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REMOVABLE SINGULARITIES FOR WEIGHTED

BERGMAN SPACES

Anders Björn, Linköping

(Received June 2, 2003)

Abstract. We develop a theory of removable singularities for the weighted Bergman space
A p

µ (Ω) = {f analytic in Ω:
∫
Ω |f |

p dµ < ∞}, where µ is a Radon measure on
�
. The set

A is weakly removable for A p
µ (Ω \ A) if A p

µ (Ω \ A) ⊂ Hol(Ω), and strongly removable for
A p

µ (Ω \A) if A p
µ (Ω \A) = A p

µ (Ω).
The general theory developed is in many ways similar to the theory of removable sin-

gularities for Hardy Hp spaces, BMO and locally Lipschitz spaces of analytic functions,
including the existence of counterexamples to many plausible properties, e.g. the union of
two compact removable singularities needs not be removable.
In the case when weak and strong removability are the same for all sets, in particular

if µ is absolutely continuous with respect to the Lebesgue measure m, we are able to say
more than in the general case. In this case we obtain a Dolzhenko type result saying that
a countable union of compact removable singularities is removable.
When dµ = w dm and w is a Muckenhoupt Ap weight, 1 < p < ∞, the removable

singularities are characterized as the null sets of the weighted Sobolev space capacity with
respect to the dual exponent p′ = p/(p− 1) and the dual weight w′ = w1/(1−p).

Keywords: analytic continuation, analytic function, Bergman space, capacity, exceptional
set, holomorphic function, Muckenhoupt weight, removable singularity, singular set, Sobolev
space, weight

MSC 2000 : 30B40, 30D60, 32A36, 32D20, 46E10

1. Introduction and background

Removable singularities for analytic functions are an old subject going back to
Riemann’s classification of isolated singularities. Characterizations of removable sin-

gularities have been given for many different spaces, see below, including unweighted
Bergman spaces, see Carleson [10] and Hedberg [17].

In the preprint Björn [6] the author realized that the theory of removable singular-
ities for weighted Bergman spaces and for Hardy Hp spaces have many similarities.
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After having found more spaces with similar behaviour, the author developed an

axiomatic theory for removable singularities in Björn [9].

This paper is an improved version of [6] containing all the results therein often

in more general forms (the removability definition therein is more restrictive than
the one used in this paper). It also shows that the axioms in [9] are fulfilled for

weighted Bergman spaces and quotes all the relevant results obtained in [9]. The
results for weighted Bergman spaces reported upon in Björn [8] are also included in

this paper.

In this paper we develop the theory of removable singularities for quite general

weighted Bergman spaces with respect to Radon measures. We give a number of
results that hold in this general setting, and also give counterexamples showing the

limitations of the theory.

In the case when the Radon measure is a weight ( dµ = w dm) we show that much

more is true, including a Dolzhenko type result saying that a countable union of
compact removable singularities is removable. We also generalize the characterization

for unweighted Bergman spaces, giving a complete characterization for the removable
singularities of Bergman spaces with respect to Muckenhoupt Ap weights w as null

sets of the weighted Sobolev space capacity for the dual exponent p′ = p/(p−1) and
dual weight w′ = w1/(1−p).

Much attention has been given to find a characterization of the removable sin-
gularities for bounded analytic functions, a problem which was recently solved by

Tolsa [30]. Other spaces of analytic functions for which removable singularities have
been studied include: the Nevanlinna class N (Rudin [28]); the Smirnov class N+

(Khavinson [22]); the Smirnov spaces Ep (Khavinson [21]); the Dirichlet spaces ADp

(Hedberg [17]); the John-Nirenberg class BMO (Král [26], Kaufman [20], Koskela [25]
and Björn [9]); the Hölder classes Cα (Dolzhenko [12] and Koskela [25]); the Lipschitz
space Lip (Nguyen [27] and Khrushchëv [23]); the Zygmund class ZC (Carmona-

Donaire [11]); the spaces VMO, lipα and Campanato spaces (Král [26] as spe-
cial cases of the corresponding problem for more general partial differential op-

erators); the locally Lipschitz classes locLipα and loclipα (Björn [9]); and let us
also mention the paper by Ahlfors and Beurling [2]. In a sequence of papers [4],

[5], [7], [8] the author built on older work in the study of removable singularities
for Hp.

This paper is organised as follows. In Section 2 we define weak and strong re-
movability, the Bergman spaces A p

µ and the auxiliary Bergman spaces Bp
µ used

throughout this paper. In Section 3 we give a number of simple results that hold for
A p

µ . In Section 4 we show that the auxiliary Bergman spaces Bp
µ satisfy the main

axioms in Björn [9], after which we quote all the relevant results obtained in [9].
In Section 5 we characterize removable singularities for A ∞

µ , and in Section 6 we
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compare removability for different exponents. In Section 7 we introduce Bergman

space capacities. In Section 8 we look at the case when weak and strong removability
coincide for all sets, which, e.g., happens for Bp

w.

In Section 9 we give two characterizations of weakly removable singularities forA p
µ .

The first says that weakly removable singularities are the same for A p
µ and Bp

µ unless
A p

µ (Ω \A) = {0}. The second characterizes weakly removable singularities for A p
µ

in terms of those for Bp
µ and some additional quantities under the weak assumption

that there exists some n such that
∫ �
\ � |z|−n dµ(z) < ∞. Some criteria for the

additional quantities in the second characterization are given in Section 11, which
aims at simplicity, rather than generality, but includes the case of Muckenhoupt

weights.

In Section 10 we introduce Muckenhoupt weights and associated capacities from

non-linear potential theory. We also prove some lemmas that are used in Sec-
tion 12, which is devoted to a complete characterization of removable singulari-

ties for A p
w , when w is a Muckenhoupt Ap weight, in terms of null sets of the

weighted Sobolev space capacity for the dual exponent p′ = p/(p − 1) and dual
weight w′ = w1/(1−p).

In Section 13 we take a look at the unweighted case. This is not new, see Car-

leson [10] and Hedberg [17]. We would like to direct the reader to Section 11.1 in
Adams-Hedberg [1], which inspired much of the work in Section 12 in this paper.

In Section 13 we also point out that the solution to the unweighted case is also a
solution to the weighted case when the weight is locally bounded from above and

below, as has often been the case when weighted Bergman spaces have been studied
in the literature.

In Section 14 we give counterexamples to several plausible properties when weak
and strong removability are different. A major reason for us to consider “weights”
that are not weight functions, but Radon measures, is that we can find examples

when the situation is fairly similar to the situation for removable singularities for
Hp spaces and analytic functions in BMO, locLipα and loclipα (see Björn [9] for

definitions of these spaces). A necessity for this is that weak and strong removability
are different concepts, which never happens when µ is absolutely continuous with

respect to the Lebesgue area measure m.

Many problems are easier to solve for Hardy spaces than for Bergman spaces, and

a lot of work during the 1990s was done trying to develop the theory of Bergman
spaces to the level of the theory of Hardy spaces. As we have seen, the problem of

removable singularities is different in nature, since it is easier to solve for even quite
general weighted Bergman spaces, than for Hardy spaces.

We close the paper by looking at the related problem of isometrically removable
sets in Section 15.
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The proofs in this paper are usually given for p < ∞. The omitted proofs for
p = ∞ are either similar or easier.

2. Notation and definitions

Throughout this paper we assume, unless otherwise stated, that 0 < p 6 ∞, that
Ω ⊂ � = � ∪ {∞}, the Riemann sphere, that A, E ⊂ Ω ∩ � , that Ω and Ω \ E are

domains, i.e. non-empty open connected sets, that µ|
�
is a positive complete Radon

measure on � , i.e. a positive complete Borel measure that is finite on all compact
subsets of � , and that µ({∞}) < ∞.
We let Hol(Ω) = {f : f is analytic in Ω}. Because of the uniqueness theo-

rem we will not distinguish between restrictions and extensions of analytic func-
tions. We also let Lp

µ(Ω) denote the weighted Lebesgue space (quasi)-normed by

‖f‖Lp
µ(Ω) =

(∫
Ω
|f |p dµ

)1/p
, 0 < p < ∞, and ‖f‖L∞µ (Ω) = inf{C > 0: µ({z ∈ Ω:

|f(z)| > C}) = 0}.

Definition 2.1. The Bergman space A p
µ (Ω) is defined by

A
p
µ (Ω) = {f ∈ Hol(Ω): ‖f‖Lp

µ(Ω) < ∞}.

Remarks. The point at infinity is special since we do not require the existence
of a neighbourhood of ∞ with finite measure. It will be helpful to include the point
at infinity since Hol( � ) = {f : f is constant} is a much simpler space than Hol( � ).
These Bergman spaces are sometimes (quasi)-Banach spaces, but not always. The

“norm” is in general only a (quasi)-seminorm, i.e. there may be several functions

with “norm” zero. For 0 < p < 1 the triangle inequality is replaced by a quasi-
triangle inequality. In general these spaces are not complete. It is an interesting open

problem (as far as the author knows) to characterize exactly when these Bergman
spaces are (quasi)-Banach spaces. For p = ∞ such a characterization is given in

Arcozzi-Björn [3], where also the case p < ∞ is studied briefly. It is interesting to
note that for the results in this paper it does not matter if the Bergman space is

(quasi)-Banach or not.

The case of infinite measure is sometimes quite different from the finite measure
case. In order to develop the theory we shall use some auxiliary Bergman spaces.

We first let D (a, r) = {z ∈ � : |z − a| < r} and � = D (0, 1).

Definition 2.2. The auxiliary Bergman space Bp
µ(Ω), 0 < p 6 ∞, is defined

by

Bp
µ(Ω) = Hol(Ω) ∩

⋂
A

p
µ (Ω′),
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where the large intersection is taken over all domains Ω′ ⊂ Ω such that

(2.1)
∥∥∥1

z

∥∥∥
p

Lp
µ(Ω′\ � ) =

∫

Ω′\ �
1
|z|p dµ(z) < ∞.

For p = ∞, we say that all domains satisfy condition (2.1).

We also define, for 0 < p 6 ∞,

Bp
µ,fin(Ω) = Hol(Ω) ∩

⋂

Ω′⊂Ω domain
µ(Ω′)<∞

A
p
µ (Ω′),

Bp
µ,bdd(Ω) = Hol(Ω) ∩

⋂

Ω′⊂Ω bounded
domain

A
p
µ (Ω′).

It is obvious that A p
µ (Ω) ⊂ Bp

µ(Ω) ⊂ Bp
µ,fin(Ω) ⊂ Bp

µ,bdd(Ω) for any domain
Ω, and that A p

µ (Ω) = Bp
µ(Ω) if Ω satisfies condition (2.1), etc. It is also obvious

that H∞(Ω) ⊂ A ∞
µ (Ω) ⊂ Bp

µ,fin(Ω), with equality in the first inclusion if Ω ⊂
supp µ. (The identity H∞(Ω) = A ∞

µ (Ω) is characterized by Theorem 2.1 in Arcozzi-
Björn [3].)

If µ is absolutely continuous with respect to m, the Lebesgue area measure, we
can write dµ = w dm, where w = dµ/dm is the Radon-Nikodym derivative. In

this case we will often write A p
w(Ω) = A p

µ (Ω) and Bp
w(Ω) = Bp

µ(Ω). If moreover
µ = m, or in other terms w = 1, we usually omit the subscript completely and write
A p(Ω) = A p

m(Ω) and Bp(Ω) = Bp
m(Ω).

The theory of removable singularities for Bp
µ,fin and Bp

µ,bdd is essentially the same

as for Bp
µ, with the same proofs. Some proofs are slightly simpler for Bp

µ,fin and
Bp

µ,bdd. We have chosen to develop the theory for Bp
µ, rather than for Bp

µ,fin and

Bp
µ,bdd, since Bp

µ(Ω) = A p
µ (Ω) for more domains.

At this point it may be useful to see what the differences are between these
Bergman spaces. Obviously, if Ω is bounded, then A p

µ (Ω) = Bp
µ(Ω) = Bp

µ,fin(Ω) =
Bp

µ,bdd(Ω). If ∞ ∈ Ω, then Bp
µ,fin(Ω) = Bp

µ,bdd(Ω), moreover, Bp
µ(Ω) = Bp

µ,fin(Ω) if
1 ∈ Bp

µ( � ) (in particular if µ( � ) < ∞), otherwise Bp
µ(Ω) = {f ∈ Bp

µ,fin(Ω) : f(∞) =
0}. The original Bergman space A p

µ (Ω) depends much more on µ and p.

If∞ /∈ Ω, the picture is a little different. First of all Bp
µ,bdd( � ) = Hol( � ), since all

entire functions are bounded on bounded domains. We always have 1 ∈ Bp
µ,fin(Ω) ⊂

Bp
µ,bdd(Ω). If µ( � ) = ∞ and p 6= ∞, then usually 1 /∈ Bp

µ( � ) (but not always, see
Remarks 7.12), there may however still be functions with essential singularities at
infinity in Bp

µ( � ) ⊂ Bp
µ,fin( � ). One always has 1/z ∈ Bp

µ( � \ � ).
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In general, the difference between these Bergman spaces is the behaviour they

allow at∞. The spaces Bp
µ,bdd allow any behaviour at infinity, whereas B

p
µ,fin always

allow functions bounded near infinity, and may allow more. The spaces Bp
µ always

allow at least the behaviour similar to 1/z at infinity, whereas A p
µ may not allow

any non-zero function in a neighbourhood of infinity, see Remarks 4.2.

We have so far defined (auxiliary) Bergman spaces over domains, we next extend

the definition to non-domains. In our case we will haveX = A p
µ , X = Bp

µ, X = Bp
µ,fin

or X = Bp
µ,bdd.

Definition 2.3. If A ⊂ � , then we define

X(A) =
⋃

Ω⊃A domain

X(Ω).

Note that

A
p
µ (A) = {f : ‖f‖Lp

µ(A) < ∞ and there is a domain Ω ⊃ A such that f ∈ Hol(Ω)},

which is quite straightforward to show; we leave the proof to the interested reader.

It is easy to see that this definition is consistent with the definition for domains,

e.g. by observing that Axiom A2 below holds.

We are now ready to define what removable singularities are.

Definition 2.4. The set A is weakly removable for X(Ω \A) if X(Ω \A) ⊂
Hol(Ω), and A is strongly removable for X(Ω \A) if X(Ω \A) = X(Ω).

The requirement that Ω be a domain is to avoid pathological situations such as
Ω \A being connected, but Ω non-connected.

Remarks. It is obvious that strong removability implies weak removability. The
converse is not true in general, but it is true if µ is absolutely continuous with respect
to the Lebesgue area measure m, see Proposition 8.1.

We have made the general assumption that ∞ /∈ A. The point at infinity needs
special attention, we refrain from this since it does not seem to be particularly

interesting.

