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ON HOMOMORPHISMS BETWEEN C∗-ALGEBRAS AND

LINEAR DERIVATIONS ON C∗-ALGEBRAS
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Abstract. It is shown that every almost linear Pexider mappings f , g, h from a unital
C∗-algebra A into a unital C∗-algebraB are homomorphisms when f(2nuy) = f(2nu)f(y),
g(2nuy) = g(2nu)g(y) and h(2nuy) = h(2nu)h(y) hold for all unitaries u ∈ A , all y ∈ A ,
and all n ∈ � , and that every almost linear continuous Pexider mappings f , g, h from
a unital C∗-algebra A of real rank zero into a unital C∗-algebra B are homomorphisms
when f(2nuy) = f(2nu)f(y), g(2nuy) = g(2nu)g(y) and h(2nuy) = h(2nu)h(y) hold for all
u ∈ {v ∈ A : v = v∗ and v is invertible}, all y ∈ A and all n ∈ � .
Furthermore, we prove the Cauchy-Rassias stability of ∗-homomorphisms between unital

C∗-algebras, and � -linear ∗-derivations on unital C∗-algebras.
Keywords: C∗-algebra homomorphism, C∗-algebra, real rank zero, � -linear ∗-derivation,

stability

MSC 2000 : 39B52, 47B48, 46L05

1. Introduction

Let X and Y be Banach spaces with norms || · || and ‖ · ‖, respectively. Consider
f : X → Y to be a mapping such that f(tx) is continuous in t ∈ � for each fixed
x ∈ X . Assume that there exist constants θ > 0 and p ∈ [0, 1) such that

‖f(x+ y)− f(x)− f(y)‖ 6 θ(||x||p + ||y||p)

for all x, y ∈ X . Rassias [8] showed that there exists a unique � -linear mapping
T : X → Y such that ‖f(x) − T (x)‖ 6 2θ/(2− 2p)||x||p for all x ∈ X . Găvruta [2]

generalized Rassias’ result.
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Jun, Kim and Shin [4] proved the following: Let X and Y be Banach spaces.

Denote by ϕ : X ×X → [0,∞) a function such that

(a) εϕ(x) :=
∞∑

j=1

2−j(ϕ(2j−1x, 0) + ϕ(0, 2j−1x) + ϕ(2j−1x, 2j−1x)) <∞

for all x ∈ X . Suppose that f, g, h : X → Y are mappings satisfying

∥∥∥2f
(x+ y

2

)
− g(x)− h(y)

∥∥∥ 6 ϕ(x, y)

for all x, y ∈ X . Then there exists a unique additive mapping T : X → Y such that

∥∥∥2f
(x

2

)
− T (x)

∥∥∥ 6 ‖g(0)‖+ ‖h(0)‖+ εϕ(x),

‖g(x)− T (x)‖ 6 ‖g(0)‖+ 2‖h(0)‖+ ϕ(x, 0) + εϕ(x),

‖h(x)− T (x)‖ 6 2‖g(0)‖+ ‖h(0)‖+ ϕ(0, x) + εϕ(x)

for all x ∈ X .
B. E. Johnson [3, Theorem 7.2] also investigated almost algebra ∗-homomorphisms

between Banach ∗-algebras: Suppose that U and B are Banach ∗-algebras which
satisfy the conditions of [3, Theorem 3.1]. Then for each positive ε and K there is a

positive δ such that if T ∈ L(U ,B) with ‖T‖ < K, ‖T∨‖ < δ and ‖T (x∗)∗−T (x)‖ 6
δ‖x‖ (x ∈ U ) then there is a ∗-homomorphism T ′ : U → B with ‖T−T ′‖ < ε. Here

L(U ,B) is the space of bounded linear mappings from U into B, and T ∨(x, y) =
T (xy)− T (x)T (y) (x, y ∈ U ). See [3] for details.
Throughout this paper, let A be a unital C∗-algebra with norm || · || and unit e,

and B a unital C∗-algebra with norm ‖ ·‖. Let U (A ) be the set of unitary elements
in A , Asa = {x ∈ A : x = x∗} and I1(Asa) = {v ∈ Asa : ||v|| = 1, v is invertible}.
In this paper, we prove that every almost linear Pexider mappings f, g, h : A → B

are homomorphisms when f(2nuy) = f(2nu)f(y), g(2nuy) = g(2nu)g(y) and
h(2nuy) = h(2nu)h(y) hold for all u ∈ U (A ), all y ∈ A and all n ∈ � , and that for
a unital C∗-algebra A of real rank zero (see [1]), every almost linear continuous Pex-

ider mappings f, g, h : A → B are homomorphisms when f(2nuy) = f(2nu)f(y),
g(2nuy) = g(2nu)g(y) and h(2nuy) = h(2nu)h(y) hold for all u ∈ I1(Asa), all y ∈ A

and all n ∈ � .
Furthermore, we prove the Cauchy-Rassias stability of ∗-homomorphisms between

unital C∗-algebras, and � -linear ∗-derivations on unital C∗-algebras.
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2. ∗-homomorphisms between unital C∗-algebras

