}^{*} \ldots P_{2 n-1}^{*}(\psi)\right\rangle \\
& =\left\langle a,\left(a^{*} \cdot \varphi\right) \cdot \psi\right\rangle,
\end{aligned}
$$

and so $a^{*} \cdot(\varphi \square \psi)=\left(a^{*} \cdot \varphi\right) \cdot \psi$. Similarly $(\varphi \square \psi) \cdot a^{*}=\varphi \cdot\left(\psi \cdot a^{*}\right)$. Since \mathscr{A}^{*} is a Banach $\mathscr{A}^{* *}$-module,

$$
\begin{aligned}
\left(\varphi \cdot a^{*}\right) \cdot \psi & =\left(P_{1}^{*} P_{3}^{*} \ldots P_{2 n-1}^{*}(\varphi) a^{*}\right) P_{1}^{*} P_{3}^{*} \ldots P_{2 n-1}^{*}(\psi) \\
& =P_{1}^{*} P_{3}^{*} \ldots P_{2 n-1}^{*}(\varphi)\left(a^{*} P_{1}^{*} P_{3}^{*} \ldots P_{2 n-1}^{*}(\psi)\right) \\
& =\varphi \cdot\left(a^{*} \cdot \psi\right) .
\end{aligned}
$$

Consequently, \mathscr{A}^{*} is a Banach $\mathscr{A}^{(2 n)}$-module.

Proposition 2.9. Let \mathscr{A} be a Banach algebra. Then $P_{2}\left(\left(\mathscr{A}^{* *}, \square\right)\right)$ is a left (right, two-sided) ideal in $\left(\mathscr{A}^{(4)}, \square \square\right)$ if and only if P_{2}^{*} is an $\mathscr{A}^{(4)}$-module homomorphism between left (right, two-sided) Banach $\mathscr{A}^{(4)}$-modules.

Proof. Let $P_{2}\left(\left(\mathscr{A}^{* *}, \square\right)\right)$ be a left ideal in $\left(\mathscr{A}^{(4)}, \square \square\right)$. For $F \in \mathscr{A}^{* *}, \varphi_{4} \in \mathscr{A}^{(4)}$ and $\varphi_{5} \in \mathscr{A}^{(5)}$ we have

$$
\begin{aligned}
\left\langle F, P_{2}^{*}\left(\varphi_{4} \varphi_{5}\right)\right\rangle & =\left\langle P_{2}(F), \varphi_{4} \varphi_{5}\right\rangle=\left\langle P_{2}(F) \square \square \varphi_{4}, \varphi_{5}\right\rangle \\
& =\left\langle P_{2}^{*}\left(\varphi_{5}\right), P_{2}(F) \square \square \varphi_{4}\right\rangle=\left\langle F, \varphi_{4} P_{2}^{*}\left(\varphi_{5}\right)\right\rangle .
\end{aligned}
$$

Hence P_{2}^{*} is an $\mathscr{A}^{(4)}$-module homomorphism between left Banach $\mathscr{A}^{(4)}$-modules. Conversely, for $F \in \mathscr{A}^{* *}, \varphi_{4} \in \mathscr{A}^{(4)}$ it is easy to see that

$$
P_{2}(F) \square \square \varphi_{4}=P_{2}\left(P_{1}^{*}\left(P_{2}(F) \square \square \varphi_{4}\right)\right),
$$

so $P_{2}\left(\left(\mathscr{A}^{* *}, \square\right)\right)$ is a left ideal in $\left(\mathscr{A}^{(4)}, \square \square\right)$.

3. N-WEAK AMENABILITY FOR $N \in Z$

Lemma 3.1. Let \mathscr{A} be a Banach algebra and $D: \mathscr{A} \longrightarrow \mathscr{A}^{*}$ a derivation. Then (i) $D^{* *}:\left(\mathscr{A}^{* *}, \square\right) \longrightarrow\left(\mathcal{A}^{* *}\right)^{*}$ is satisfied in

$$
D^{* *}(F \square G)=D^{* *}(F) G+P_{0}^{* *}(F) D^{* *}(G) \quad\left(F, G \in \mathscr{A}^{* *}\right),
$$

(ii) $D^{* *}:\left(\mathscr{A}^{* *}, \triangle\right) \longrightarrow\left(\mathscr{A}^{* *}\right)^{*}$ is satisfied in

$$
D^{* *}(F \triangle G)=D^{* *}(F) P_{0}^{* *}(G)+F D^{* *}(G) \quad\left(F, G \in \mathscr{A}^{* *}\right)
$$