Let us end this section with some more notation: We let dimH denote the
Hausdorff dimension, δz denote the Dirac measure at z, dxe denote the smallest
integer > x, bxc denote the largest integer 6 x and let � = {0, 1, . . .}.
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3. Removability results for A p
µ

All the results in this section hold also if we replace A p
µ by Bp

µ, B
p
µ,fin or Bp

µ,bdd

(and they will be quoted also in this setting), which follows just using the definitions
of Bp

µ, B
p
µ,fin and Bp

µ,bdd and the corresponding results for A p
µ .

Proposition 3.1. Let K ⊂ Ω ∩ � be compact and such that Ω \K is a domain.

Then K is weakly removable for A p
µ (Ω \K) if and only if K is strongly removable

for A p
µ (Ω \K).

Remark. Because of this result we will usually say that a compact set is remov-
able, without specifying weak/strong removability.

�	��
�
�

. It is clear that strong removability implies weak removability. Assume,

conversely, that K is weakly removable for A p
µ (Ω \K) and consider a function f ∈

A p
µ (Ω \K) ⊂ Hol(Ω). Since f is continuous on K and K is compact, f is bounded

on K. Since µ is a Radon measure µ(K) < ∞. Hence

‖f‖p
Lp

µ(Ω)
= ‖f‖p

Lp
µ(Ω\K)

+
∫

K

|f |p dµ < ∞.

Thus f ∈ A p
µ (Ω) and since f was arbitrary, K is strongly removable for A p

µ (Ω \K).
�

Proposition 3.2. Let Ω1 ⊂ Ω2 be domains and A1 ⊂ A2 ⊂ Ω1 ∩ � . If A2 is

weakly (strongly) removable for A p
µ (Ω1\A2), then A1 is weakly (strongly) removable

for A p
µ (Ω2 \A1).

�	��
�
�

. For the weak part we have

A
p
µ (Ω2 \A1) ⊂ A

p
µ (Ω1 \A2) ∩ Hol(Ω2 \A1) ⊂ Hol(Ω1) ∩ Hol(Ω2 \A1) = Hol(Ω2).

Similarly, for the strong part we have

A
p
µ (Ω2 \A1) = A

p
µ (Ω1 \A2) ∩A

p
µ (Ω2 \A1) = A

p
µ (Ω1) ∩A

p
µ (Ω2 \A1) = A

p
µ (Ω2).

�
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Proposition 3.3. Let Ek ⊂ Ω ∩ � be pairwise disjoint sets such that Ω \
k⋃

j=1

Ej

is a domain and Ek is strongly removable for A p
µ

(
Ω \

k⋃
j=1

Ej

)
, k = 1, . . . , n. Then

n⋃
j=1

Ej is strongly removable for A p
µ

(
Ω \

n⋃
j=1

Ej

)
.

�	��
�
�

. This is almost trivial, we have

A
p
µ

(
Ω \

n⋃

j=1

Ej

)
= A

p
µ

(
Ω \

n−1⋃

j=1

Ej

)
= . . . = A

p
µ (Ω \E1) = A

p
µ (Ω).

�

Proposition 3.4. If A is weakly removable for A p
µ (Ω \A) and µ(A) = 0, then A

is strongly removable for A p
µ (Ω \A).

Remark. In fact the assumptions imply isometric removability, see Proposi-
tion 15.3.
�	��
�
�


. Let f ∈ A p
µ (Ω \A) ⊂ Hol(Ω). Since µ(A) = 0, we have ‖f‖Lp

µ(Ω) =
‖f‖Lp

µ(Ω\A) < ∞. Hence f ∈ A p
µ (Ω), and thus A is strongly removable for

A p
µ (Ω \A). �

Proposition 3.5. The set A is weakly (strongly) removable for A p
µ (Ω \A) if

and only if E is weakly (strongly) removable for A p
µ (Ω \E) for all E ⊂ A that are

relatively closed in Ω.
�	��
�
�


. Let us start with the weak part. If A is weakly removable for A p
µ (Ω \A)

and E ⊂ A, then A p
µ (Ω \E) ⊂ A p

µ (Ω \A) ⊂ Hol(Ω), which shows the necessity. As
for the sufficiency, let f ∈ A p

µ (Ω \A), then there is a domain Ω′ ⊃ Ω \ A such that

f ∈ A p
µ (Ω′ \A). Let E = Ω \ Ω′. Then f ∈ A p

µ (Ω \E) ⊂ Hol(Ω).
The proof of the strong part is similar, we leave it to the interested reader. �

4. Axiomatic approach

In Björn [9] an axiomatic theory for removable singularities for spaces of analytic

functions was developed that is well suited for Bergman spaces. It was developed
for domains Ω ⊂ � , but it is trivial to rewrite the theory for domains Ω ⊂ � , as
considered in this paper.
The following axioms are given.
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(A1) For every domain Ω ⊂ � , X(Ω) is defined and X(Ω) ⊂ Hol(Ω).
(A2) If Ω1 ⊂ Ω2 ⊂ � are domains, then X(Ω1) ⊃ X(Ω2).
(A3) If a compact set K ⊂ � is weakly removable for X( � \K) and Ω ⊃ K is a

domain, then K is strongly removable for X(Ω \K).
(A4) If a compact set K is weakly removable for X( � \K), then K is totally discon-

nected, i.e. no two different points in K can be connected by a curve in K.

(A5) If K ⊂ K ′ ⊂ � and K and K ′ are compact sets, then capX(K) 6 capX (K ′).
(A6) If K ⊂ � is a compact set, then capX(K) = 0 if and only if K is removable

for X .

(A7) If Ω1 and Ω2 are domains and Ω1 ∪ Ω2 is connected, then X(Ω1) ∩ X(Ω2) =
X(Ω1 ∪ Ω2).

Remark 4.1. In view of Axiom A3 and Proposition 3.2 we say that a compact
set K is removable for X if there is one domain Ω ⊃ K such that K is weakly

removable for X(Ω \K), or equivalently, if K is strongly removable for X(Ω \K)
for all domains Ω ⊃ K.

Remark 4.2. For A p
µ , Axioms A1, A2 and A7 are always satisfied, whereas

the others may not be satisfied. That Axiom A4 is not satisfied for A p
µ in general,

can be seen by letting w(z) = e|z|, Ω = � and K = � . If f ∈ A p
w( � \ � ), then |f |p/2

is subharmonic. Letting D = D (z, 1), |z| > 2, we obtain

|f(z)|p/2 6 1
π

∫

D

|f(ζ)|p/2 dm(ζ) =
1
π

∫

D

|f(ζ)|p/2w(ζ)1/2w(ζ)−1/2 dm(ζ)

6 1
π
‖f‖p/2

Lp
µ( � \ � )

(∫

D

e−|ζ| dm(ζ)
)1/2

→ 0,

as |z| → ∞, as fast as e−|z|/2. Hence f(∞) = f ′(∞) = f ′′(∞) = . . . = 0, and thus
f ≡ 0 and � is removable for A p

w( � \ � ), but not totally disconnected.
That Axioms A3 and A4 are not satisfied forA p

µ in general is, of course, the reason
for us to introduce the auxiliary Bergman spaces Bp

µ. It can be observed that if in

(2.1) it was required that ‖z−α‖Lp
µ(Ω′\ � ) < ∞ for some α > 1, then Bp

µ would not
satisfy Axiom A3 in general, cf. Theorem 13.3.

Note that Axioms A5 and A6 can always be satisfied, if Axioms A1–A4 are fulfilled,
e.g., by defining

capX(K) =

{
0, if K is removable for X ,

1, if K is not removable for X .

We extend the definition of capX by the following definition.
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Definition 4.3. Let A ⊂ � and define
capX(A) = sup{capX (K) : K ⊂ A is compact}.

In Section 7 we will define capA
p
µ
( · ) which is suitable as capX for X = Bp

µ,
X = Bp

µ,fin and X = Bp
µ,bdd, and for X = A p

µ when it satisfies Axioms A1–A7.

Before we quote the general results that follow from these axioms, we verify that
the axioms are fulfilled for the auxiliary Bergman spaces.

Proposition 4.4. Let X = Bp
µ, X = Bp

µ,fin or X = Bp
µ,bdd. Then Axioms A1–A4

and A7 are fulfilled.
�	��
�
�


. We prove this for X = Bp
µ; the proofs for X = Bp

µ,fin and X = Bp
µ,bdd

being similar. That Axioms A1 and A2 are fulfilled is immediate.
Axiom A3. Assume that f ∈ Bp

µ(Ω \K). Let Ω1 and Ω2 be smooth bounded

domains with K ⊂ Ω1 b Ω2 b Ω. Let K1 ⊃ K2 ⊃ . . . be compact smooth subsets of

Ω1 with K =
∞⋂

n=1
Kn and ∂Kn ⊂ Ω1 \K for all n > 1. Then

f(z) =
1

2πi

∫

∂Ω2

f(ζ)
ζ − z

dζ +
1

2πi

∫

∂Kn

f(ζ)
ζ − z

dζ =: g(z) + hn(z), z ∈ Ω2 \Kn.

Since f is bounded on ∂Ω2, g is bounded on Ω1 and g ∈ Bp
µ(Ω1). Moreover, hn ∈

Hol( � \Kn) and
hn(z) = f(z)− g(z), z ∈ Ω2 \Kn.

Thus {hn(z)}∞n=1 is constant when defined, so if

h(z) = lim
n→∞

hn(z), z ∈ � \K,

then h ∈ Hol( � \ K). Furthermore, h = f − g ∈ Bp
µ(Ω1 \ K), h(∞) = 0 and h is

bounded in � \ Ω1. Hence, for some constant C, |h(z)| 6 C|z|−1 for all z ∈ � \ Ω1.
So, if Ω′ ⊂ � \K is an arbitrary domain satisfying condition (2.1), then

‖h‖p
Lp

µ(Ω′) = ‖h‖p
Lp

µ(Ω1∩Ω′) +
∫

(Ω′\Ω1)∩ � |h|
p dµ +

∫

(Ω′\Ω1)\ � |h|
p dµ < ∞.

The first term is bounded since h ∈ Bp
µ(Ω1 \ K). The second term is bounded

since h is bounded, and the third term is bounded by condition (2.1). Hence, h ∈
Bp

µ( � \K) ⊂ Hol( � ), i.e.h is constant and h ≡ h(∞) = 0.
So f = g in Ω1\K and f can be analytically continued toK. Since f was arbitrary,

K is weakly removable for Bp
µ(Ω \K). Finally, it follows from Proposition 3.1 that

K is strongly removable for Bp
µ(Ω \K).
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Axiom A4. Assume that K is weakly removable for Bp
µ( � \K) and let Ω ⊃ K be a

bounded domain. Then H∞(Ω \K) ⊂ Bp
µ(Ω \K) ⊂ Hol(Ω), and hence K is weakly

removable for H∞, from which it is well known that K is totally disconnected.
Axiom A7. This follows from the fact that Lp

µ(Ω1) ∩ Lp
µ(Ω2) = Lp

µ(Ω1 ∪ Ω2). �

Next we are ready to quote the results proved under these axioms in Björn [9].
From now on we assume that Axioms A1–A7 are satisfied.

Proposition 4.5. If A is weakly removable for X(Ω \A), then A is totally dis-

connected.

Proposition 4.6. Assume that E ⊂ Ω∩ � is relatively closed in Ω. Then the set
E is weakly removable for X(Ω \E) if and only if E can be written as a countable
union of well-separated compact sets Kj removable for X , where by well-separated

we mean that dist
(
Kk,

∞⋃
j=1,j 6=k

Kj

)
> 0 for all k = 1, 2, . . . .

Proposition 4.7. The set A is weakly removable for X(Ω \A) if and only if
capX(A) = 0.

Remark. Since the latter part is independent of Ω, we say that A is weakly

removable for X if there is one domain Ω ⊃ A such that A is weakly removable
for X(Ω \A), or equivalently if A is weakly removable for X(Ω \A) for all domains
Ω ⊃ A.

Proposition 4.8. If A ⊂ B and B is weakly removable for X , then A is weakly

removable for X .

Proposition 4.9. Assume that X(Ω) ⊂ Y (Ω) for all bounded domains Ω and
that Axioms A1–A6 are satisfied also for Y . If capY (A) = 0, then capX(A) = 0.

Since Bp
µ(Ω) = Bp

µ,fin(Ω) = Bp
µ,bdd(Ω) for bounded domains, it follows that Bp

µ,

Bp
µ,fin and Bp

µ,bdd have the same capacities, and hence the same weakly removable
singularities.

Proposition 4.10. Let K1, K2, . . . , Kn ⊂ � be pairwise disjoint compact sets
removable for X . Then

n⋃
j=1

Kj is removable for X .

Proposition 4.11. Let Ek ⊂ Ω∩ � be pairwise disjoint sets weakly removable for
X and such that Ω\Ek are domains, k = 1, . . . , n. Then

n⋃
k=1

Ek is weakly removable

for X .
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Proposition 4.12. The set A is strongly removable for X(Ω \A) if and only if
E is strongly removable for X(Ω \E) for all E ⊂ A with Ω \E being a domain.

Proposition 4.13. Assume that E1, E2 ⊂ Ω ∩ � are disjoint sets and such
that Ω \ E1 and Ω \ E2 are domains. If E1 and E2 are strongly removable for

X(Ω \ (E1 ∪ E2)), then E1 ∪ E2 is strongly removable for X(Ω \ (E1 ∪E2)).

We end this section with a result not given in Björn [9].

Proposition 4.14. The following are equivalent:
(i) A is weakly removable for X ;

(ii) capX(A) = 0;
(iii) for each z ∈ A, there exists a domain Ωz 3 z with capX(A ∩ Ωz) = 0.

Remark. The last part shows that weak removability for X is a local property

of A.

�	��
�
�

. (i) ⇔ (ii) This is Proposition 4.7.

(ii) ⇒ (iii) This follows directly from Definition 4.3.
(iii)⇒ (i) Let f ∈ X( � \A)⊂ X(Ωz\A). Since capX(A∩Ωz) = 0, A∩Ωz is weakly

removable for X , by Proposition 4.7, and is totally disconnected, by Proposition 4.5.
Hence f can be continued analytically to A ∩ Ωz. For z, w ∈ A the continuations to

the totally disconnected sets A ∩ Ωz and A ∩ Ωw must agree on their intersection.
Hence f can be analytically continued to all of A, and A is weakly removable for X .

�

5. A characterization of removability for A ∞
µ

Proposition 5.1. If A is weakly removable for Bp
µ, then A ⊂ supp µ|

�
\A ⊂

supp µ \A.