In this section, let f, g, h : A → B be mappings satisfying f(0) = g(0) = h(0) = 0,
and let f(2nuy) = f(2nu)f(y), g(2nuy) = g(2nu)g(y) and h(2nuy) = h(2nu)h(y) for
all u ∈ U (A ), all y ∈ A and all n ∈ � , unless otherwise specified. We are going to
investigate ∗-homomorphisms between unital C∗-algebras.

Theorem 1. Assume that there exists a function ϕ : A ×A → [0,∞) such that

ϕ̃(x, y) :=
∞∑

j=0

2−jϕ(2j−1x, 2j−1y) <∞,(i)

∥∥∥2f
(µx+ µy

2

)
− µg(x)− µh(y)

∥∥∥ 6 ϕ(x, y),(ii)

‖f(2nu∗)− f(2nu)∗‖ 6 ϕ(2nu, 2nu)(iii)

for all µ ∈ � 1 := {λ ∈ � : |λ| = 1}, all u ∈ U (A ), all x, y ∈ A and all n ∈ � . If

(iv) lim
n→∞

f(2ne)
2n

is invertible,

then the mappings f , g, h are ∗-homomorphisms and f = g = h.
 "!$#%#'&

. Let x ∈ A be arbitrary. Put µ = 1 ∈ � 1 in (ii). It follows from [4,

Corollary 2.5] that there exists a unique additive mapping H : A → B such that
∥∥∥2f

(x
2

)
−H(x)

∥∥∥ 6 ε(x),

‖g(x)−H(x)‖ 6 ϕ(x, 0) + ε(x),(†)
‖h(x)−H(x)‖ 6 ϕ(0, x) + ε(x),

where ε(x) := εϕ(x) is given by (a). The additive mapping H is given by

H(x) = lim
n→∞

f(2nx)
2n

= lim
n→∞

g(2nx)
2n

= lim
n→∞

h(2nx)
2n

.

Let f̃(x) = 2f( 1
2x), then lim

n→∞
2−nf̃(2nx) = lim

n→∞
2−nf(2nx).

Let µ ∈ � 1 and x ∈ A be arbitrary. By the assumption,

‖f(2nµx) − µf(2nx)‖ =
∥∥∥f(2nµx)− 1

2
µg(2nx)− 1

2
µh(2nx)

+
1
2
µg(2nx) +

1
2
µh(2nx)− µf(2nx)

∥∥∥

6 1
2
ϕ(2nx, 2nx) +

1
2
|µ|ϕ(2nx, 2nx)

= ϕ(2nx, 2nx).
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Thus 2−n‖f(2nµx)− µf(2nx)‖ → 0 as n→∞. Hence

(1) H(µx) = µH(x).

Now let λ ∈ � and M an integer greater than 2|λ|. Since |λ/M | < 1
2 , there is

t ∈ ( (3 , (2 ] such that |λ/M | = cos t = 1
2 (eit + e−it). Now λ/M = |λ/M |µ for some

µ ∈ � 1. And H(x) = 2H( 1
2x) for all x ∈ A . So H( 1

2x) = 1
2H(x) for all x ∈ A .

Thus, by (1), H(λx) = H(M(λ/M)x) = λH(x) for all x ∈ A . So the unique additive

mapping H : A → B is � -linear.
By (i) and (iii), we get H(u∗) = H(u)∗ for all u ∈ U (A ). Since H is � -linear and

each x ∈ A is a finite linear combination of unitary elements (see [6, Theorem 4.1.7]),

say, x =
m∑
j=1

λjuj (λj ∈ � , uj ∈ U (A )), H(x∗) =
m∑
j=1

λjH(uj)∗ = H(x)∗ for all

x ∈ A .

Let u ∈ U (A ) and y ∈ A be arbitrary. Since f(2nuy) = f(2nu)f(y) for all n ∈ � ,

(2) H(uy) = H(u)f(y).

So

(3) H(uy) = H(u)
1
2n
f(2ny)

for all n ∈ � . Taking the limit in (3) as n→∞, we obtain

(4) H(uy) = H(u)H(y).