Proof. (i) Let $F, G \in \mathscr{A}^{* *}$ and let $\left(a_{\alpha}\right),\left(b_{\beta}\right)$ be nets in \mathscr{A} such that $P_{0}\left(a_{\alpha}\right) \longrightarrow F$ and $P_{0}\left(b_{\beta}\right) \longrightarrow G$ in the weak* topology. We have

$$
\begin{aligned}
\left\langle H, D^{* *}(F \square G)\right\rangle & =\left\langle D^{*}(H), F \square G\right\rangle \\
& =\lim _{\alpha} \lim _{\beta}\left\langle D\left(a_{\alpha}\right) b_{\beta}+a_{\alpha} D\left(b_{\beta}\right), H\right\rangle \\
& =\lim _{\alpha} \lim _{\beta}\left\langle b_{\beta}, H D\left(a_{\alpha}\right)+D^{*}\left(H a_{\alpha}\right)\right\rangle \\
& =\lim _{\alpha}\left\langle a_{\alpha}, D^{*}(G \square H)+P_{0}^{*}\left(D^{* *}(G) H\right)\right\rangle \\
& =\left\langle H, D^{* *}(F) G+P_{0}^{* *}(F) D^{* *}(G)\right\rangle
\end{aligned}
$$

and so $D^{* *}(F \square G)=D^{* *}(F) G+P_{0}^{* *}(F) D^{* *}(G)$.
(ii) The proof is similar to (i).

Corollary 3.2. Let \mathscr{A} be a Banach algebra and $D: \mathscr{A} \longrightarrow \mathscr{A}^{*}$ a derivation. Then
(i) $D^{* *}:\left(\mathscr{A}^{* *}, \square\right) \longrightarrow\left(\mathscr{A}^{* *}\right)^{*}$ is a derivation if and only if $P_{0}^{* *}(F) D^{* *}(G)=$ $F D^{* *}(G)$ for $F, G \in \mathscr{A}^{* *}$;
(ii) $D^{* *}:\left(\mathscr{A}^{* *}, \triangle\right) \longrightarrow\left(\mathscr{A}^{* *}\right)^{*}$ is a derivation if and only if $D^{* *}(F) P_{0}^{* *}(G)=$ $D^{* *}(F) G$ for $F, G \in \mathscr{A}^{* *}$.

Definition 3.3. Let \mathscr{A} be a Banach algebra $m, n \in \mathbb{N}$, and $1 \leqslant m<2 n$. The Banach algebra $\mathscr{A}^{(2 n)}$ is called $(-m)$-weakly amenable, if $\mathscr{A}^{(2 n-m)}$ is a Banach $\mathscr{A}^{(2 n)}$ bimodule with actions induced from $\mathscr{A}^{(2 n-m)}$ and $H^{1}\left(\mathscr{A}^{(2 n)}, \mathscr{A}^{(2 n-m)}\right)=\{0\}$.

Theorem 3.4. Let \mathscr{A} be a Banach algebra and $P_{0}(\mathscr{A})$ a left (right) ideal in $\mathscr{A}^{* *}$. If $\left(\mathscr{A}^{* *}, \square\right)\left(\left(\mathscr{A}^{* *}, \triangle\right)\right)$ is (-1)-weakly amenable, then \mathscr{A} is weakly amenable.

Proof. By Lemma $2.6, \mathscr{A}^{*}$ is a Banach $\left(\mathscr{A}^{* *}, \square\right)$-module. Let $D: \mathscr{A} \longrightarrow \mathscr{A}^{*}$ be a derivation. Put $d=P_{0}^{*} D^{* *}:\left(\mathscr{A}^{* *}, \square\right) \longrightarrow \mathscr{A}^{*}$. For $F, G \in \mathscr{A}^{* *}, a \in \mathscr{A}$ we have

$$
\left\langle a, P_{0}^{*}\left(D^{* *}(F) G\right)\right\rangle=\left\langle G \square P_{0}(a), D^{* *}(F)\right\rangle=\left\langle d(F), G \triangle P_{0}(a)\right\rangle=\langle a, d(F) G\rangle
$$

and

$$
\left\langle a, P_{0}^{*}\left(P_{0}^{* *}(F) D^{* *}(G)\right)\right\rangle=\left\langle P_{0}^{*}\left(D^{* *}(G) P_{0}(a)\right), F\right\rangle=\left\langle d(G) P_{0}(a), F\right\rangle=\langle a, F d(G)\rangle
$$

Therefore, by Lemma 3.1, d is a derivation. Since $H^{1}\left(\left(\mathscr{A}^{* *}, \square\right), \mathscr{A}^{*}\right)=\{0\}$, there exists $a^{*} \in \mathscr{A}^{*}$ such that $d=\delta_{a^{*}}$. Using Lemma 1.2 we obtain

$$
\begin{aligned}
a a^{*}-a^{*} a & =P_{0}(a) a^{*}-a^{*} P_{0}(a)=d P_{0}(a) \\
& =P_{0}^{*} D^{* *} P_{0}(a)=D(a) \quad(a \in \mathscr{A}) .
\end{aligned}
$$

Hence $D=\delta_{a^{*}}$ is an inner derivation.