�	��
�
�

. Assume that z0 ∈ A \ supp µ|

�
\A . Since the support is closed it follows

that f(z) := (z − z0)−1 ∈ Bp
µ(Ω \A), but clearly f /∈ Hol(Ω), and hence A is not

weakly removable for Bp
µ. The latter inclusion is easy. �

Theorem 5.2. The following are equivalent:
(i) A is weakly removable for A ∞

µ ;

(ii) A is strongly removable for A ∞
µ (Ω \A);

(iii) A is removable for H∞ and there is no path γ : [0,∞) → � \ supp µ such that

γ(∞) ⊂ A \ γ([0,∞)).
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Remarks. Here γ(∞) :=
⋂

t>0
γ((t,∞)) which is always a compact set. The

condition in (iii) can be stated in many equivalent forms, see Theorem 2.1 in Arcozzi-

Björn [3]. We will use Theorem 2.1 in [3] in the proof below, the main ingredient
needed here is however Arakelyan’s theorem.

This result is true also for B∞
µ = A ∞

µ , B∞
µ,fin and B∞

µ,bdd, which follows directly
from their definitions and this proposition.

�	��
�
�

. (i)⇒ (ii) Let f ∈ A ∞

µ (Ω \A) ⊂ Hol(Ω), and assume that ‖f‖L∞µ (Ω\A) =
C. By continuity, |f(z)| 6 C for all z ∈ Ω ∩ supp µ|

�
\A . By Proposition 5.1,

|f(z)| 6 C for z ∈ A. Hence ‖f‖L∞µ (Ω) = C.

(ii) ⇒ (i) This is obvious.
(i) ⇒ (iii) We have H∞(Ω \ A) ⊂ A ∞

µ (Ω \A) ⊂ Hol(Ω), which shows that A is

weakly removable for H∞. It is well known that A is then also strongly removable
for H∞ (this also follows from the already proved implication (i) ⇒ (ii)).
Assume next that there is such a path γ and let K = γ(∞). Then condition (T1)

in Theorem 2.1 in Arcozzi-Björn [3] is false with E = supp µ \ K and Ω = � \ K.

(The assumption therein that Ω ⊂ � can be taken care of by applying a Möbius
transformation mapping ∞ to a point in K.) This shows that also condition (A6) in

Theorem 2.1 in [3] is false, i.e. that there exists an unbounded holomorphic function
f in Ω which is bounded on E. But then f ∈ A ∞

µ ( � \ A) and clearly f /∈ Hol( � ),
which shows that A is not weakly removable for A ∞

µ , a contradiction. Hence there
is no such path.

(iii) ⇒ (i) Let f ∈ A ∞
µ ( � \A), then, by definition, there is a compact set K ⊂ A,

such that f ∈ A ∞
µ ( � \ K). Thus there is a constant C such that |f(z)| < C for

z ∈ E := supp µ \K. By assumption, there is no path γ : [0,∞) → � \ (supp µ ∪K)
such that γ(∞) ⊂ K. By Theorem 2.1 in [3], f is bounded in � \ K, i.e. f ∈
H∞( � \A) ⊂ Hol( � ). Since f was arbitrary, A is weakly removable for A ∞

µ . �

6. Removability for different exponents

Proposition 6.1. Let 0 < p 6 q 6 ∞. If A is weakly removable for Bp
µ, then A

is weakly removable for Bq
µ.

�	��
�
�

. This follows from Proposition 4.9 since Bq

µ(Ω) ⊂ Bp
µ(Ω) for bounded

domains. �

Remark. The inclusions Bq
µ,fin(Ω) ⊂ Bp

µ,fin(Ω) and Bq
µ,bdd(Ω) ⊂ Bp

µ,bdd(Ω) are
true for all domains Ω. On the other hand, the inclusion Bq

µ(Ω) ⊂ Bp
µ(Ω) is not

always true. Consider, e.g., Ω = {reiθ : r > 1, |θ| < r−3/2} and f(z) = z−1/2
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(the principal branch). Then Ω satisfies condition (2.1) for p = 1 and p = 2, and
f ∈ A 2(Ω) = B2(Ω), but f /∈ A 1(Ω) = B1(Ω).

Corollary 6.2. If A is weakly removable for Bp
µ, then A is removable for H∞,

and, in particular, dimH A 6 1.

Remarks. Recall that weak and strong removability are the same forH∞, e.g. by
Theorem 5.2.

As we saw in Remarks 4.2 this result is not true in general for A p
µ .

�	��
�
�

. This follows from Theorem 5.2 and Proposition 6.1. �

Proposition 6.3. Let 0 < p 6 q 6 ∞ and assume that q/p ∈ � or that q = ∞.
Then the implication

A is strongly removable for Bp
µ,fin(Ω \A)

=⇒ A is strongly removable for Bq
µ,fin(Ω \A)

is true. The same is true if Bp
µ,fin (and Bq

µ,fin) are replaced by Bp
µ,bdd (and Bq

µ,bdd).

The corresponding result for Bp
µ is false, see Example 14.6. The implication is also

false if q/p is a non-integer, see Example 14.7.�	��
�
�

. If q = ∞, the result follows directly from the corresponding result for

weak removability, since weak and strong removability are the same for B∞
µ,fin.

Consider next the case when N = q/p is an integer. Let E ⊂ A be such that Ω\E

is a domain. Then E is strongly removable for Bp
µ,fin(Ω \E), by Proposition 3.2

or 4.12. Hence E is weakly removable for Bp
µ,fin(Ω \E), and thus weakly removable

for Bq
µ,fin(Ω \E), by Proposition 6.1. Let f ∈ Bq

µ,fin(Ω \E) ⊂ Hol(Ω) and let g =
fN ∈ Hol(Ω). It is straightforward to see that g ∈ Bp

µ,fin(Ω \E) = Bp
µ,fin(Ω). But,

then it follows that f ∈ Bq
µ,fin(Ω). We have shown that E is strongly removable for

Bq
µ,fin(Ω \E). Since E ⊂ A was arbitrary it follows from Proposition 4.12 that A is

strongly removable for Bq
µ,fin(Ω \A).

The proof is similar for Bp
µ,bdd. �
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7. Bergman space capacities

Lemma 7.1. Let K ⊂ � be compact with � \K connected. Then K is remov-

able for Bp
µ if and only if there is no function f ∈ Bp

µ( � \K) with f(∞) = 0 and
f ′(∞) 6= 0.

Remark. As usual f ′(∞) = lim
z→∞

z(f(z)− f(∞)).

�	��
�
�

. Assume first that K is removable for Bp

µ, then f ∈ Bp
µ( � \K) ⊂

Hol( � ) = {f : f is constant}, so f ′(∞) = 0. This proves the sufficiency.
Assume, conversely, that K is not removable for Bp

µ, i.e.B
p
µ( � \K) 6⊂ Hol( � )

and there is a non-constant h ∈ Bp
µ( � \K). Let f(z) = h(z) − h(∞), so that

f(∞) = 0. Since |f | 6 |h| in some neighbourhood of ∞ and the complement of the
neighbourhood has finite µ measure, we have f ∈ Bp

µ( � \K). Expand f in a Laurent

series,

f(z) =
∞∑

k=1

ckz−k for |z| large.

As f is non-constant there exists k > 1 with ck 6= 0. Let k0 be the least such k.

Then g(z) = zk0−1f(z), z ∈ � \K, is a well-defined analytic function with g(∞) = 0
and g′(∞) = ck0 6= 0.
It follows that there exists C such that |g(z)| 6 C|z|−1 for all z with |z| > C. For

|z| 6 C we have |g(z)| 6 Ck0−1|f(z)|. Let now Ω′ ⊂ � \K be an arbitrary domain

satisfying condition (2.1). Then

‖g‖p
Lp

µ(Ω′) 6 Cp

∫

Ω′\D(0,C)

dµ(z)
|z|p + Cp(k0−1)

∫

Ω′∩D(0,C)

|f |p dµ < ∞.

Hence g ∈ Bp
µ( � \K). �

This leads us to making the following definition.

Definition 7.2. Let K ⊂ Ω ∩ � be compact. Let K̂ be the complement of the

component of � \K containing ∞, i.e. K̂ is K with all holes filled in. Let also γ be
a smooth cycle in Ω with winding number windγ(z) = 1 if z ∈ K and windγ(z) = 0
if z /∈ Ω. We then define

capA p
µ
(K, Ω) = sup

{
1
2π

∣∣∣∣
∫

γ

f(z) dz

∣∣∣∣ : f ∈ Hol(Ω \K) and ‖f‖Lp
µ(Ω\K) 6 1

}
,

capBp
µ
(K, Ω) = sup{|f ′(∞)| : f ∈ Hol( � \ K̂) and ‖f‖Lp

µ(Ω\K̂) 6 1},
cap0Bp

µ
(K, Ω) = sup{|f ′(∞)| : f ∈ Hol( � \ K̂), ‖f‖Lp

µ(Ω\K̂) 6 1 and f(∞) = 0}.
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Remarks 7.3. We do not require Ω \ K to be connected when we say that

f ∈ Hol(Ω \K) in the definition of capA
p
µ
.

For Bp
µ the functional f 7→ |f ′(∞)| is not always bounded, hence it can happen

that cap0
Bp

µ
(K, Ω) = capBp

µ
(K, Ω) = ∞, e.g., if µ = 0 and K 6= ∅.

It is clear, by Cauchy’s theorem, that cap0
Bp

µ
(K, Ω) 6 capBp

µ
(K, Ω) 6 capA

p
µ
(K, Ω).

If Ω is simply connected, then the integral over those parts of γ that are in the

holes of K must be zero. It follows that the best choice is to let f ≡ 0 in all of
its holes, and it is enough to let γ be a simple curve surrounding K. This is the

way the (unweighted) capacity capA p was defined in Adams-Hedberg [1], before
Proposition 11.1.10. Moreover, capA

p
µ
(K, Ω) = capA

p
µ
(K̂, Ω) in this case.

We next extend the definition of the capacities to arbitrary sets.

Definition 7.4. Let cap be capA
p
µ
, capBp

µ
or cap0

Bp
µ
. We then define

cap(A, Ω) = sup{cap(K, Ω): K ⊂ A is compact}.

Remark. It follows from Proposition 7.5 that Definition 7.4 is consistent with
Definition 7.2.

Proposition 7.5. Let Ω ⊂ Ω′ be domains, A ⊂ B ⊂ Ω ∩ � be compact sets and
cap be one of capA

p
µ
, capBp

µ
and cap0

Bp
µ
. Then cap(A, Ω′) 6 cap(B, Ω).

�	��
�
�

. This follows from the fact that the Lp

µ norm increases with the domain.
�

We next make a definition which abuses the notation a little.

Definition 7.6. We say that capA
p
µ
(A) = 0 if capA

p
µ
(A ∩ Ω, Ω) = 0 for all

domains Ω. If this is not true we write capA
p
µ
(A) = 1.

The main reasons for defining these capacities are of course the next two theorems.

Theorem 7.7. If Ω satisfies condition (2.1), then the following are equivalent:
(i) A is weakly removable for Bp

µ;

(ii) A is weakly removable for A p
µ (Ω \A);

(iii) capA
p
µ
(A, Ω) = 0;

(iv) capBp
µ
(A, Ω) = 0;

(v) cap0
Bp

µ
(A, Ω) = 0;

(vi) capA
p
µ
(A) = 0.

Remark. Note that since (i) and (vi) are independent of the particular choice
of Ω, also (ii)–(v) are independent of the choice of Ω.
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�	��
�
�

. (i) ⇔ (ii) This follows directly from the fact that A p

µ (Ω \A) =
Bp

µ(Ω \A).
(i) ⇒ (vi) Let Ω′ be an arbitrary domain. Let K ⊂ A ∩ Ω′ be compact. Let Ω′′

be a bounded domain with K ⊂ Ω′′ ⊂ Ω′. Then K is removable for A p
µ (Ω′′ \K) =

Bp
µ(Ω′′ \K), by Proposition 3.2. Let f ∈ A p

µ (Ω′′ \K) = A p
µ (Ω′′). Cauchy’s theorem

shows that
∫

γ f(z) dz = 0, where γ is as in Definition 7.2, hence capA
p
µ
(K, Ω′′) = 0.

By Proposition 7.5, capA
p
µ
(K, Ω′) 6 capA

p
µ
(K, Ω′′) = 0. Therefore it follows that

capA
p
µ
(A ∩ Ω′, Ω′) = 0.

That (vi)⇒ (iii)⇒ (iv)⇒ (v) follow directly from Definition 7.6 and Remarks 7.3.
¬(i) ⇒ ¬(v) There is a compact set K ⊂ A not removable for Bp

µ. Thus K̂ is
not removable for Bp

µ either, where K̂ is K with all holes filled in. By Lemma 7.1

there exists a function f ∈ Bp
µ( � \ K̂) with f(∞) = 0 and f ′(∞) 6= 0. Since

Bp
µ( � \K̂) ⊂ A p

µ (Ω\K̂) we know that ‖f‖Lp
µ(Ω\K̂) < ∞. It follows that cap0

Bp
µ
(A, Ω) >

cap0
Bp

µ
(K, Ω) > 0. �

Theorem 7.8. The following are equivalent:

(i) A is weakly removable for Bp
µ;

(ii) capA
p
µ
(A) = 0;

(iii) capA
p
µ
(A ∩ Ω, Ω) = 0 for all domains Ω;

(iv) for each z ∈ A, there exists a bounded domain Ωz with capA
p
µ
(A ∩ Ωz , Ωz) = 0

such that z ∈ Ωz.

Remarks. It follows that capA
p
µ
( · ) satisfies Axioms A5 and A6 for X = Bp

µ,
X = Bp

µ,fin and X = Bp
µ,bdd, and hence characterizes their weakly removable singu-

larities.

Since the null sets are the same for capA
p
µ
, capBp

µ
and cap0

Bp
µ
we can replace capA

p
µ

by capBp
µ
or cap0

Bp
µ
in (iii) and (iv).

�	��
�
�

. (ii) ⇔ (iii) This is Definition 7.6.

(i) ⇒ (iii) Let Ω be an arbitrary domain and K ⊂ A ∩ Ω be compact. Then K is
weakly removable for Bp

µ. Since K is contained in a bounded domain, Theorem 7.7

shows that capA
p
µ
(K) = 0, and hence by Definition 7.6, capA

p
µ
(K, Ω) = 0. Since K

was arbitrary capA
p
µ
(A ∩ Ω, Ω) = 0.

(iii) ⇒ (iv) This is trivial.
(iv) ⇒ (i) Let f ∈ Bp

µ( � \ A) ⊂ Bp
µ(Ωz \ A). Since capA

p
µ
(A ∩ Ωz , Ωz) = 0,

Theorem 7.7 shows that A∩Ωz is weakly removable for Bp
µ. Thus, f can be continued

analytically to A ∩ Ωz. For z, w ∈ A the continuations to the totally disconnected

sets A∩Ωz and A∩Ωw must agree on their intersection. Hence f can be analytically
continued to all of A, and A is weakly removable for Bp

µ. �
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We end this section with a few results about these capacities that will not be used

in the sequel.