Since H is � -linear and each x ∈ A is a finite linear combination of unitary elements,

it follows from (4) that H(xy) = H(x)H(y) for all x ∈ A .
By (2) and (4), H(e)H(y) = H(e)f(y) for all y ∈ A . Since lim

n→∞
f(2ne)2−n =

H(e) is invertible, H(y) = f(y) for all y ∈ A . Similarly, H(y) = g(y) = h(y) for all
y ∈ A .

Therefore, the mappings f , g, h are ∗-homomorphisms and f = g = h. �

Corollary 2. Assume that there exist constants θ > 0 and p ∈ [0, 1) such that
∥∥∥2f

(µx+ µy

2

)
− µg(x)− µh(y)

∥∥∥ 6 θ(||x||p + ||y||p),

‖f(2nu∗)− f(2nu)∗‖ 6 2np+1θ

for all µ ∈ � 1, all u ∈ U (A ), all x, y ∈ A and all n ∈ � . If f satisfies (iv), the
mappings f , g, h are ∗-homomorphisms and f = g = h.

 "!$#%#'&
. Define ϕ(x, y) = θ(||x||p + ||y||p) and apply Theorem 1. �
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Theorem 3. Assume that there exists a function ϕ : A × A → [0,∞) satisfy-
ing (i) and (iii) such that

(v)
∥∥∥2f

(µx+ µy

2

)
− µg(x)− µh(y)

∥∥∥ 6 ϕ(x, y)

for µ = 1, i, and all x, y ∈ A . If f satisfies (iv) and f(tx) is continuous in t ∈ � for
each fixed x ∈ A , then the mappings f , g, h are ∗-homomorphisms and f = g = h.

 "!$#%#'&
. Put µ = 1 in (v). By the same reasoning as in the proof of Theorem 1,

there exists a unique additive mapping H : A → B satisfying (†). By the same
reasoning as in the proof of [8, Theorem], the additive mapping H is � -linear.
Put µ = i in (v). By the same method as in the proof of Theorem 1, one can

obtain that H(ix) = iH(x) for all x ∈ A . For each λ ∈ � , λ = s+ it, where s, t ∈ � .
So H(λx) = sH(x) + itH(x) = λH(x) for all λ ∈ � and all x ∈ A . Hence the
additive mapping H is � -linear.
The rest of the proof is the same as in the proof of Theorem 1. �

From now on, assume that A is a unital C∗-algebra of real rank zero, where “real
rank zero” means that the set of invertible self-adjoint elements is dense in the set of

self-adjoint elements (see [1]). Let f , g, h be continuous and f(0) = g(0) = h(0) = 0
and let f(2nuy) = f(2nu)f(y), g(2nuy) = g(2nu)g(y) and h(2nuy) = h(2nu)h(y) for
all u ∈ I1(Asa), all y ∈ A and all n ∈ � .
Now we are going to investigate continuous ∗-homomorphisms between unital C∗-

algebras.

Theorem 4. Assume that there exists a function ϕ : A × A → [0,∞) satisfy-
ing (i), (ii) and (iii). If f satisfies (iv), then the mappings f , g, h are ∗-homomorphisms
and f = g = h.

 "!$#%#'&
. By the same reasoning as in the proof of Theorem 1, there exists a

unique � -linear involutive mapping H : A → B satisfying the system of the in-

equalities (†).
Let u ∈ I1(Asa) and y ∈ A be arbitrary. Since f(2nuy) = f(2nu)f(y) for all

n ∈ � ,

(5) H(uy) = H(u)f(y).

So

(6) H(uy) = H(u)
1
2n
f(2ny)
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for all n ∈ � . Taking the limit in (6) as n→∞, we obtain

(7) H(uy) = H(u)H(y).

Let y ∈ A be arbitrary. By (5) and (7),

H(e)H(y) = H(e)f(y).

Since lim
n→∞

f(2ne)/2n = H(e) is invertible, H(y) = f(y). Similarly, H(y) = g(y) =

h(y). So H : A → B is continuous. But by the assumption that A has real rank
zero, it is easy to show that the set of linear combinations of elements of I1(Asa)
is dense in A . So for each x ∈ A , there is a sequence {κj} such that κj → x as
j →∞ and κj is a linear combination of elements of I1(Asa). Since H is continuous,
it follows from (7) and the � -linearity of H that
(8) H(xy) = lim

j→∞
H(κj)H(y) = H(x)H(y)

for all x ∈ A .
Therefore, the mappings f , g, h are ∗-homomorphisms and f = g = h. �

Corollary 5. Assume that there exist constants θ > 0 and p ∈ [0, 1) such that
∥∥∥2f

(µx+ µy

2

)
− µg(x)− µh(y)

∥∥∥ 6 θ(||x||p + ||y||p),

‖f(2nu∗)− f(2nu)∗‖ 6 2np+1θ

for all µ ∈ � 1, all u ∈ I1(Asa), all x, y ∈ A \ {0} and all n ∈ � . If f satisfies (iv),
the mappings f , g, h are ∗-homomorphisms.