Theorem 3.5. Let \mathscr{A} be a Banach algebra. If $P_{0}(\mathscr{A})$ is an ideal in $\mathscr{A}^{* *}$ and the Banach algebra $\mathscr{A}^{(2 n)}(n \in \mathbb{N})$ with one of 2^{n} Arens products is $(-2 n+1)$-weakly amenable, then \mathscr{A} is weakly amenable.

Proof. Let $D: \mathscr{A} \longrightarrow \mathscr{A}^{*}$ be a derivation. We claim that

$$
d_{n}=P_{0}^{*} P_{0}^{* * *} \ldots P_{0}^{(2 n-1)} D^{(2 n)}: \mathcal{A}^{(2 n)} \longrightarrow \mathscr{A}^{*}
$$

is a derivation. By Proposition 3.4, the result is true for $n=1$. Now suppose, inductively, that the result has been proved for n. We may suppose that $\mathscr{A}^{(2 n+2)}=$ $\left(\left(\mathscr{A}^{(2 n)}\right)^{* *}, \square\right)$. For $a \in \mathscr{A}, a^{*} \in \mathscr{A}^{*}, \varphi, \psi \in \mathscr{A}^{(2 n+2)}$, let $\left(\varphi_{\alpha}\right)$ and $\left(\psi_{\beta}\right)$ be nets in $\mathscr{A}^{(2 n)}$ such that $P_{2 n}\left(\varphi_{\alpha}\right) \longrightarrow \varphi$ and $P_{2 n}\left(\psi_{\beta}\right) \longrightarrow \psi$ in the weak ${ }^{*}$ topology. Then we have

$$
\begin{aligned}
\left\langle a, d_{n+1}(\varphi \square \psi)\right\rangle & =\lim _{\alpha} \lim _{\beta}\left\langle a, d_{n}\left(\varphi_{\alpha}\right) \psi_{\beta}+\varphi_{\alpha} d_{n}\left(\psi_{\beta}\right)\right\rangle \\
& =\lim _{\alpha} \lim _{\beta}\left\langle P_{2 n-3} \ldots P_{3} P_{1}\left(a d_{n}\left(\varphi_{\alpha}\right)\right), \psi_{\beta}\right\rangle \\
& +\lim _{\alpha} \lim _{\beta}\left\langle\psi_{\beta}, D^{(2 n+1)} P_{0}^{(2 n)} \ldots P_{0}^{* *}\left(a P_{1}^{*} \ldots P_{2 n-3}^{*}\left(\varphi_{\alpha}\right)\right)\right\rangle \\
& =\lim _{\alpha}\left\langle a d_{n}\left(\varphi_{\alpha}\right), P_{1}^{*} \ldots P_{2 n-1}^{*}(\psi)\right\rangle \\
& +\lim _{\alpha}\left\langle d_{n+1}(\psi) a, P_{1}^{*} \ldots P_{2 n-3}^{*}\left(\varphi_{\alpha}\right)\right\rangle \\
& =\left\langle a, d_{n+1}(\varphi) \cdot \psi+\varphi \cdot d_{n+1}(\psi)\right\rangle
\end{aligned}
$$

so d_{n+1} is a derivation. Since $H^{1}\left(\mathscr{A}^{(2 n)}, \mathcal{A}^{*}\right)=\{0\}$, there exists $a^{*} \in \mathscr{A}^{*}$ such that $d_{n}=\delta_{a^{*}}$. Using Lemma 1.1 (iv) and Lemma 1.2, we conclude that

$$
\begin{aligned}
a a^{*}-a^{*} a & =P_{2 n-2} \ldots P_{2} P_{0}(a) \cdot a^{*}-a^{*} \cdot P_{2 n-2} \ldots P_{2} P_{0}(a) \\
& =d_{n} P_{2 n-2} \ldots P_{2} P_{0}(a)=D(a) \quad(a \in \mathscr{A}) .
\end{aligned}
$$

Hence $D=\delta_{a^{*}}$ is inner.
Lemma 3.6. Let \mathscr{A} be a Banach algebra, $n \in \mathbb{N}$ and let $D: \mathscr{A} \longrightarrow \mathscr{A}^{(2 n)}$ be a derivation. Then for every $F, G \in \mathscr{A}^{* *}$
(i) $D^{* *}:\left(\mathscr{A}^{* *}, \square\right) \longrightarrow\left(\left(\mathscr{A}^{(2 n)}\right)^{* *}, \square\right)$ holds in

$$
D^{* *}(F \square G)=D^{* *}(F) \square P_{2 n-2}^{* *} \ldots P_{2}^{* *} P_{0}^{* *}(G)+P_{2 n-2}^{* *} \ldots P_{2}^{* *} P_{0}^{* *}(F) \square D^{* *}(G)
$$

(ii) $D^{* *}:\left(\mathscr{A}^{* *}, \triangle\right) \longrightarrow\left(\left(\mathscr{A}^{(2 n)}\right)^{* *}, \triangle\right)$ holds in

$$
D^{* *}(F \triangle G)=D^{* *}(F) \triangle P_{2 n-2}^{* *} \ldots P_{2}^{* *} P_{0}^{* *}(G)+P_{2 n-2}^{* *} \ldots P_{2}^{* *} P_{0}^{* *}(F) \triangle D^{* *}(G)
$$

Proof is straightforward.