Proposition 7.9. Assume that Ω satisfies condition (2.1). Let cap be capA
p
µ
,

capBp
µ
or cap0

Bp
µ
. Assume that cap(A, Ω) = µ(A) = 0 (if p = ∞ it is enough to

require that cap(A, Ω) = 0). Then cap(E ∪ A, Ω) = cap(E, Ω).

Remarks. Note that by Theorem 7.7 the assumption cap(A, Ω) = 0 is the same
for all three capacities.

Note also that it follows from Proposition 9.7 in Björn [8] that we cannot allow E

to be an arbitrary set, not even for p = ∞.
�	��
�
�


. Let K ⊂ E∪A be compact, and let K ′ = K∩E which is compact since
E is relatively closed in Ω. Let Ω′ be any component of Ω \K ′. Since K ∩ Ω′ ⊂ A,

K ∩ Ω′ is weakly removable from A p
µ (Ω′ \K) = Bp

µ(Ω′ \K), by Theorem 7.7. Since
µ(K ∩ Ω′) 6 µ(A) = 0, ‖f‖Lp

µ(Ω′\K) = ‖f‖Lp
µ(Ω′) for f ∈ A p

µ (Ω′ \ K) = A p
µ (Ω′).

Hence the same functions compete in the suprema defining cap(K, Ω) and cap(K ′, Ω)
and cap(K, Ω) = cap(K ′, Ω) 6 cap(E, Ω). Taking supremum over all compact K ⊂
E ∪A we find that cap(E ∪ A, Ω) 6 cap(E, Ω). The converse inequality is obvious.

�

Proposition 7.10. Let 0 < p 6 q 6 ∞. If p < ∞, then assume also that
µ(Ω) < ∞. Let capp be one of capA

p
µ
, capBp

µ
and cap0

Bp
µ
. Then

capp(A, Ω) > Ccapq(A, Ω),

where C = µ(Ω)(p−q)/pq if p 6 q < ∞, C = µ(Ω)−1/p if p < q = ∞, and C = 1 if
p = q = ∞, assuming that µ(Ω) > 0. If µ(Ω) = 0, both sides equal ∞, or 0 if A = ∅,
and we may choose C = ∞.

Remark. In the corresponding result for Hp, Proposition 5.5(ii) in Björn [4],
the constant C = 1.

�	��
�
�

. Let K ⊂ A be compact. By Hölder’s inequality we have

‖f‖Lp
µ(Ω\K̂) 6 µ(Ω \ K̂)(q−p)/qp‖f‖Lq

µ(Ω\K̂) 6 1
C
‖f‖Lq

µ(Ω\K̂),

where K̂ is K with all holes filled in. This is enough to obtain the result. �

196



Proposition 7.11. Let K ⊂ Ω ∩ � be compact, and let K̂ be the complement of

the component of � \K containing ∞. Then

capBp
µ
(K, Ω) = sup{|f ′(∞)| : f ∈ Bp

µ,bdd( � \ K̂) and ‖f‖Lp
µ(Ω\K̂) 6 1}

= sup{|f ′(∞)| : f ∈ Bp
µ,fin( � \ K̂) and ‖f‖Lp

µ(Ω\K̂) 6 1}

and

cap0Bp
µ
(K, Ω) = sup{|f ′(∞)| : f ∈ Bp

µ,bdd( � \ K̂) and ‖f‖Lp
µ(Ω\K̂) 6 1, f(∞) = 0}

= sup{|f ′(∞)| : f ∈ Bp
µ,fin( � \ K̂) and ‖f‖Lp

µ(Ω\K̂) 6 1, f(∞) = 0}
= sup{|f ′(∞)| : f ∈ Bp

µ( � \ K̂) and ‖f‖Lp
µ(Ω\K̂) 6 1, f(∞) = 0}.

Moreover,

sup{|f ′(∞)| : f ∈ Bp
µ( � \ K̂) and ‖f‖Lp

µ(Ω\K̂) 6 1} =

{
capBp

µ
(K, Ω), if 1 ∈ Bp

µ( � ),

cap0
Bp

µ
(K, Ω), if 1 /∈ Bp

µ( � ).

Remarks 7.12. In view of this proposition it would be more appropriate to

call capBp
µ
, either capBp

µ,bdd
or capBp

µ,fin
. We have refrained from this in order not to

make the notation too cumbersome.

If µ(Ω) = ∞ and p < ∞, then usually 1 /∈ Bp
µ(Ω), however, this is not always

true. Consider, e.g., µ =
∞∑

j=1

jδj . Then 1 ∈ B1
µ( � ), since for any domain Ω′ satisfying

condition (2.1) we have card(Ω′ ∩ � ) < ∞.
�	��
�
�


. Let first f be a function competing in the supremum defining
capBp

µ
(K, Ω). Since f ∈ Hol( � \ K̂), |f | is bounded by a constant C in � \ Ω.

Let Ω′ ⊂ � \ K̂ be a domain with µ(Ω′) < ∞. Then

‖f‖p
Lp

µ(Ω′) 6 ‖f‖p

Lp
µ(Ω\K̂)

+ ‖f‖p
Lp

µ(Ω′\Ω)
6 1 + Cpµ(Ω′) < ∞.

Thus the same functions compete in the different suprema in the first identity.
The proof of the second part is similar: Let f be a function competing in the

supremum defining cap0
Bp

µ
(K, Ω). Since f ∈ Hol( � \ K̂) and f(∞) = 0 there is a

constant C > 1 such that |f(z)| 6 C|z|−1 for all z with |z| > C and |f(z)| 6 C for

all z ∈ � \ Ω. Let Ω′ ⊂ � \ K̂ be a domain satisfying condition (2.1). Then

‖f‖p
Lp

µ(Ω′) 6 ‖f‖p

Lp
µ(Ω\K̂)

+ ‖f‖p
Lp

µ(Ω′\D(0,C))
+ ‖f‖p

Lp
µ((Ω′\Ω)∩D(0,C))

6 1 + Cp

∫

Ω′\D(0,C)

dµ(z)
|z|p + Cpµ(D (0, C)) < ∞.

Thus the same functions compete in the different suprema in the second identity.
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If 1 ∈ Bp
µ( � ), the last part follows directly from the first part, since if Ω′ ⊂ � \ K̂

is a domain satisfying condition (2.1), then µ(Ω′) = ‖1‖p
Lp

µ(Ω′) < ∞. On the other
hand, if 1 /∈ Bp

µ( � ), then there is a domain Ω′ ⊂ � \ K̂ satisfying condition (2.1) with

µ(Ω′) = ∞. Let f ∈ Hol( � \ K̂) with f(∞) 6= 0, then |f(z)| > 1
2 |f(∞)| for |z| > C for

some constant C. Since µ(Ω′ \D (0, C)) = ∞ we find that f /∈ A p
µ (Ω′) ⊃ Bp

µ( � \ K̂).
Thus f(∞) = 0 is no extra requirement in the left-hand side of the last part if
1 /∈ Bp

µ( � ). �

8. When weak and strong removability are the same

Proposition 8.1. Assume that µ = ν +
m∑

j=1

cjδzj , and that ν(G) = 0 for all

sets G ⊂ � with dimH G 6 1. If A is weakly removable for Bp
µ, then A is strongly

removable for Bp
µ(Ω \A).

Remarks. The conclusion is that the two concepts, weak and strong remov-
ability, coincide for all sets and domains for Bp

µ. We will say that weak and strong
removability are the same for all sets.

In particular, weak and strong removability are the same for all sets for Bp
w.

Recall also that for p = ∞ weak and strong removability are always the same, by
Theorem 5.2.
�	��
�
�


. Let f ∈ Bp
µ(Ω \A) ⊂ Hol(Ω). By Corollary 6.2 we know that dimH A 6

1, and hence ν(A) = 0. Since µ is a Radon measure, we have 0 6 cj < ∞, 1 6 j 6 m.

Let Ω′ ⊂ Ω be any domain satisfying condition (2.1) and J = {j ∈ � : 1 6 j 6
m and zj ∈ Ω′ ∩ A}, then

‖f‖p
Lp

µ(Ω′) = ‖f‖p
Lp

µ(Ω′\A)
+

∫

Ω′∩A

|f |p dν +
∑

j∈J

cj |f(zj)|p < ∞,

and hence f ∈ Bp
µ(Ω). Since f was arbitrary, A is strongly removable for Bp

µ(Ω \A).
�

The following results were proved in Björn [9] under axiomatic assumptions.

Theorem 8.2. Let Ej ⊂ � be removable for Bp
µ and assume that there exists a

domain Ωj ⊃ Ej with Ωj \ Ej also being a domain, j = 1, 2, . . . . Assume also that

weak and strong removability for Bp
µ are the same for all subsets of

∞⋃
j=1

Ej (which,

in particular holds if µ(Ej) = 0 for j = 1, 2, . . .). Then capA
p
µ

( ∞⋃
j=1

Ej

)
= 0.
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Remark. This result is not true if we omit the assumption that Ωj \ Ej be

domains, which can be shown using the existence of non-measurable sets, see Propo-
sition 9.7 in Björn [8].

Proposition 8.3. Assume that weak and strong removability are the same for
all sets and that all singleton sets are removable for Bp

µ. Assume also that A ⊂ Ω is
not removable for Bp

µ, then dim Bp
µ(Ω \A)/Bp

µ(Ω) = ∞.
Remark. The results in this section hold equally well for Bp

µ,fin and Bp
µ,bdd.

9. Characterizations of removability for A p
µ

Proposition 9.1. If A is weakly removable for Bp
µ, then A is also weakly remov-

able for A p
µ (Ω \A).

Let next ν(G) =
∫

G\ � |z|−p dµ(z) for Borel sets G ⊂ � , and extend ν to an outer

measure. If ν(A) < ∞ and A is strongly removable for Bp
µ(Ω \A), then A is strongly

removable for A p
µ (Ω \A).

Remark. Recall that this is trivial for p = ∞, since A ∞
µ (Ω) = B∞

µ (Ω) for all
domains Ω.
�	��
�
�


. If A is weakly removable for Bp
µ, then A p

µ (Ω \A) ⊂ Bp
µ(Ω \A) ⊂

Hol(Ω), and A is weakly removable for A p
µ (Ω \A).

Since ν(A) < ∞ and ν is an outer measure, there is an open set B with A ⊂ B ⊂ Ω
and ν(B) < ∞. The set B has countably (possibly finitely) many components B1,

B2, . . . . We can connect Bj and Bj+1 with a bounded open connected set B′
j ⊂ Ω,

thus having finite ν measure. We can further split B′
j into enough pairwise disjoint

pieces, each still connecting Bj and Bj+1, so that at least one piece has ν measure
less than 2−j , we forget about the rest of B′

j and assume B′
j to be this piece. Let

Ω′ = B ∪
∞⋃

j=1

B′
j , a domain with A ⊂ Ω′ ⊂ Ω and ν(Ω′) < ∞.

Let now f ∈ A p
µ (Ω \A) ⊂ Hol(Ω), by the first part. We also have f ∈

A p
µ (Ω′ \A) = Bp

µ(Ω′ \A) = Bp
µ(Ω′) = A p

µ (Ω′), so

‖f‖p
Lp

µ(Ω)
6 ‖f‖p

Lp
µ(Ω\A)

+ ‖f‖p
Lp

µ(Ω′) < ∞.

Since f was arbitrary, it follows that A is strongly removable for A p
µ (Ω \A). �

Remark. The condition ν(A) < ∞ in the second part has to be changed to

µ(A) < ∞ for Bp
µ,fin, and to A being bounded for Bp

µ,bdd. The proof for Bp
µ,bdd is

simpler, but the proposition also becomes less powerful. See Example 14.4 for the

necessity of these changes, and the necessity of the condition ν(A) < ∞ in the second
part of the proposition.
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Theorem 9.2. The set A is weakly removable for A p
µ (Ω \A) if and only if A is

weakly removable for Bp
µ or A p

µ (Ω \A) = {0}.
�	��
�
�


. The sufficiency is clear: if A is weakly removable for Bp
µ, then Proposi-

tion 9.1 shows that A is weakly removable forA p
µ (Ω \A), furthermore ifA p

µ (Ω \A) =
{0} then A is trivially removable.

We next turn to the necessity, we will actually prove the contrapositive statement.
Assume that A is not weakly removable for Bp

µ and that A p
µ (Ω \A) 6= {0}.

By Proposition 4.7 there is a compact set K ⊂ A not removable for Bp
µ. Let

g ∈ Bp
µ( � \K) be non-constant and let z0 ∈ K be a point where g has a (non-

removable) singularity, not necessarily isolated.

Let f ∈ A p
µ (Ω \A), f 6≡ 0. If f /∈ Hol(Ω), then A is not weakly removable

for A p
µ (Ω \A), and we are done. We therefore assume that f ∈ Hol(Ω). Since

f 6≡ 0, there exists k > 0 minimal with f (k)(z0) 6= 0. Let f̃(z) = f(z)(z − z0)−k.
Then f̃(z0) 6= 0. Moreover, there is δ > 0 such that f̃ is bounded on D (z0, δ) and
|f̃(z)| 6 δ−k|f(z)| on Ω \D (z0, δ). Since f ∈ A p

µ (Ω \A), we obtain f̃ ∈ A p
µ (Ω \A).

Let now h = f̃g, a function analytic in Ω \K with a (non-removable) singularity

at z0. We shall show that h ∈ A p
µ (Ω \A), from which it directly follows that A is

not weakly removable for A p
µ (Ω \A).

Let Ω′ be a bounded domain with K ⊂ Ω′ b Ω. Then there exists a constant C

such that |f̃(z)| 6 C, z ∈ Ω′, and |g(z)| 6 C, z ∈ � \ Ω′. Hence

‖h‖p
Lp

µ(Ω\A)
6

∫

Ω′∩(Ω\A)

Cp|g|p dµ +
∫

(Ω\A)\Ω′
Cp|f̃ |p dµ

6 Cp(‖g‖p
Lp

µ(Ω′\A)
+ ‖f̃‖p

Lp
µ(Ω\A)

) < ∞,

i.e.h ∈ A p
µ (Ω \A). �

Definition 9.3. For z 6= ∞, let nz,µ = ∞ if there is a function in A p
µ (D (z, 1) \

{z}) with an essential singularity at z, otherwise let nz,µ = sup{n ∈ � : (ζ − z)−n ∈
A p

µ (D (z, 1) \ {z})}.
Let n∞,µ = 0 if ∞ /∈ Ω and there is a function in A p

µ ( � ) with an essential
singularity at ∞, otherwise let n∞,µ = inf{n ∈ � : z−n ∈ A p

µ ( � \ � )}.
If dµ = w dm, we write nz,w = nz,µ, and if w ≡ 1, we write nz = nz,w.