 "!$#%#'&
. Define ϕ(x, y) = θ(||x||p + ||y||p) and apply Theorem 4. �

Theorem 6. Assume that there exists a function ϕ : A × A → [0,∞) satisfy-
ing (i), (iii) and (v). If f satisfies (iv), the mappings f , g, h are ∗-homomorphisms
and f = g = h.

 "!$#%#'&
. By the same reasoning as in the proof of Theorem 3, there exists a

unique � -linear mapping H : A → B satisfying the system of the inequalities (†).
The rest of the proof is the same as in the proofs of Theorems 1 and 4. �

3. Stability of ∗-homomorphisms between unital C∗-algebras

In this section, let f, g, h : A → B be mappings with f(0) = g(0) = h(0) = 0. We
are going to show the Cauchy-Rassias stability of ∗-homomorphisms between unital
C∗-algebras.
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Theorem 7. Assume that there exists a function ϕ : (A \ {0})4 → [0,∞) such
that

ϕ̃(x, y, z, w) =
∞∑

j=0

2−jϕ(2jx, 2jy, 2jz, 2jw) <∞,(vi)

∥∥∥2f
(µx+ µy + zw

2

)
− µg(x)− µh(y)− f(z)f(w)

∥∥∥ 6 ϕ(x, y, z, w),(vii)

‖f(2nu∗)− f(2nu)∗‖ 6 ϕ(2nu, 2nu, 0, 0)(viii)

for all µ ∈ � 1, all u ∈ U (A ), all x, y, z, w ∈ A and all n ∈ � . Then there exists a
unique ∗-homomorphism H : A → B such that

∥∥∥2f
(x

2

)
−H(x)

∥∥∥ 6 ε(x),(ix)

‖g(x)−H(x)‖ 6 ϕ(x, 0, 0, 0) + ε(x),

‖h(x)−H(x)‖ 6 ϕ(0, x, 0, 0) + ε(x)

for all x ∈ A , where

(b) ε(x) := εψ(x)

is given by (a) and ψ(x, y) := ϕ(x, y, 0, 0) for all x, y ∈ A .

 "!$#%#'&
. Put z = w = 0 and µ = 1 ∈ � 1 in (vii). By the same reasoning as in the

proof of Theorem 1, there exists a unique � -linear involutive mapping H : A → B

satisfying (ix). The � -linear mapping H is given by

(9) H(x) = lim
n→∞

1
2n
f(2nx)

for all x ∈ A .

Let z, w ∈ A be arbitrary. Taking x = y = 0 in (vii), ‖2f( 1
2zw) − f(z)f(w)‖ 6

ϕ(0, 0, z, w). So

(10)
1

22n

∥∥∥2f
(1

2
2nz · 2nw

)
− f(2nz)f(2nw)

∥∥∥ 6 1
2n
ϕ(0, 0, 2nz, 2nw).

By (vi), (9) and (10), 2H
(

1
2zw

)
= H(z)H(w). But since H is � -linear, H(zw) =

H(z)H(w). Hence the � -linear mapping H is a ∗-homomorphism satisfying (ix). �
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Corollary 8. Assume that there exist constants θ > 0 and p ∈ [0, 1) such that

∥∥∥2f
(µx+ µy + zw

2

)
− µg(x)− µh(y)− f(z)f(w)

∥∥∥
6 θ(‖x‖p + ‖y‖p + ‖z‖p + ‖w‖p),

‖f(2nu∗)− f(2nu)∗‖ 6 2np+1θ

for all µ ∈ � 1, all u ∈ U (A ), all x, y, z, w ∈ A and all n ∈ � . Then there exists a
unique ∗-homomorphism H : A → B such that

∥∥∥2f
(x

2

)
−H(x)

∥∥∥ 6 1
2− 2p

θ‖x‖p,

‖g(x)−H(x)‖ 6 3− 2p

2− 2p
θ‖x‖p,

‖h(x)−H(x)‖ 6 3− 2p

2− 2p
θ‖x‖p

for all x ∈ A .

 "!$#%#'&
. Define ϕ(x, y, z, w) = θ(‖x‖p+‖y‖p+‖z‖p+‖w‖p) and apply Theorem 7.