Proposition 3.7. Let \mathscr{A} be a Banach algebra, $n \in \mathbb{N}$ and let $D: \mathscr{A} \longrightarrow \mathscr{A}^{(2 n)}$ be a derivation. If $\mathscr{A}^{(2 n)}$ is Arens regular and

$$
D^{* *}\left(\mathscr{A}^{* *}\right) \mathscr{A}^{(2 n+1)} \cup \mathscr{A}^{(2 n+1)} D^{* *}\left(\mathscr{A}^{* *}\right) \subseteq P_{2 n-1} \ldots P_{3} P_{1}\left(\mathscr{A}^{*}\right)
$$

then $D^{* *}: \mathscr{A}^{* *} \longrightarrow\left(\mathscr{A}^{(2 n)}\right)^{* *}$ is a derivation.
Proof. Since $\mathscr{A}^{(2 n)}$ is Arens regular, \mathscr{A} is Arens regular. For $\varphi_{2 n+1} \in \mathscr{A}^{(2 n+1)}$, $F, G \in \mathscr{A}^{* *}$, there exists $a^{*} \in \mathscr{A}^{*}$ such that

$$
\varphi_{2 n+1} \cdot D^{* *}(F)=P_{2 n-1} \ldots P_{1}\left(a^{*}\right)
$$

By Lemma 1.1 we have

$$
\begin{aligned}
\left\langle\varphi_{2 n+1}, D^{* *}(F) \square P_{2 n-2}^{* *} \ldots P_{0}^{* *}(G)\right\rangle & =\left\langle P_{2 n-1} \ldots P_{1}\left(a^{*}\right), P_{2 n-2}^{* *} \ldots P_{0}^{* *}(G)\right\rangle \\
& =\left\langle P_{2 n-2} \ldots P_{2}(G), \varphi_{2 n+1} D^{* *}(F)\right\rangle \\
& =\left\langle\varphi_{2 n+1}, D^{* *}(F) G\right\rangle .
\end{aligned}
$$

Similarly, $P_{2 n-2}^{* *} \ldots P_{0}^{* *}(F) \square D^{* *}(G)=F D^{* *}(G)$. Hence $D^{* *}$ is a derivation by Lemma 3.6.

Lemma 3.8. Let \mathscr{A} be a Banach algebra and $D: \mathscr{A} \longrightarrow \mathscr{A}^{(2 n+1)}(n \in \mathbb{N})$ a derivation. Then $D^{* *}:\left(\mathscr{A}^{* *}, \square\right) \longrightarrow\left(\left(\mathscr{A}^{(2 n)}\right)^{* *}, \square\right)^{*}$ is valid in

$$
D^{* *}(F \square G)=D^{* *}(F) P_{2 n-2}^{* *} \ldots P_{0}^{* *}(G)+P_{2 n}^{* *} \ldots P_{0}^{* *}(F) D^{* *}(G) \quad\left(F, G \in \mathscr{A}^{* *}\right)
$$

Proof is straightforward.

Proposition 3.9. Let \mathscr{A} be a Banach algebra and let $D: \mathscr{A} \longrightarrow \mathscr{A}^{(2 n+1)}$ $(n \in \mathbb{N})$ be a derivation. If

$$
D^{* *}\left(\mathscr{A}^{* *}\right) \cdot \mathscr{A}^{(2 n+2)} \cup \mathscr{A}^{(2 n+2)} \cdot D^{* *}\left(\mathscr{A}^{* *}\right) \subseteq P_{2 n+1} \ldots P_{1}\left(\mathscr{A}^{*}\right)
$$

then $D^{* *}:\left(\mathscr{A}^{* *}, \square\right) \longrightarrow\left(\mathscr{A}^{* *}\right)^{(2 n+1)}$ is a derivation.
Proof. By Lemma 3.8, it is clear.