Remarks 9.4. (i) Note that nz,µ depends on p and whether or not ∞ ∈ Ω.

(ii) If n∞,µ = inf{n ∈ � : z−n ∈ A p
µ ( � \ � )}, then it is easy to see that

∞∑
k=0

akζ−k ∈

Hol( � \ � ) belongs to A p
µ ( � \D(0, 2)) if and only if a0 = a1 = . . . = an∞,µ−1 = 0.

(iii) Similarly, if nz,µ < ∞, z 6= ∞, then f ∈ Hol(D (z, 2) \ {z}) belongs to
A p

µ (D (z, 1) \ {z}) if and only if f has a pole of order at most nz,µ or a removable
singularity at z. In particular, {z} is removable for Bp

µ if and only if nz,µ = 0.
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(iv) If ∞ /∈ Ω, then n∞,µ = 0 if and only if there is a non-zero function in A p
µ ( � ).

Why? If n∞,µ = 0, then either there is f ∈ A p
µ ( � ) with an essential singularity

at ∞, or 1 ∈ A p
µ ( � ). On the other hand, if f ∈ A p

µ ( � ), f 6≡ 0, does not have an
essential singularity at ∞, then zn ∈ A p

µ ( � ) for some n > 0. It follows directly that
1 ∈ A p

µ ( � ) and n∞,µ = 0, moreover this happens exactly when µ( � ) < ∞.
(v) If ∞ /∈ Ω and there exists f ∈ A p

µ (Ω′ \ {∞}) with an essential singularity at
∞ for some domain Ω′ 3 ∞, and N = inf{n ∈ � : z−n ∈ A p

µ ( � \ � )} < ∞, then
n∞,µ = 0. Why? Without loss of generality we can assume that f ∈ A p

µ ( � \ � ).
Then also f(z)z−j ∈ A p

µ ( � \ � ) for 0 6 j 6 N . By taking a non-trivial linear

combination of these functions we find a function g ∈ A p
µ ( � \ � ), with Laurent series

g(z) =
∞∑

j=0

a−jz
j +

∞∑

k=N

akz−k, |z| > 1,

i.e. the linear combination is chosen to make a1 = . . . = aN−1 = 0. By the choice

of N we directly have h(z) :=
∞∑

k=N

akz−k ∈ A p
µ ( � \ � ), and hence g − h ∈ A p

µ ( � ).

If g did not have an essential singularity at ∞, then f would not have an essential

singularity at ∞ either, a contradiction. Hence g − h has an essential singularity
at ∞.
(vi) Note also that if nz,µ = ∞, z 6= ∞, then there is a function inA p

µ (D (z, 1)\{z})
with an essential singularity at z. If not, then (ζ−z)−n ∈ A p

µ (D (z, 1)\{z}) for all n ∈
� . Hence coefficients aj 6= 0 can be found so that

∞∑
j=0

aj(ζ−z)−n ∈ A p
µ (D (z, 1)\{z}),

a function with an essential singularity at z.

Theorem 9.5. Assume that n∞,µ < ∞. Then A is weakly removable for

A p
µ (Ω \A) if A is weakly removable for Bp

µ, or � \ (Ω \ A) = A1 ∪ A2, where A1 is

strongly removable for Bp
µ(Ω \A), A2 = {z1, . . . , zm} and

m∑
k=1

nzk,µ < n∞,µ.

Furthermore, if A is weakly removable for A p
µ (Ω \A), then A is weakly removable

for Bp
µ, or � \ (Ω \A) = A1 ∪A2 for some sets A1 and A2 with A1 weakly removable

for Bp
µ, A2 = {z1, . . . , zm} and

m∑
k=1

nzk,µ < n∞,µ.

Remarks. Note that it is not assumed that A1 ⊂ A. Nor is it assumed that A1

and A2 are disjoint, though this can always be achieved by replacing A2 by A2 \A1.

Note, also, that if n∞,µ = 0, then A is weakly removable for A p
µ (Ω \A) if and

only if A is weakly removable for Bp
µ.

Remarks 4.2 show that the situation can be quite different when n∞,µ = ∞.
The proof below works equally well if we replace Bp

µ by Bp
µ,fin or Bp

µ,bdd.
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�	��
�
�

. We start with the first part. If A is weakly removable for Bp

µ, then

A is weakly removable for A p
µ (Ω \A), by Proposition 9.1. We therefore assume

that � \ (Ω \ A) = A1 ∪ A2, where A1 is strongly removable for Bp
µ(Ω \A), A2 =

{z1, . . . , zm} and
m∑

k=1

nzk,µ < n∞,µ (note that this is never possible if n∞,µ = 0).

Let f ∈ A p
µ (Ω \A) ⊂ Bp

µ(Ω \A) = Bp
µ((Ω \ A) ∪ A1) ⊂ Bp

µ( � \ A2). The function
f can have a pole of order up to nzk,µ at the point zk. This means that g(z) =

f(z)
m∏

k=1

(z − zk)nzk,µ is an entire function. Furthermore, f(z) =
∞∑

k=n∞,µ

ckz−k for

|z| large, and since
m∑

k=1

nzk,µ < n∞,µ, we see that g(z) → 0, as z → ∞. Liouville’s
theorem shows that g ≡ 0, and hence f ≡ 0 ∈ A p

µ (Ω).

We next turn to the second part and assume that A is not weakly removable for Bp
µ.

Let Ω′ =
⋃{Ω′′ : Bp

µ(Ω \A) ⊂ Hol(Ω′′) and Ω′′ is a domain} ∩ � = � \A2. Since A

is not weakly removable for Bp
µ, by assumption, A2 6= ∅. Let further A′ = � \(Ω\A).

We split the rest of the proof into the following cases:

(a) n∞,µ = 0;

(b) n∞,µ > 0 and A′ not totally disconnected;

(c) n∞,µ > 0, A′ totally disconnected and A2 infinite;

(d) n∞,µ > 0 and there is z0 ∈ A2 with nz0,µ = ∞;

(e) n∞,µ > 0, A2 = {z1, . . . , zm} and n∞,µ 6
m∑

k=1

nzk,µ < ∞.

If none of (a)–(e) holds, then A2 is finite and it follows that A1 := Ω′ \ (Ω \ A)
is weakly removable for Bp

µ(Ω′ ∩ (Ω \ A)), and hence for Bp
µ(Ω \A). Moreover,∑

z∈A2

nz,µ < n∞,µ.

Thus, by Theorem 9.2, it is enough to show that in each case (a)–(e) there is
a non-zero function in A p

µ (Ω \A), to conclude that A is not weakly removable for

A p
µ (Ω \A), and thus finish the proof.

(a) There is a non-zero function in A p
µ (Ω \A), either 1 or one with an essential

singularity at ∞, see Remarks 9.4 (iv).
(b) There exist n∞,µ pairwise disjoint compact continua K1, . . . , Kn∞,µ ⊂ A′.

Since Kj is not totally disconnected, by Axiom A4, it is not removable for Bp
µ, so

there is a non-constant function fj ∈ Bp
µ( � \Kj) with fj(∞) = 0. Let g =

n∞,µ∏
j=1

fj .

Let also Ω0, . . . , Ωn∞,µ be pairwise disjoint neighbourhoods of {∞}, K1, . . . , Kn∞,µ ,
respectively. There is a constant C, such that |g(z)| 6 C|fj(z)| for z ∈ Ωj \Kj and

|fj(z)| 6 C|z|−1 for z ∈ Ω0, 1 6 j 6 n∞,µ. Thus g ∈ A p
µ (Ωj\Kj), 1 6 j 6 n∞,µ, and

since |g(z)| 6 Cn∞,µ |z|−n∞,µ for z ∈ Ω0, also g ∈ A p
µ (Ω0). Finally, g is bounded on
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the bounded set � \
n∞,µ⋃
j=0

Ωj , and hence g ∈ A p
µ

(
� \

n∞,µ⋃
j=1

Kj

)
⊂ A p

µ (Ω \A). Moreover

g is non-constant.

(c) We can find z1, . . . , zn∞,µ ∈ A2. Find pairwise disjoint neighbourhoods Gj of
zj . By the maximality of Ω′, Gj ∩ A′ is not weakly removable for Bp

µ. Hence there

is a compact set Kj ⊂ Gj ∩ A′ which is not removable for Bp
µ. We can now proceed

as we did in (b).

(d) As we have observed there is f0(z) =
∞∑

k=1

ak(z − z0)−k ∈ A p
µ (D (z0, 1) \ {z0})

with an essential singularity at z0. For j > 1 let recursively fj(z) = (z−z0)fj−1(z0)−
aj =

∞∑
k=1

ak+j(z− z0)−k ∈ A p
µ (D (z0, 1) \ {z0}), and let g(z) =

∞∑
k=1

ck(z − z0)−k be a

non-trivial linear combination of f0, . . . , fn∞,µ such that c1 = c2 = . . . = cn∞,µ = 0.
By Remarks 9.4 (ii) we see that g ∈ A p

µ

( � \D(z0,
1
2 )

)
, and hence g ∈ A p

µ ( � \{z0}) ⊂
A p

µ (Ω \A). If g were constant, then f0 would be a rational function, a contradiction.

(e) Let fk(z) = (z − zk)−nzk,µ ∈ A p
µ (D (zk, 1) \ {zk}) and g =

m∏
k=1

fk, then also

g ∈ A p
µ (D (zk, 1) \ A2), 1 6 k 6 m. Since there is a constant C such that |g(z)| 6

C|z|−n∞,µ for |z| > C, we also have g ∈ A p
µ ({z ∈ � : |z| > C}). Since g is bounded

on D(0, C) \
m⋃

k=1

D (zk, 1), it follows that g ∈ A p
µ ( � \ A2) ⊂ A p

µ (Ω \A). Since g is

non-constant we are done. �

As a corollary we obtain the following characterization of weak removability for

A p
µ .

Theorem 9.6. Let ν = µ|Ω\A and assume that n∞,ν < ∞. Then A is weakly

removable for A p
µ (Ω \A) if and only if A is weakly removable for Bp

µ, or � \(Ω\A) =

A1 ∪ A2, where A1 is weakly removable for Bp
µ, A2 = {z1, . . . , zm} and

m∑
k=1

nzk,ν <

n∞,ν .

Remarks 9.7. In this corollary we can make the requirement that nzk,ν > 1
for zk ∈ A2, since if, e.g., nz1,ν = 0, then, as ν(A1) = ν({z1}) = 0, we have A1

and {z1} both being strongly removable for Bp
ν , by Proposition 3.4, independently

of the domain. Hence A1 ∪ {z1} is also strongly removable for Bp
ν and thus weakly

removable for Bp
µ, and z1 can be moved from A2 to A1. It is possible to require that

nzk,µ > 1 for zk ∈ A2 in the first part, but not in the second part, of Theorem 9.5.
It is obvious that nz,ν > nz,µ for z 6= ∞ and that n∞,ν 6 n∞,µ. It is easy to

construct examples with at least one strict inequality. In view of Theorem 9.6, this
shows that it is not possible to find a necessary and sufficient condition using nz,µ.

The reason behind this is that weak removability for A p
µ (Ω \A) is independent of

µ outside of Ω \ A, whereas nz,µ depends on µ outside of Ω \ A. The number nz,ν ,
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on the other hand, is independent of µ outside of Ω \ A. The drawback is obvious,

instead nz,ν has to be made dependent on Ω \A. Recall that nz,µ is independent of
Ω and A, apart from depending on whether or not ∞ ∈ Ω.
�	��
�
�


. Since A p
µ (Ω \A) = A p

ν (Ω \A), A is weakly removable for A p
µ (Ω \A) if

and only if A is weakly removable forA p
ν (Ω\A). Similarly, A is weakly removable for

Bp
µ if and only if A is weakly removable for Bp

ν . Moreover for any domain Ω′ ⊃ A1,
Proposition 3.4 shows that A1 is weakly removable for Bp

ν if and only if A1 is strongly

removable for Bp
ν(Ω′ \ A1). By applying Theorem 9.5 to A p

ν (Ω \ A) we obtain the
result. �

10. Muckenhoupt Ap weights

Definition 10.1. A Radon measure µ on � is doubling if there exists a constant
C such that µ(D (z, 2r)) 6 Cµ(D (z, r)) for all z ∈ � and r > 0.
A non-negative function w is doubling if the corresponding measure µ, defined by

dµ = w dm, is doubling.

Definition 10.2. Let 1 < p < ∞. An Ap weight w is a non-negative function

such that there exists a constant C so that

(10.1)

(
1

m(D)

∫

D

w dm

)(
1

m(D)

∫

D

w1/(1−p) dm

)p−1

< C for all discs D ⊂ � .

An A1 weight is a non-negative function w such that there exists a constant C so

that

(10.2)
1

m(D)

∫

D

w dm < C ess inf
D

w for all discs D ⊂ � .

Remarks 10.3. In particular, 0 < w < ∞ a.e., w is doubling and w is a

p-admissible weight, see Chapter 15 in Heinonen-Kilpeläinen-Martio [18].
It is easy to see from the definition that if 1 < p < ∞, w′ = w1/(1−p) and

1/p + 1/p′ = 1, then w′ is an Ap′ weight if and only if w is an Ap weight.
If p < q and w is an Ap weight, then w is an Aq weight. Moreover, if p0 =

inf{p : w is an Ap weight} > 1, then w is not an Ap0 weight, this being the so called
open-end property, see e.g. [18], Section 15.13.

We want to make our results more general and therefore make the following defi-
nition.

Definition 10.4. Let 1 6 p < ∞. A local Ap weight w is a function such that
for each R > 0 there exists an Ap weight v such that w|D(0,R) = v|D(0,R).
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Remarks. It follows directly that if 1 < p < ∞, w′ = w1/(1−p) and 1/p+1/p′ =
1, then w′ is a local Ap′ weight if and only if w is a local Ap weight.

It is not true in general that local Ap weights are doubling, consider, e.g., w(z) =
e|z|.

Proposition 10.5. Let 1 6 p < ∞ and let w be a non-negative function. Then

w is a local Ap weight if and only if for each R > 0 there exists a constant CR such

that for all discs D ⊂ D (0, R),

(
1

m(D)

∫

D

w dm

)(
1

m(D)

∫

D

w1/(1−p) dm

)p−1

< CR, if 1 < p < ∞,

and
1

m(D)

∫

D

w dm < CR ess inf
D

w, if p = 1.