�

Theorem 9. Assume that there exists a function ϕ : A 4 → [0,∞) satisfying (vi)
and (viii) such that

∥∥∥2f
(µx+ µy + zw

2

)
− µg(x)− µh(y)− f(z)f(w)

∥∥∥ 6 ϕ(x, y, z, w)

for µ = 1, i, and all x, y, z, w ∈ A . If f(tx) is continuous in t ∈ � for each fixed
x ∈ A , then there exists a unique ∗-homomorphism H : A → B satisfying (ix).

 "!$#%#'&
. By the same reasoning as in the proof of Theorem 3, there exists a

unique � -linear mapping H : A → B satisfying (ix).

The rest of the proof is the same as in the proofs of Theorems 1 and 7. �

4. Stability of linear ∗-derivations on unital C∗-algebras

From now on, let A = B. We are going to show the Cauchy-Rassias stability of
linear ∗-derivations on unital C∗-algebras.
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Theorem 10. Assume that there exists a function ϕ : A 4 → [0,∞) satisfying (vi)
and (viii) such that

(x)
∥∥∥2f

(µx+ µy + zw

2

)
− µg(x)− µh(y)− zf(w)− wf(z)

∥∥∥ 6 ϕ(x, y, z, w)

for all µ ∈ � 1 and all x, y, z, w ∈ A . Then there exists a unique � -linear ∗-derivation
D : A → A such that

∥∥∥2f
(x

2

)
−D(x)

∥∥∥ 6 ε(x),(xi)

‖g(x)−D(x)‖ 6 ϕ(x, 0, 0, 0) + ε(x),

‖h(x)−D(x)‖ 6 ϕ(0, x, 0, 0) + ε(x)

for all x ∈ A , where ε(x) is given by (b).

 "!$#%#'&
. Put z = w = 0 and µ = 1 ∈ � 1 in (x). By the same reasoning as in the

proof of Theorem 1, there exists a unique � -linear involutive mapping D : A → A

satisfying (xi). The � -linear mapping D : A → A is given by

(11) D(x) = lim
n→∞

1
2n
f(2nx)

for all x ∈ A .

Let z, w ∈ A be arbitrary. Taking x = y = 0 in (x),

∥∥∥2f
(zw

2

)
− zf(w)− wf(z)

∥∥∥ 6 ϕ(0, 0, z, w).

So

(12)
1

22n

∥∥∥2f
(1

2
2nz · 2nw

)
− 2nzf(2nw) − 2nwf(2nz)

∥∥∥ 6 1
2n
ϕ(0, 0, 2nz, 2nw).

By (x), (11) and (12), 2D( 1
2zw) = zD(w) + wD(z). But since D is � -linear,

D(zw) = zD(w) + wD(z).

Hence the � -linear mapping D is a ∗-derivation satisfying (xi). �
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Corollary 11. Assume that there exist constants θ > 0 and p ∈ [0, 1) such that

∥∥∥2f
(µx+ µy + zw

2

)
− µg(x)− µh(y)− zf(w)− wf(z)

∥∥∥
6 θ(‖x‖p + ‖y‖p + ‖z‖p + ‖w‖p),

‖f(2nu∗)− f(2nu)∗‖ 6 2np+1θ

for all µ ∈ � 1, all u ∈ U (A ), all x, y, z, w ∈ A and all n ∈ � . Then there exists a
unique � -linear ∗-derivation D : A → A such that

∥∥∥2f
(x

2

)
−D(x)

∥∥∥ 6 1
2− 2p

θ‖x‖p,

‖g(x)−D(x)‖ 6 3− 2p

2− 2p
θ‖x‖p,

‖h(x)−D(x)‖ 6 3− 2p

2− 2p
θ‖x‖p

for all x ∈ A .

 "!$#%#'&
. Define ϕ(x, y, z, w) = θ(‖x‖p + ‖y‖p + ‖z‖p + ‖w‖p) and apply Theo-

rem 10. �

Theorem 12. Assume that there exists a function ϕ : A 4 → [0,∞) satisfying (vi)
and (viii) such that

∥∥∥2f
(µx+ µy + zw

2

)
− µg(x)− µh(y)− zf(w)− wf(z)

∥∥∥ 6 ϕ(x, y, z, w)

for µ = 1, i, and all x, y, z, w ∈ A . If f(tx) is continuous in t ∈ � for each fixed
x ∈ A , then there exists a unique � -linear ∗-derivation D : A → A satisfying (xi).

 "!$#%#'&
. By the same reasoning as in the proof of Theorem 3, there exists a

unique � -linear mapping D : A → A satisfying (xi).

The rest of the proof is the same as in the proofs of Theorems 1 and 10. �
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