Lemma 3.10. Let \mathscr{A} be a Banach algebra and $D: \mathscr{A} \longrightarrow \mathscr{A}^{*}$ a derivation. Then for every φ and ψ in $\mathscr{A}^{(4)}$
(i) $D^{(4)}:\left(\mathscr{A}^{(4)}, \square \square\right) \longrightarrow\left(\mathscr{A}^{(4)}, \square \square\right)^{*}$ holds in $D^{(4)}(\varphi \square \square \psi)=D^{(4)}(\varphi) \psi+P_{0}^{(4)}(\varphi)$ $D^{(4)}(\psi)$;
(ii) $D^{(4)}:\left(\mathscr{A}^{(4)}, \triangle \triangle\right) \longrightarrow\left(\mathscr{A}^{(4)}, \triangle \triangle\right)^{*}$ holds in $D^{(4)}(\varphi \triangle \triangle \psi)=D^{(4)}(\varphi) P_{0}^{(4)}(\psi)+$ $\varphi D^{(4)}(\psi)$.

Proof. (i) Let $\xi, \varphi, \psi \in \mathscr{A}^{(4)}$ and let $\left(F_{\alpha}\right),\left(G_{\beta}\right)$ be nets in $\mathscr{A}^{* *}$ such that $P_{2}\left(F_{\alpha}\right) \longrightarrow \varphi$ and $P_{2}\left(G_{\beta}\right) \longrightarrow \psi$ in the weak* topology. By Lemma 3.1 we have

$$
\begin{aligned}
\left\langle\xi, D^{(4)}(\varphi \square \square \psi)\right\rangle & =\lim _{\alpha} \lim _{\beta}\left\langle D^{* *}\left(F_{\alpha} \square G_{\beta}\right), \xi\right\rangle \\
& =\lim _{\alpha} \lim _{\beta}\left\langle D^{* *}\left(F_{\alpha}\right) G_{\beta}+P_{0}^{* *}\left(F_{\alpha}\right) D^{* *}\left(G_{\beta}\right), \xi\right\rangle \\
& =\lim _{\alpha}\left\langle\xi D^{* *}\left(F_{\alpha}\right)+D^{(3)}\left(\xi \square \square P_{0}^{* *}\left(F_{\alpha}\right)\right), \psi\right\rangle \\
& =\left\langle D^{(3)}(\psi \square \square \xi)+P_{0}^{(3)}\left(D^{(4)}(\psi) \xi\right), \varphi\right\rangle \\
& =\left\langle\xi, D^{(4)}(\varphi) \psi+P_{0}^{(4)}(\varphi) D^{(4)}(\psi)\right\rangle .
\end{aligned}
$$

(ii) The proof is similar to (i).

Proposition 3.11. Let \mathscr{A} be a Banach algebra and $D: \mathscr{A} \longrightarrow \mathscr{A}^{*}$ a derivation.
(i) If $D^{(4)}\left(\mathscr{A}^{(4)}\right) \cdot \mathscr{A}^{(4)} \subseteq P_{3} P_{1}\left(\mathscr{A}^{*}\right)$, then $D^{(4)}:\left(\mathscr{A}^{(4)}, \square \square\right) \longrightarrow\left(\mathscr{A}^{(4)}\right)^{*}$ is a derivation.
(ii) If $\mathscr{A}^{(4)} \cdot D^{(4)}\left(\mathscr{A}^{(4)}\right) \subseteq P_{3} P_{1}\left(\mathscr{A}^{*}\right)$, then $D^{(4)}:\left(\mathscr{A}^{(4)}, \triangle \triangle\right) \longrightarrow\left(\mathscr{A}^{(4)}\right)^{*}$ is a derivation.

Proof. (i) Let $\xi, \varphi, \psi \in \mathscr{A}^{(4)}$, there exists $a^{*} \in \mathscr{A}^{*}$ such that $D^{(4)}(\varphi) \cdot \xi=$ $P_{3} P_{1}\left(a^{*}\right)$. By Lemma 1.1 (iii) we have

$$
\left\langle\xi, P_{0}^{(4)}(\varphi) D^{(4)}(\psi)\right\rangle=\left\langle P_{0}^{(3)} P_{3} P_{1}\left(a^{*}\right), \varphi\right\rangle=\left\langle\varphi, D^{(4)}(\psi) \xi\right\rangle=\left\langle\xi, \varphi D^{(4)}(\psi)\right\rangle .
$$

Therefore $D^{(4)}$ is a derivation by Lemma 3.10.
(ii) The proof is similar to (i).

We recall that an operator $T: X \longrightarrow Y$ between Banach spaces is weakly compact if and only if $T^{* *} X^{* *} \subset Y$ (considered as a subspace of $Y^{* *}$) if and only if T^{*} is weakly compact.

Lemma 3.12. Let \mathscr{A} be a Banach algebra and $D: \mathscr{A} \longrightarrow \mathscr{A}^{*}$ a weakly compact operator. Then $D^{(2 n)}\left(\mathscr{A}^{(2 n)}\right) \subseteq P_{2 n-1} \ldots P_{3} P_{1}\left(\mathscr{A}^{*}\right)(n \in \mathbb{N})$.