�	��
�
�

. The necessity is clear, we want to prove the sufficiency, without loss of

generality we can assume that R = 1. We also assume that 1 < p < ∞.
Let ∼ be the equivalence class on � defined by saying that ±1+x+yi ∼ ±1−x+yi

and x ± i + yi ∼ x ± i − yi, x, y ∈ � , i.e. invariance under reflections in the sides of
Q = [−1, 1]× [−1, 1]. Let v = w on Q and continue v using reflections in the sides,

i.e. v(z) = v(ζ) if z ∼ ζ. We have v| � = w| � and need only prove that v is an Ap

weight.

Let D = D (z0, r), without loss of generality we can assume that z0 ∈ Q. We see
that D intersects at most (r + 2)2 squares of the form Q + 2(j + ki), j, k ∈ � . Note
also that for each z ∈ � there is a unique ζ ∈ Q with z ∼ ζ, and moreover, if z ∈ D,

then ζ ∈ D. We see that

∫

D

v dm 6 (r + 2)2
∫

D∩Q

v dm = (r + 2)2
∫

D∩Q

w dm 6 (r + 2)2
∫

D

w dm,

and similarly for v′ := v1/(1−p). Let also w′ := w1/(1−p).

If r 6 1, then D ⊂ D
(
0, 1 +

√
2
)
and we have

(
1

m(D)

∫

D

v dm

)(
1

m(D)

∫

D

v′ dm

)p−1

6
(

9
m(D)

∫

D

w dm

)(
9

m(D)

∫

D

w′ dm

)p−1

< 9pC1+
√

2.
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On the other hand, if r > 1, then D ∩Q ⊂ D′ = D
(
0,
√

2
)
, and we get

(
1

m(D)

∫

D

v dm

)(
1

m(D)

∫

D

v′ dm

)p−1

6
(

2(r + 2)2

r2m(D′)

∫

D′
w dm

)(
2(r + 2)2

r2m(D′)

∫

D′
w′ dm

)p−1

< 18pC√2.

The proof for p = 1 is easier, we leave it to the interested reader. �

Remark. With obvious modification of constants this proof characterizes local
Ap weights on � n also when n > 2.

Definition 10.6. Let 1 < p < ∞ and let dµ = w dm. Let K ⊂ Ω be compact.
Then we define

capp,w(K, Ω) = inf {‖∇ϕ‖p
Lp

w(Ω)
: ϕ ∈ C

∞
0 (Ω)

and ϕ = 1 in an open set containing K},

where C∞
0 (Ω) denotes the set of infinitely differentiable functions with compact sup-

port in Ω. For an arbitrary set A ⊂ Ω we define

capp,w(A, Ω) = sup{capp,w(K, Ω): K ⊂ A is compact}.

Remarks. In the unweighted case, when w = 1, we usually drop w from the

notation.
Note first, that since capp,w( · , Ω) is increasing there is no ambiguity in defining

capp,w(K, Ω) twice for compact K. Note also that as elsewhere in this paper our
functions are complex-valued, but in the definition of capp,w the optimal is to have

Im ϕ ≡ 0.
For p-admissible weights, in particular for Ap weights, the capacity is the same

as the one defined in Heinonen-Kilpeläinen-Martio [18], Chapter 2, p. 27, when G

is compact or open, see the discussion on pp. 27–28 in [18]. In fact the definitions

coincide for Suslin sets, see Theorem 2.5 in [18]. All Borel sets are Suslin sets.
Suslin sets are sometimes called analytic sets, despite the fact that analytic set has
a different meaning in the theory of functions of several complex variables.

Definition 10.7. Let 1 < p < ∞ and let w be a local Ap weight. For a complex-

valued C∞ function, i.e. a complex-valued infinitely differentiable function, ϕ : � →
� we let the Sobolev norm of ϕ be

‖ϕ‖W 1,p
w

=
( ∫

� (|ϕ|p + |∇ϕ|p)w dm

)1/p

.
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We let the Sobolev space W 1,p
w ( � ) be defined by

W 1,p
w ( � ) = {ϕ ∈ C∞( � ) : ‖ϕ‖W 1,p

w
< ∞},

where the closure is taken in the ‖ · ‖W 1,p
w
norm. We further define the Sobolev space

◦
W 1,p

w (Ω) = C∞
0 (Ω), where the closure is also taken in the ‖ · ‖W 1,p

w
norm.

Remark. Sobolev spaces defined in this way are often denoted by the letter H

instead of W , since we use H for Hardy spaces we will use W instead. In fact for

Ap weights this definition is equivalent to the definition of Sobolev spaces usually
denoted by W , see Kilpeläinen [24]. We prefer this definition since it follows our

main source, Heinonen-Kilpeläinen-Martio [18], on the theory of weighted Sobolev
spaces.

Definition 10.8. Let 1 < p < ∞ and let w be a local Ap weight. For a compact
set K ⊂ � we define the Sobolev (p, w)-capacity by

capW 1,p
w

(K) = inf{‖ϕ‖p

W 1,p
w

: ϕ ∈ W 1,p
w ( � ) and ϕ = 1 in an open set containing K}.

For an arbitrary set A ⊂ � we define the Sobolev (p, w)-capacity by

capW 1,p
w

(A) = sup{capW 1,p
w

(K) : K ⊂ A is compact}.

Remarks 10.9. In the unweighted case, when w = 1, we usually drop w from

the notation.
This definition is a little different from the definition in Section 2.35 in Heinonen-

Kilpeläinen-Martio [18], where they are only concerned with the case when w is an

Ap weight. The two definitions coincide when A is a Suslin set and w is an Ap weight,
see Theorems 2.5 and 2.37 in [18].

If K is compact, Ω ⊃ K is a bounded domain and w is a local Ap weight, 1 < p <

∞, then capW 1,p
w

(K) = 0 if and only if capp,w(K, Ω) = 0, the proof of this fact on
p. 49 in [18] directly extends to local Ap weights.

Theorem 10.10. Let 1 < p < ∞ and let w be an Ap weight. Let also p0 =
inf{q : w is an Aq weight}. If capW 1,p

w
(A) = 0 for some non-empty A ⊂ � , then

p 6 2p0 and capW 1,p/p0 (A) = 0. In particular, dimH A 6 2− p/p0.

Remarks. This is Corollary 2.33 in Heinonen-Kilpeläinen-Martio [18]. Recall
also that p0 < p, see Remarks 10.3.

This theorem is sharp in the sense that given p0 < p < 2p0 there is a weight
w with p0 = inf{q : w is an Aq weight}, and a set A with capW 1,p

w
(A) = 0 and
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dimH A = 2− p/p0, and hence capW 1,q (A) > 0 for all q < p/p0, see Theorem 13.1.

One such example is obtained by letting w(z) = dist(z, A)p(p0−1)/p0 , where A ⊂ � is
an unbounded self-similar Cantor set with dimH A = 2− p/p0. In higher dimensions
similar examples can be obtained with A being an unbounded self-similar Cantor set

in some hyperplane.

The theorem is not sharp for all weights. Consider for instance a power weight

w(z) = |z|β, β > 0, an Ap weight for p > 1 + 1
2β, and let K be a compact set. Since

w and 1 are comparable away from the origin we see that if capW 1,p
w

(K) = 0, then
capW 1,p(K \ {0}) = 0, which is stronger than the theorem above.

Lemma 10.11. Let 1 < p < ∞ and let w be an Ap weight. Then there is a

constant C > 0 such that

C‖∇ϕ‖Lp
w

6 ‖∂ϕ‖Lp
w

6 1√
2
‖∇ϕ‖Lp

w
for all ϕ ∈ C

∞
0 ( � ).

Remark. Here, as usual, ∂1 and ∂2 denote the partial derivative operators with

respect to the real and imaginary variables, respectively, and ∂ = 1
2 (∂1 + i∂2).

�	��
�
�

. The second inequality follows directly from |∂ϕ(z)| 6 |∇ϕ(z)|/

√
2 and

therefore holds much more generally.

Let f̂(ζ) :=
∫ �

f(z)e−i Re zζ dm(z) denote the Fourier transform of f . Let also

ζ = ξ + iη. Then ∂̂1ϕ(ζ) = iξϕ̂(ζ) and ∂̂2ϕ(ζ) = iηϕ̂(ζ). It follows that

2
ξ2 − iξη
|ζ|2 ∂̂ϕ(ζ) =

ξ2 − iξη
|ζ|2 i(ξ + iη)ϕ̂(ζ) = iξϕ̂(ζ) = ∂̂1ϕ(ζ)

and similarly

2
ξη − iη2

|ζ|2 ∂̂ϕ(ζ) =
ξη − iη2

|ζ|2 i(ξ + iη)ϕ̂(ζ) = iηϕ̂(ζ) = ∂̂2ϕ(ζ).

The Riesz transforms are defined by their Fourier transforms,

R̂1ϕ(ζ) = −i
ξ

|ζ| ϕ̂(ζ) and R̂2ϕ(ζ) = −i
η

|ζ| ϕ̂(ζ).

So we get

∂1ϕ = −2(R2
1 − iR1R2)∂ϕ and ∂2ϕ = −2(R1R2 − iR2

2)∂ϕ.
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The crucial point now is that since w is an Ap weight, the Riesz transforms are

bounded operators on Lp
w( � ), see Theorem IV.3.1 in García-Cuerva-Rubio de Fran-

cia [13]. (In fact, this is only true for Ap weights, see Theorem IV.3.7 in [13].) Thus
there exists a constant C ′, independent of ϕ, such that

‖∂1ϕ‖Lp
w

6 C ′‖∂ϕ‖Lp
w
and ‖∂2ϕ‖Lp

w
6 C ′‖∂ϕ‖Lp

w
.

Hence there exists C > 0 such that

C‖∇ϕ‖Lp
w

6 ‖∂ϕ‖Lp
w
for all ϕ ∈ C

∞
0 ( � ).

�

The following corollary may be of independent interest, although we do not need it.

Corollary 10.12. Let 1 < p < ∞ and let w be a local Ap weight. Let Ω be a
bounded domain. Then there exists a constant C > 0 such that

C‖ϕ‖W 1,p
w

6 ‖∂ϕ‖Lp
w

6 1√
2
‖ϕ‖W 1,p

w
for all ϕ ∈

◦
W 1,p

w (Ω).

�	��
�
�

. The Poincaré inequality, see Heinonen-Kilpeläinen-Martio [18], Sec-

tion 1.4, says that there exists a constant C ′, independent of ϕ, such that

‖ϕ‖Lp
w

6 C ′‖∇ϕ‖Lp
w
for all ϕ ∈ C

∞
0 (Ω).

Combining this with Lemma 10.11 we see that there is a constant C such that

C‖ϕ‖W 1,p
w

6 ‖∂ϕ‖Lp
w

6 1√
2
‖ϕ‖W 1,p

w

for all ϕ ∈ C∞
0 (Ω), and hence by continuity for all ϕ ∈

◦
W 1,p

w (Ω). �

209



11. Criteria for nz,µ

Proposition 11.1. Let dµ = w dm and assume that there exists ε > 0 such that
w−ε is integrable in a neighbourhood of z0 6= ∞. Then nz0,w < 2(1 + 1/ε)/p.

If there exists C > 0 such that w > C a.e. in a neighbourhood of z0, then nz0,w <

2/p.

In particular, if w is a local Aq weight, 1 6 q < ∞, then nz0,w < 2q/p.

Remarks. Recall that nz0,w = 0 if and only if {z0} is removable for Bp
w.

A direct consequence is that if q0 = inf{q : w is an Aq weight}, then nz0,w 6
b2q0/pc. If w is a local A1 weight we can improve this slightly obtaining nz0,w 6
d2/pe − 1.
�	��
�
�


. Without loss of generality we can assume that z0 = 0 and that w−ε ∈
L1( � ). Let q = 1 + 1/ε, 1/q + 1/q′ = 1, w′ = w1/(1−q) = w−ε, f ∈ A p

w( � \ {0}) and
z ∈ D

(
0, 1

2

)
. Since |f |p/q is subharmonic we have

|f(z)|p/q 6 1
π|z|2

∫

D(z,|z|)
|f(ζ)|p/q dm(ζ)

=
1

π|z|2
∫

D(z,|z|)
|f(ζ)|p/qw(ζ)1/qw′(ζ)1/q′ dm(ζ)

6 1
π|z|2 ‖f‖

p/q

Lp
w(D(z,|z|))

( ∫

D(z,|z|)
w′ dm

)1/q′

.

Both the middle and the last factors on the right-hand side tend to 0, as z → 0. Hence
f cannot have an essential singularity or a pole of order > 2q/p = 2(1 + 1/ε)/p at
the origin. This concludes the first part.

For the second part, we can assume without loss of generality that z0 = 0 and
that w(z) > C for z ∈ � . Since |f |p is subharmonic we have

|f(z)|p 6 1
π|z|2

∫

D(z,|z|)
|f(ζ)|p dm(ζ) =

1
π|z|2

∫

D(z,|z|)
|f(ζ)|pw(ζ)

1
w(ζ)

dm(ζ)

6 1
Cπ|z|2 ‖f‖

p
Lp

w(D(z,|z|)).

The last factor in the right-hand side tends to 0, as z → 0. Hence f cannot have an
essential singularity or a pole of order > 2/p at the origin.

The last part follows directly from the A1 condition (10.2), if q = 1, and from
the Aq condition (10.1) which, in particular, requires w1/(1−q) to be integrable, if

1 < q < ∞. �
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Proposition 11.2. Let µ be a doubling measure with doubling constant C. Then
n∞,µ 6 b(log2 C)/pc+ 1.
�	��
�
�


. Let n = b(log2 C)/pc+ 1 and f(z) = z−n. Then

∫
�
\ � |f |

p dµ 6
∞∑

j=1

2(1−j)npµ(D
(
0, 2j

)
) 6 2npµ( � )

∞∑

j=1

(2−npC)j < ∞,

since 2−npC < 1. �

Lemma 11.3. If µ is a doubling measure with doubling constant C, then

µ(D (z, 2r)) > (1 + C−3)µ(D (z, r)) for all z ∈ � and r > 0.

�	��
�
�

. Without loss of generality we can assume that z = 0 and r = 1. We

find that

µ(D (0, 2)) > µ( � ) + µ
(
D

(
3
2 , 1

2

))
> µ( � ) + C−3µ

(
D

(
3
2 , 4

))
> µ( � ) + C−3µ( � ).

�

Proposition 11.4. Let w be an Aq weight, 1 < q < ∞. Then 1 6 n∞,w 6 d2q/pe.

Remark. A direct consequence is that if q0 = inf{q : w is an Aq weight}, then
1 6 n∞,w 6 b2q0/pc+1. As we will see in Proposition 11.5 this is best possible (also
when w is an A1 weight).

�	��
�
�

. Let 1/q + 1/q′ = 1 and w′ = w1/(1−q). Since w′ is an Aq′ weight it is

doubling. Let C ′ be the doubling constant of w′, and also dµ′ = w′ dm.