Proof. When $n=1$, clearly the result is true. Now suppose, inductively, that the result has been proved for n. Let $\varphi, \xi \in \mathscr{A}^{(2 n+2)}$ and let $\left(\varphi_{\alpha}\right)$ be a net in $\mathscr{A}^{(2 n)}$ such that $P_{2 n}\left(\varphi_{\alpha}\right) \longrightarrow \varphi$ in the weak* topology. Then

$$
\begin{aligned}
\left\langle\xi, D^{(2 n+2)}(\varphi)\right\rangle & =\lim _{\alpha}\left\langle D^{(2 n)}\left(\varphi_{\alpha}\right), \xi\right\rangle=\lim _{\alpha}\left\langle P_{2 n-1}^{*}(\xi), D^{(2 n)}\left(\varphi_{\alpha}\right)\right\rangle \\
& =\left\langle D^{(2 n-1)} P_{2 n-1}^{*}(\xi), P_{2 n-1}^{*}(\varphi)\right\rangle=\left\langle P_{2 n-1}^{*}(\xi), D^{(2 n)} P_{2 n-1}^{*}(\varphi)\right\rangle \\
& =\left\langle D^{(2 n)} P_{2 n-1}^{*}(\varphi), \xi\right\rangle=\left\langle\xi, P_{2 n+1} D^{(2 n)} P_{2 n-1}^{*}(\varphi)\right\rangle
\end{aligned}
$$

Consequently, $D^{(2 n+2)}(\varphi)=P_{2 n+1} D^{(2 n)} P_{2 n-1}^{*}(\varphi) \subseteq P_{2 n+1} \ldots P_{3} P_{1}\left(\mathscr{A}^{*}\right)$.
Dales, Rodrigues-Palacios and Velasco in [3] proved the following theorem.

Theorem 3.13. Let \mathscr{A} be an Arens regular Banach algebra and $D: \mathscr{A} \longrightarrow \mathscr{A}^{*}$ a weakly compact derivation. Then $D^{(* *)}: \mathscr{A}^{(* *)} \longrightarrow\left(\mathscr{A}^{* *}\right)^{*}$ is a derivation.

Now we have the same result for $\mathscr{A}^{(4)}$.

Theorem 3.14. Let \mathscr{A} be an Arens regular Banach algebra and $D: \mathscr{A} \longrightarrow$ \mathscr{A}^{*} a weakly compact derivation. Then $D^{(4)}:\left(\mathscr{A}^{(4)}, \square \square\right) \longrightarrow\left(\mathscr{A}^{(4)}\right)^{*}$ and $D^{(4)}$: $\left(\mathscr{A}^{(4)}, \triangle \triangle\right) \longrightarrow\left(\mathscr{A}^{(4)}\right)^{*}$ are derivations.

Proof. Let $\xi, \varphi, \psi \in \mathscr{A}^{(4)}$ and $\left(F_{\alpha}\right),\left(G_{\beta}\right),\left(H_{\gamma}\right)$ be nets in $\mathscr{A}^{* *}$ such that $P_{2}\left(F_{\alpha}\right) \longrightarrow \varphi, P_{2}\left(G_{\beta}\right) \longrightarrow \psi$ and $P_{2}\left(H_{\gamma}\right) \longrightarrow \xi$ in the weak* topology, let $a^{*} \in \mathscr{A}^{*}$ and let a_{α}^{*} be a net in \mathscr{A}^{*} such that $P_{1}\left(a_{\alpha}^{*}\right)=D^{* *}\left(F_{\alpha}\right)$ and $P_{1}\left(a^{*}\right)=D^{* *} P_{1}^{*}(\varphi)$. We have

$$
\begin{aligned}
\left\langle\xi, D^{(4)}(\varphi) \psi\right\rangle & =\left\langle\psi \square \square \xi, D^{(4)}(\varphi)\right\rangle=\lim _{\alpha} \lim _{\beta} \lim _{\gamma}\left\langle a_{\alpha}^{*}, G_{\beta} \square H_{\gamma}\right\rangle \\
& =\lim _{\alpha} \lim _{\beta}\left\langle a_{\alpha}^{*} G_{\beta}, P_{1}^{*}(\xi)\right\rangle=\lim _{\alpha}\left\langle P_{1}^{*}(\psi) \square P_{1}^{*}(\xi), D^{* *} P_{1}^{* *}(\varphi)\right\rangle \\
& =\left\langle\xi, P_{3}\left(P_{1}\left(a^{*}\right) P_{1}^{*}(\psi)\right)\right\rangle=\left\langle\xi, P_{3} P_{1}\left(a^{*} P_{1}^{*}(\psi)\right)\right\rangle,
\end{aligned}
$$

and so $D^{(4)}\left(\mathscr{A}^{(4)}\right) \mathscr{A}^{(4)} \subseteq P_{3} P_{1}\left(\mathscr{A}^{*}\right)$ and by Proposition $3.11, D^{(4)}:\left(\mathscr{A}^{(4)}, \square \square\right) \longrightarrow$ $\left(\mathscr{A}^{(4)}\right)^{*}$ is a derivation. The other part is similar.

Corollary 3.15. Let \mathscr{A} be an Arens regular Banach algebra such that $\left(\mathscr{A}^{(4)}, \square \square\right)$ or $\left(\mathscr{A}^{(4)}, \triangle \triangle\right)$ is weakly amenable and each derivation from \mathcal{A} to \mathscr{A}^{*} is weakly compact. Then \mathscr{A} is weakly amenable.

Proof. Let $D: \mathscr{A} \longrightarrow \mathscr{A}^{*}$ be a derivation. We may suppose that $\left(\mathscr{A}^{(4)}, \square \square\right)$ is weakly amenable. By Theorem $3.14, D^{(4)}:\left(\mathscr{A}^{(4)}, \square \square\right) \longrightarrow\left(\mathscr{A}^{(4)}\right)^{*}$ is a derivation. So there exists $\varphi_{5} \in\left(\mathscr{A}^{(4)}\right)^{*}$ such that $D^{(4)}=\delta_{\varphi_{5}}$. Set $a^{*}=P_{0}^{*} P_{2}^{*}\left(\varphi_{5}\right)$. Then by Lemma 1.2 we have

$$
\begin{aligned}
a a^{*}-a^{*} a & =P_{0}^{*} P_{2}^{*}\left(P_{2} P_{0}(a) \varphi_{5}-\varphi_{5} P_{2} P_{0}(a)\right) \\
& =P_{0}^{*} P_{2}^{*} D^{(4)} P_{2} P_{0}(a)=D(a) \quad(a \in \mathscr{A})
\end{aligned}
$$

Therefore $D=\delta_{a^{*}}$ is inner. Hence \mathscr{A} is weakly amenable.
Proposition 3.16. Let \mathscr{A} be a Banach algebra, $D: \mathscr{A} \longrightarrow \mathscr{A}^{*}$ a derivation and $\mathscr{A}^{(2 n)}=\left(\left(\ldots\left(\left(\mathscr{A}^{* *}, \square\right)^{* *}, \square\right) \ldots\right)^{* *}, \square\right)(n \in \mathbb{N})$. Then
(i) $D^{(2 n)}: \mathscr{A}^{(2 n)} \longrightarrow\left(\mathscr{A}^{(2 n)}\right)^{*}$ holds in

$$
D^{(2 n)}(\varphi \square \psi)=D^{(2 n)}(\varphi) \psi+P_{0}^{(2 n)}(\varphi) D^{(2 n)}(\psi) \quad\left(\varphi, \psi \in \mathscr{A}^{(2 n)}\right) .
$$

(ii) If $D^{(2 n)}\left(\mathscr{A}^{(2 n)}\right) \cdot \mathscr{A}^{(2 n)} \subseteq P_{2 n-1} \ldots P_{3} P_{1}\left(\mathscr{A}^{*}\right)$, then $D^{(2 n)}$ is a derivation.
(iii) If $\mathscr{A}^{(2 n-2)}$ is Arens regular and D is weakly compact, then $D^{(2 n)}$ is a derivation.

Corollary 3.17. Let \mathscr{A} be a completely regular Banach algebra such that $\mathscr{A}^{(2 n)}$ is weakly amenable for some $n \in \mathbb{N}$, and each derivation from \mathscr{A} to \mathscr{A}^{*} is weakly compact. Then \mathscr{A} is weakly amenable.

Lemma 3.18. Let \mathscr{A} be an Arens regular Banach algebra such that $\left(\mathscr{A}^{(4)}, \square \square\right)$ or $\left(\mathscr{A}^{(4)}, \triangle \triangle\right)$ is (-2)-weakly amenable. Then \mathscr{A} is 2-weakly amenable.

Proof. Let $D: \mathscr{A} \longrightarrow \mathscr{A}^{* *}$ be a derivation, and let $\left(\mathscr{A}^{(4)}, \square \square\right)$ be (-2)-weakly amenable. Set $d=P_{1}^{*} D^{* *} P_{1}^{*}:\left(\mathscr{A}^{(4)}, \square \square\right) \longrightarrow \mathscr{A}^{* *}$. For $a^{*} \in \mathscr{A}^{*}, \varphi, \psi \in \mathscr{A}^{(4)}$ let $\left(F_{\alpha}\right),\left(G_{\beta}\right)$ be nets in $\mathscr{A}^{* *}$ such that $P_{2}\left(F_{\alpha}\right) \longrightarrow \varphi$ and $P_{2}\left(G_{\beta}\right) \longrightarrow \psi$ in the weak* topology. Then