Consider first f ∈ A p
w( � ) and let D = D (z, r). Since |f |p/q is subharmonic we

have, using the Aq condition (10.1) with Aq constant C,

|f(z)|p/q 6 1
m(D)

∫

D

|f(ζ)|p/q dm(ζ) =
1

m(D)

∫

D

|f(ζ)|p/qw(ζ)1/qw′(ζ)1/q′ dm(ζ)

6
‖f‖p/q

Lp
w(D)

m(D)

( ∫

D

w′ dm

)1/q′

6 C1/q‖f‖p/q

Lp
w(

�
)

(∫

D(z,r)

w dm

)−1/q

→ 0,

as r → ∞, since it is a consequence of Lemma 11.3 that
∫

D(z,r) w dm → ∞, as
r → ∞. Hence f ≡ 0, and since this also shows that 1 /∈ A p

w( � \ � ), we see that
n∞,w > 1.
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From the Aq condition (10.1) and Lemma 11.3, it follows that

µ(D
(
0, 2j

)
) <

Cm(D
(
0, 2j

)
)q

µ′(D (0, 2j))q−1
<

Cπq

µ′( � )q−1

( 22q

(1 + (C ′)−3)q−1

)j

.

Let f(z) = z−n, n = d2q/pe. Then

∫
�
\ � |f |

p dµ 6
∞∑

j=1

2(1−j)npµ(D
(
0, 2j

)
) 6 C2npπq

µ′( � )q−1

∞∑

j=1

( 22q−np

(1 + (C ′)−3)q−1

)j

< ∞.

Hence n∞,w 6 d2q/pe. �

Proposition 11.5. Let w(z) = |z|β, β > −2. Then n0,w = d(2 + β)/pe − 1,
nz,w = d2/pe − 1, z 6= 0, z 6= ∞, and n∞,w = b(2 + β)/pc+ 1.

Remarks. The condition β > −2 is needed for w dm to be a Radon measure.

It is well known, and easy to check, that w is an Aq weight exactly when q > 1+ 1
2β,

β > 0, and q > 1, −2 < β 6 0. This shows that the upper bound on n∞,w is the best
possible in Proposition 11.4, since for β > 0 we have n∞,w equal to the lowest upper

bound obtainable from Proposition 11.4, when varying q. This also shows that n0,w

equals the lowest upper bound obtainable from Proposition 11.1, when varying q,

when β > 0, unless (2 + β)/p is an integer, in which case n0,w is one less.

�	��
�
�

. Propositions 11.1 and 11.4 rule out essential singularities and it is easy

to check which negative integer powers belong to A p
w(D (z, 1) \ {z}) and A p

w( � \ � ).
�

12. Removability for Muckenhoupt Ap weights

Lemma 12.1. Let 1 < p < ∞ and dµ = w dm. Let also w′ = w1/(1−p) and

1/p + 1/p′ = 1. Let K ⊂ Ω ⊂ � be compact. Assume that w′ ∈ L1
loc(Ω). Then the

annihilator of A p
w(Ω \ K) ⊂ Lp

w(Ω) is {∂ϕ : ϕ ∈ C∞
0 (Ω \K)}, where the closure is

taken in the Lp′

w′(Ω) norm.
If p = 1 and w−1 ∈ L∞loc(Ω), then the same is true with the closure taken in the

norm g 7→ ‖g/w‖L∞(Ω).

Remarks. In this lemma we do not require Ω \K to be connected, A p
w(Ω \K)

being defined in the obvious way.

In the unweighted case, with 1 < p < ∞, this is Lemma 1 in Havin-Maz’ya [15].
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�	��
�
�

. First we need some clarification. We will say that an equivalence class

[f ] in Lp
w(Ω) is in A p

w(Ω \K) if there is a representative f̃ ∈ [f ] which is analytic in
Ω \K.

If m(K) = 0, then each function in A p
w(Ω \K) corresponds to just one equivalence

class in Lp
w(Ω). On the other hand, if m(K) > 0, then there are infinitely many

equivalence classes in Lp
w(Ω) corresponding to each function in A p

w(Ω \K).
We want to find the dual space Lp

w(Ω)∗ with respect to the pairing 〈f, g〉 :=∫
Ω fg dm. Since Lp

w(Ω)∗ = Lp′
w (Ω) with pairing

∫
Ω fgw dm = 〈f, g̃〉, where g̃ = gw ∈

Lp′

w′(Ω) if and only if g ∈ Lp′
w (Ω) (with equal norms), we find that Lp

w(Ω)∗ = Lp′

w′(Ω).
For p = 1 we see that L1

w(Ω)∗ = {g : gw−1 ∈ L∞(Ω)} with ‖g‖L1
w(Ω)∗ = ‖g/w‖L∞(Ω).

Denote the annihilator of A p
w(Ω \K) ⊂ Lp

w(Ω) by A p
w (Ω \K)⊥. By definition

A
p
w(Ω \K)⊥ = {g ∈ Lp

w(Ω)∗ : 〈f, g〉 = 0 for all f ∈ A
p
w(Ω \K)}.

If f ∈ Lp
w(Ω) and D ⊂ Ω is a disc then

∫

D

|f | dm =
∫

D

|f |w1/p(w′)1/p′ dm 6
( ∫

D

|f |pw dm

)1/p( ∫

D

w′ dm

)1/p′

< ∞.

(For p = 1 the last integral should be understood as ‖w−1‖L∞(D).) Thus Lp
w(Ω) ⊂

L1
loc(Ω) ⊂ D ′( � ) , where D ′( � ) is the set of all distributions on � , and we consider
functions in L1

loc(Ω) to be 0 on � \ Ω.
Using Weyl’s lemma (see, e.g., Hörmander [19], Theorem 4.4.1) we find that f ∈

Lp
w(Ω) is analytic in Ω\K if and only if ∂f = 0 in Ω\K in the sense of distributions,

i.e.

〈f, ∂ϕ〉 =
∫

Ω

f∂ϕ dm = 0 for all ϕ ∈ C
∞
0 (Ω \K).

Therefore

{∂ϕ : ϕ ∈ C
∞
0 (Ω \K)} ⊂ A

p
w (Ω \K)⊥.

Moreover, since Weyl’s lemma only requires these functionals to be 0, and
A p

w(Ω \K)⊥ is closed, Hahn-Banach’s theorem shows that

A
p
w(Ω \K)⊥ = {∂ϕ : ϕ ∈ C∞

0 (Ω \K)},

where the closure is taken in the Lp′

w′ norm. �
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Theorem 12.2. Let 1 < p < ∞ and dµ = w dm. Let also w′ = w1/(1−p) and

1/p + 1/p′ = 1. Let K ⊂ Ω ⊂ � be compact. Assume that w′ ∈ L1
loc(Ω). Then

capA p
w
(K, Ω) =

1
π

inf
{
‖∂ϕ‖

Lp′
w′ (Ω\K)

: ϕ ∈ C
∞
0 (Ω),

ϕ = 1 in an open set containing K
}
.

If w−1 ∈ L∞loc(Ω), then

capA 1
w
(K, Ω) =

1
π

inf
{∥∥∥∂ϕ

w

∥∥∥
L∞(Ω\K)

: ϕ ∈ C
∞
0 (Ω),

ϕ = 1 in an open set containing K
}
.

Remarks. As in Lemma 12.1 we do not require Ω \K to be connected.
In the unweighted case, with 1 < p < ∞, this is part of Proposition 11.1.10 in

Adams-Hedberg [1], which comes from the proof of Lemma 1 in Hedberg [16].
�	��
�
�


. Let h ∈ C∞
0 (Ω) be equal to one in an open set containing K, and let γ

be a smooth cycle in {z : h(z) = 1} \K with winding number windγ(z) = 1 if z ∈ K

and windγ(z) = 0 if z /∈ Ω. Let f ∈ A p
w(Ω \K). Then by Stokes’ theorem we have

1
2πi

∫

γ

f(z) dz =
1

2πi

∫

γ

f(z)h(z) dz = − 1
2πi

∫

Ω\K
∂(fh)(z) dz ∧ dz

= −1
π

∫

Ω\K
f(z)∂h(z) dm(z).

Hence the functional f 7→ (1/2πi)
∫

γ f(z) dz is represented by the function −(1/π)∂h.
We obtain, using the Hahn-Banach theorem (cf. Exercise 4.19 in Rudin [29]) and

Lemma 12.1,

capA
p
w
(K, Ω) =

1
π

sup{|〈f, ∂h〉| : f ∈ A
p
w(Ω \K) and ‖f‖Lp

w(Ω\K) 6 1}

=
1
π

inf
{
‖∂h + g‖

Lp′
w′(Ω\K)

: g ∈ A
p
w(Ω \K)⊥

}

=
1
π

inf
{
‖∂(h + ϕ)‖

Lp′
w′ (Ω\K)

: ϕ ∈ C
∞
0 (Ω \K)

}

=
1
π

inf
{
‖∂ϕ‖

Lp′
w′ (Ω\K)

: ϕ ∈ C
∞
0 (Ω),

ϕ = 1 in an open set containing K
}
.

This concludes the proof of the first part. The proof of the last part is similar. �
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Corollary 12.3. Let 1 < p < ∞ and dµ = w dm. Let also w′ = w1/(1−p) and

1/p + 1/p′ = 1. Let A ⊂ Ω ⊂ � . Assume that w′ ∈ L1
loc(Ω). Then

capA
p
w
(A, Ω) 6 1

π
√

2
capp′,w′(A, Ω)1/p′ .

�	��
�
�

. Assume first A to be compact, since |∂ϕ| 6 |∇ϕ|/

√
2 the inequality

directly follows from the previous theorem. For general A the inequality follows after

taking suprema on both sides over K ⊂ A compact. �

Theorem 12.4. Let 1 < p < ∞ and let w be an Ap weight. Let also w′ = w1/(1−p)

and 1/p + 1/p′ = 1. Then there exists a constant C such that if A ⊂ Ω ⊂ � , then
1
C

capp′,w′(A, Ω)1/p′ 6 capA
p
w
(A, Ω) 6 1

π
√

2
capp′,w′(A, Ω)1/p′ .

Remark. An immediate consequence of this together with Theorem 7.7 is
that if Ω satisfies condition (2.1), then A is removable for Bp

w if and only if
capp′,w′(A, Ω) = 0.
�	��
�
�


. Let K ⊂ A be compact. By Theorem 12.2 together with Lemma 10.11
we see that there exists C such that

1
C

capp′,w′(K, Ω)1/p′ 6 capA
p
w
(K, Ω) 6 1

π
√

2
capp′,w′(K, Ω)1/p′ .

In fact we can choose C = πC ′, where C ′ is the constant given by Lemma 10.11 for
p′ and w′, so C is independent of K and Ω.
Taking suprema over compact K ⊂ A yields the desired inequalities for A. �

Theorem 12.5. Let 1 < p < ∞ and let w be a local Ap weight. Let also

w′ = w1/(1−p) and 1/p+1/p′ = 1. Then capA
p
w
(A) = 0 if and only if cap

W 1,p′
w′

(A) = 0.

Remark. Recall that Theorem 10.10 gives an upper bound on dimH A when
cap

W 1,p′
w′

(A) = 0.
�	��
�
�


. Let first K ⊂ A be compact, and let Ω ⊃ K be a bounded domain.

Let v be an Ap weight that coincides with w on Ω, and let v′ = v1/(1−p). Obviously
capp′,w′(K, Ω) = capp′,v′(K, Ω) and capA

p
v
(K, Ω) = capA

p
w
(K, Ω). By Theorems 7.7

and 12.4, capA
p
w
(K) = 0 if and only if capp′,w′(K, Ω) = 0, which is equivalent to

cap
W 1,p′

w′
(K) = 0, see Remarks 10.9.

The full result follows directly by taking suprema over K ⊂ A compact. �

A consequence of Theorems 9.5 and 12.5 and Propositions 11.1 and 11.4 is the

following result.
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Theorem 12.6. Let 1 < p < ∞ and let w be an Ap weight. Let also w′ = w1/(1−p)

and 1/p + 1/p′ = 1. Then A is removable for A p
w(Ω \A) if and only if either

cap
W 1,p′

w′
(A) = 0, or there is z such that cap

W 1,p′
w′

(( � \ (Ω \ A)) \ {z}) = 0 and
∫ �
\ � |z|−pw(z) dm(z) = ∞.

Remark. Recall that weak and strong removability are the same in this case,
by Proposition 8.1.

�	��
�
�

. Proposition 11.4 shows that n∞,w = 1 or n∞,w = 2, and thus n∞,w = 2

is equivalent to
∫ �
\ � |z|−pw(z) dm(z) = ∞. Let A2 be as in Theorem 9.5. We may

assume that if z ∈ A2, then nz,w > 1, see Remarks 9.7. If n∞,w = 1, then we have
A2 = ∅, and hence the result follows from Theorems 9.5 and 12.5.
On the other hand, if n∞,w = 2, then cardA2 6 1. The necessity follows directly

from Theorems 9.5 and 12.5. As for the sufficiency, let A2 = {z}. Proposition 11.1
shows that nz,w 6 1, and hence removability follows from Theorems 9.5 and 12.5,
regardless of whether nz,w = 0 or nz,w = 1. �

Corollary 12.7. Let 1 < p < ∞ and let w be an Ap weight. If A is removable

for A p
w(Ω \A), then dimH A < 1.

It is an open problem if there exists a set A with dimH A = 1, weakly removable
for Bp

µ for some Radon measure µ and some p < ∞.
�	��
�
�


. Let w′ = w1/(1−p) and 1/p + 1/p′ = 1. Let also p′0 = inf{q :
w′ is an Aq weight}. Recall that the open-end property says that p′0 < p′, see Re-
marks 10.3. Then by the above theorem, there is z such that cap

W 1,p′
w′

(A \ {z}) = 0.

By Theorem 10.10 and the open-end property

dimH A = dimH A \ {z} 6 2− p′

p′0
< 1.

�

13. The unweighted case

For the unweighted Sobolev capacity we want to recall the following well-known
theorem.
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Theorem 13.1. Let 1 < p < ∞, Λd denote the d-dimensional Hausdorff measure

and caplog denote the logarithmic capacity. Then, the following are true:

dimH A > 2− p =⇒ capW 1,p(A) > 0, 1 < p < 2;

Λ2−p(A) < ∞ =⇒ capW 1,p(A) = 0, 1 < p < 2;

caplog(A) = 0 ⇐⇒ capW 1,2(A) = 0;

A = ∅ ⇐⇒ capW 1,p(A) = 0, p > 2.

Theorem 13.2. Let caplog denote the logarithmic capacity and γ denote the

analytic capacity. Then A is removable for Bp if and only if

A = ∅, 0 < p < 2,

caplog(A) = 0, p = 2,

capW 1,p′ (A) = 0, 2 6 p < ∞ and 1/p + 1/p′ = 1,

γ(A) = 0, p = ∞.