$$
\begin{aligned}
\left\langle a^{*}, d(\varphi \square \square \psi)\right\rangle & =\left\langle P_{1} D^{*} P_{1}\left(a^{*}\right), \varphi \square \square \psi\right\rangle \\
& =\lim _{\alpha} \lim _{\beta}\left\langle P_{1}\left(a^{*}\right), D^{* *}\left(F_{\alpha} \square G_{\beta}\right)\right\rangle \\
& =\lim _{\alpha} \lim _{\beta}\left\langle a^{*}, P_{1}^{*} D^{* *}\left(F_{\alpha}\right) G_{\beta}+F_{\alpha} P_{1}^{*} D^{* *}\left(G_{\beta}\right)\right\rangle \\
& =\lim _{\alpha}\left\langle a^{*} P_{1}^{*} D^{* *}\left(F_{\alpha}\right), P_{1}^{*}(\psi)\right\rangle+\left\langle D^{*} P_{1}\left(a^{*} F_{\alpha}\right), P_{1}^{*}(\psi)\right\rangle \\
& =\left\langle P_{1}^{*}(\psi) a^{*}, d(\varphi)\right\rangle+\left\langle d(\psi) a^{*}, P_{1}^{*}(\varphi)\right\rangle \\
& =\left\langle a^{*}, d(\varphi) \cdot \psi+\varphi \cdot d(\psi)\right\rangle .
\end{aligned}
$$

Therefore d is a derivation. Since $H^{1}\left(\mathscr{A}^{(4)}, \mathscr{A}^{* *}\right)=\{0\}$, there exists $F \in \mathscr{A}^{* *}$ such that $d=\delta_{F}$. It is easy to see that $D=\delta_{F}$. So \mathscr{A} is 2-weakly amenable.

Proposition 3.19. Let \mathscr{A} be an Arens regular Banach algebra such that $\mathscr{A}^{(2 n+2)}(n \in \mathbb{N})$ with one of Arens products is $(-2 n)$-weakly amenable. Then \mathscr{A} is 2-weakly amenable.

Proof. Let $D: \mathscr{A} \longrightarrow \mathscr{A}^{* *}$ be a derivation. By Lemma 3.18 and by induction, $d=P_{1}^{*} D^{* *} P_{1}^{*} P_{3}^{*} \ldots P_{2 n-1}^{*}: \mathscr{A}^{(2 n+2)} \longrightarrow \mathscr{A}^{* *}$ is a derivation. Since $H^{1}\left(\mathscr{A}^{(2 n+2)}, \mathscr{A}^{* *}\right)=\{0\}$, there exists $F \in \mathscr{A}^{* *}$ such that $d=\delta_{F}$. It is easy to see that $D=\delta_{F}$ is inner.

Acknowledgement. We would like to thank the referee for carefully reading the paper and giving some interesting and fruitful suggestions.

References

[1] W. G. Bade, P. G. Curtis and H. G. Dales: Amenability and weak amenability for Beurling and Lipschitz algebra. Proc. London Math. Soc. 55 (1987), 359-377.
[2] H. G. Dales, F. Ghahramanim and N. Gronbaek: Derivations into iterated duals of Banach algebras. Studia Math. 128 (1998), 19-54.
[3] H. G. Dales, A. Rodriguez-Palacios and M. V. Valasco: The second transpose of a derivation. J. London Math. Soc. 64 (2001), 707-721.
[4] M. Despic and F. Ghahramani: Weak amenability of group algebras of locally compact groups. Canad. Math. Bull. 37 (1994), 165-167.
[5] J. Duncan and Hosseiniun: The second dual of a Banach algebra. Proc. Roy. Soc. Edinburgh 84A (1978), 309-325.
[6] N. Gronbaek: Weak amenability of group algebras. Bull. London Math. Soc. 23 (1991), 231-284.
[7] U. Haagerup: All nuclear \mathscr{C}^{*}-algebras are amenable. Invent. Math. 74 (1983), 305-319.
[8] B. E. Johnson: Cohomology in Banach Algebras. Mem. Amer. Math. Soc. 127 (1972).
[9] B. E. Johnson: Weak amenability of group algebras. Bull. Lodon Math. Soc. 23 (1991), 281-284.
[10] T. W. Palmer: Banach Algebra, the General Theory of *-algebra. Vol. 1: Algebra and Banach Algebras. Cambridge University Press, Cambridge, 1994.

Authors' address: A. Medghalchi, Faculty of Mathematical Science, Teacher Training University, 599, Taleghani Avenue, Tehran, 15614, Iran, e-mail: medghalchi@saba.tmu. ac.ir; T. Yazdanpanah, Department of Mathematics, Persian Gulf University, 75168 Boushehr, Iran, e-mail: yazdanpanah@pgu.ac.ir.