Remark. Recall that weak and strong removability are the same in the un-
weighted case, by Proposition 8.1. We assume that γ(A) = sup{γ(K) : K ⊂
A is compact}.
�	��
�
�


. For 0 < p < 2 this follows directly from the fact that z−1 ∈ A p( � \{0}).
For 1 < p < ∞ it follows directly using Theorems 7.8, 12.5 and 13.1.
For p = ∞ we know that A ∞(Ω) = B∞(Ω) = H∞(Ω) for all domains, and that

γ characterizes the removable singularities for H∞, see e.g.Garnett [14]. �

Theorem 13.3. Let caplog denote the logarithmic capacity and γ denote the

analytic capacity. Then A is removable for A p(Ω \A) if and only if

card( � \ (Ω \A)) 6 1, 0 < p < 2 and p 6= 1,

card( � \ (Ω \A)) 6 2, p = 1,

caplog(A) = 0, p = 2,

capW 1,p′ (A) = 0, 2 6 p < ∞ and 1/p + 1/p′ = 1,

γ(A) = 0, p = ∞.

This result is not new, see Carleson [10], Theorem 6.1, Hedberg [17] and Adams-
Hedberg [1], Section 11.1.
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�	��
�
�

. For 2 < p 6 ∞ condition (2.1) holds for all domains, so A is removable

for A p(Ω \ A) if and only if A is removable for Bp, and Theorem 13.2 yields the
result.

For p = 2 we have nz = 0 for z 6= ∞ by Proposition 11.1. So if � \(Ω\A) = A1∪A2,
where A1 is removable for B2 and A2 = {z1, . . . , zm}, then A is removable for B2,
by Theorem 8.2. Hence Theorem 9.5 shows that A is removable for A 2(Ω \A) if
and only if A is removable for B2, and Theorem 13.2 yields the result.

For 0 < p < 2 only the empty set is removable for Bp, by Theorem 13.2. By
Theorem 9.5 we see that A is removable for A p(Ω \A) if and only if � \ (Ω \A) =

A2 = {z1, . . . , zm} and
m∑

k=1

nzk
< n∞. By Proposition 11.5, nzk

= d2/pe−1, zk 6= ∞,
and n∞ = b2/pc+ 1. In particular, nz1 < 2/p < n∞, and hence A is removable for

A p(Ω \A) if cardA2 6 1. Furthermore, nz1+nz2−n∞ = d2/pe+(d2/pe−b2/pc)−3 <

0 if and only if d2/pe = 2 and 2/p ∈ � , i.e. p = 1. So, if p 6= 1 and cardA2 = 2, then
A is not removable for A p(Ω \A).
Finally, for p = 1 we have nz = 1 for z 6= ∞ and n∞ = 3. Hence A is removable

for A 1(Ω \A) if and only if cardA2 6 2. �

Proposition 13.4. Let dµ = w dm and assume that for every z ∈ A there is a

neighbourhood of z in which w is bounded from above and below (away from zero).

Then A is removable for Bp
w if and only if A is removable for Bp.

Remarks. Recall that weak and strong removability are the same in this case,
by Proposition 8.1.

If Ω satisfies condition (2.1), a direct consequence is that A is removable for

A p
w(Ω \A) if and only if A is removable for A p(Ω \A).
Much of the theory of weighted Bergman spaces has been developed with weights

locally bounded from above and below, and the problem of removable singularities
has the same solution as in the unweighted case.
�	��
�
�


. Assume that A is removable for Bp
w. Let z ∈ A be arbitrary, and let

Ωz ⊂ Ω be a domain in which w is bounded from above and below. Then Ωz ∩ A is
removable for Bp

w. Thus B
p(Ωz\A) = Bp

w(Ωz\A) ⊂ Hol(Ωz), and capBp(A∩Ωz) = 0.
It follows from Proposition 4.14 that A is removable for Bp.

The proof of the other direction is similar. �

In this section we also want to observe that the spaces A p( · ) are not conformally
invariant (not even for bounded domains). However, despite this, removability is
conformally invariant for Bp. For 1 < p < ∞ this can also be concluded from the
conformal invariance of capp′ , see, e.g., Väisälä [31], together with Theorem 12.4,
but as we shall see below it is much easier to prove than that.
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Example 13.5. Let 0 < θ < 2π, Dθ = {z ∈ � : 0 < arg z < θ} and fα(z) =
z−α = e−α log z , where we choose any branch of log containing D2 � . Then fα ∈
A p(Dθ) if and only if

∞ >

∫

Dθ

|z|−αp dm(z) = θ

∫ 1

0

r1−αp dr,

i.e. if and only if α < 2/p.

Let now 0 < θ < π and ϕ : Dθ → D2θ, ϕ(z) = z2. As already observed fα ∈
A p(D2θ) if and only if α < 2/p. However, fα ◦ ϕ(z) = z−2α, so fα ◦ ϕ ∈ A p(Dθ)
if and only 2α < 2/p, i.e.α < 1/p. The conclusion is that A p is not conformally
invariant for any p, 0 < p < ∞.

Proposition 13.6. Let Ω ⊂ � be a domain and let ϕ : Ω → � be a conformal
mapping. Then A is removable for Bp if and only if ϕ(A) is removable for Bp.

�	��
�
�

. Since ϕ−1 is also a conformal mapping it is enough to show that if A is

removable for Bp, then so is ϕ(A). Assume therefore that A is removable for Bp.

Let K ′ ⊂ ϕ(A) be compact. Since ϕ is conformal K := ϕ−1(K ′) is also compact.
We can therefore find a bounded domain Ω′ with K ⊂ Ω′ b Ω. As ϕ′ is continuous
and non-zero on Ω′ there exists C > 0 such that |ϕ′(z)| > C for all z ∈ Ω′.
Now ϕ gives a one-to-one correspondence between Hol(Ω′\K) and Hol(ϕ(Ω′)\K ′).

Let f ◦ ϕ−1 be an arbitrary function in A p(ϕ(Ω′) \K ′) = A p(ϕ(Ω′ \K)), then

∞ >

∫

ϕ(Ω′\K)

|f ◦ϕ−1(w)|p dm(w) =
∫

Ω′\K
|f(z)|p|ϕ′(z)|2 dm(z) > C2‖f‖Lp(Ω′\K).

Thus f ∈ A p(Ω′ \ K) ⊂ Hol(Ω′), and hence f ◦ ϕ−1 ∈ Hol(ϕ(Ω′)). Since f was
arbitrary this shows that K ′ is removable for Bp. We conclude from Proposition 4.7

that ϕ(A) is removable for Bp. �

14. Counterexamples

In the following example we will show what can happen when weak and strong
removability do not coincide. Before giving the example we give a lemma that will
be useful in this section.
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Lemma 14.1. Let 0 < p < ∞. Let dµ = w dm+dσ, where w(z) = |Im z|p−1w̃(z)
and for every a ∈ � \ {0}, w̃ is bounded from above and below (away from zero) in a
neighbourhood of a. (The measure σ is an arbitrary positive Radon measure.) Then

{a}, a ∈ � \ {0}, is removable for Bp
µ. Moreover, if E ⊂ � \ {0} is a countable set

with no finite non-zero limit point, then E is weakly removable for Bp
µ.

�	��
�
�

. Proposition 11.1 and a simple calculation show that na,w = 0, a ∈ � \

{0}, and hence {a} is removable for Bp
w. Since Bp

µ(Ω\{a}) ⊂ Bp
w(Ω\{a}) ⊂ Hol(Ω),

it follows directly that {a} is removable for Bp
µ. Proposition 4.6 then shows that E

is weakly removable for Bp
µ. �

Example 14.2. Let 0 < p < ∞, w(z) = min{|Im z|p−1|Re z|p−1, |z|−3} and

dµ = w dm +
∞∑

n=0

1
2np

(δ2−n + δ−2−n).

Let E1 = {2−n : n ∈ � }, E2 = −E1, K1 = E1∪{0},K2 = E2∪{0} andK = K1∪K2.

Lemma 14.1 shows that the sets E1, E2 and E1 ∪E2 all are weakly removable for
Bp

µ. However, z
−1 ∈ Bp

w( � \ {0}), so {0} is not removable for Bp
w.

Let f ∈ Bp
µ( � \K)⊂ Hol( � \{0}). Since ‖f‖Lp

µ( � \K) = ‖f‖Lp
w( � \K) = ‖f‖Lp

w( � \{0}),
we can use Proposition 11.1 to show that Bp

µ( � \K) = {b + cz−1 : b, c ∈ � }. It is
now easy to see that z−1 /∈ Bp

µ( � \K1) and z−1 /∈ Bp
µ( � \K2), so that Bp

µ( � \K1) =
Bp

µ( � \K2) = Bp
µ( � \ {0}) = Bp

µ( � ) = {f : f is constant}. This shows that none of
E1, E2 and E1 ∪ E2 is strongly removable for Bp

µ( � \K), despite all of them being
weakly removable for Bp

µ.
This also shows that K1 and K2 are both removable for Bp

µ, but K = K1 ∪ K2

is not removable for Bp
µ, cf. Proposition 4.10 and Theorem 8.2. Since E1 ⊂ K1, we

also see that it is not possible to replace weak removability by strong removability

in Proposition 4.8. Furthermore, E1 is strongly removable for Bp
µ( � \K1), so strong

removability is dependent on the domain, cf. Remark 4.1.

Finally, E1 is weakly removable for Bp
µ( � \ K) and K2 is weakly removable for

Bp
µ( � \K2), but E1 ∪K2 = K is not weakly removable for Bp

µ( � \K), which shows
that strong removability cannot be replaced by weak removability in Proposition 3.3
for Bp

µ.

Since µ( � ) < ∞ we have A p
µ (Ω) = Bp

µ(Ω) = Bp
µ,fin(Ω) for all domains Ω ⊂ � .

Hence all of the above discussion also applies to A p
µ and Bp

µ,fin. Since Bp
µ,bdd(Ω) =

Bp
µ(Ω) when Ω is bounded or ∞ ∈ Ω, the above discussion also applies to Bp

µ,bdd.

We next want to show that it is possible for some of the above properties to fail,

without all of them failing. It follows, however, from Theorem 8.2 that if any of these
properties fail, then weak removability is different from strong removability.
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Example 14.3. Let 0 < p < ∞, w(z) = min{|Im z|p−1|Re z|2p−1, |z|−3} and

dµ = w dm +
∞∑

n=0

1
22np

(δ2−n + δ−2−n).

Let E1 = {2−n : n ∈ � }, E2 = −E1, K1 = E1∪{0},K2 = E2∪{0} andK = K1∪K2.
Lemma 14.1 shows that the sets E1, E2 and E1 ∪ E2 all are weakly removable for

Bp
µ.

Let f ∈ Bp
µ( � \K)⊂ Hol( � \{0}). Since ‖f‖Lp

µ( � \K) = ‖f‖Lp
w( � \K) = ‖f‖Lp

w( � \{0}),
we can use Proposition 11.1 to show that Bp

µ( � \K) = {b+cz−1+ dz−2 : b, c, d ∈ � }.
After that it is easy to see that Bp

µ( � \K1) = Bp
µ( � \K2) = Bp

µ( � \ {0}) = {b+ cz−1 :
b, c ∈ � }. This shows that none of E1, E2 and E1 ∪ E2 is strongly removable

for Bp
µ( � \ K), despite all of them being weakly removable for Bp

µ. Moreover, E1

is strongly removable for Bp
µ( � \ K1), so strong removability is dependent on the

domain.

Let now K ′ ⊂ � be a totally disconnected compact set. If 0 ∈ K ′, then z−1 ∈
Bp

µ( � \K ′), so K ′ is not removable for Bp
µ. On the other hand, if 0 /∈ K ′, then we can

find a bounded domain Ω ⊃ K ′, with dist(0, Ω) > 0. It follows that Bp
µ(Ω \K ′) =

Bp
w(Ω\K ′) and similarly Bp

µ(Ω) = Bp
w(Ω). Hence K ′ is removable for Bp

µ if and only
if K ′ is removable for Bp

w and 0 /∈ K ′.

Let now K ′
1, K

′
2 ⊂ � be compact sets removable for Bp

µ, and hence totally dis-

connected sets removable for Bp
w and not containing 0. It follows from Theorem 8.2

that K ′
1 ∪K ′

2 is removable for Bp
w, and hence for Bp

µ, by the discussion above.

As in the previous example the above discussion also applies to A p
µ , Bp

µ,fin and
Bp

µ,bdd.

In the next two examples we will look at the differences between strong remov-
ability for Bp

µ, B
p
µ,fin, B

p
µ,bdd and A p

µ .

Example 14.4. Let 0 < p < ∞, w(z) = min{1, |z|−p−3}min{1, |Im z|p−1} and

dµ = w dm +
∞∑

k=1

akδk, where ak =





1/kp, k ≡ 1 (mod 2),

1, k ≡ 2 (mod 4),

kp, k ≡ 0 (mod 4).

Lemma 14.1 shows that � is weakly removable for Bp
µ, B

p
µ,fin, B

p
µ,bdd and A p

µ ( � \ � )
({0} is removable!).
Furthermore, Bp

µ,bdd( � \ � ) ⊂ Hol( � ) = Bp
µ,bdd( � ), since any function in Hol( � )

is bounded on bounded sets. Hence � is strongly removable for Bp
µ,bdd( � \ � ). On

the other hand, z ∈ Bp
µ,fin( � \ � ) = Bp

µ( � \ � ) = A p
µ ( � \ � ), but z /∈ Bp

µ,fin( � ),
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z /∈ Bp
µ( � ) and z /∈ A p

µ ( � ). Hence � is not strongly removable for Bp
µ,fin( � \ � ),

Bp
µ( � \ � ) nor for A p

µ ( � \ � ).
Let next f ∈ Bp

µ,fin( � \ � ) = Bp
µ( � \ � ) = A p

µ ( � \ � ) ⊂ Hol( � ), n ∈ � \ {0},
|z0| = n + 1

2 , D = D
(
z0,

1
2

)
, q = max{2, 2p} and 1/q + 1/q′ = 1. Using the

subharmonicity of |f |p/q we find that

|f(z0)|p/q 6 4
π

∫

D

|f(z)|p/q dm(z)

=
4
π

∫

D

|f(z)|p/q |Im z|(p−1)/q |Im z|(1−p)/q dm(z)

6 4
π

( ∫

D

|f(z)|p|Im z|p−1 dm(z)
)1/q( ∫

D

|Im z|(1−p)q′/q dm(z)
)1/q′

6 4
π
|2z0|(p+3)/q‖f‖1/q

Lp
µ(

�
\ � )

( ∫

D

|Im z|(1−p)q′/q dm(z)
)1/q′

.

The latter integral has a bound independent of z0, which shows that f does not

have an essential singularity at ∞. Since, µ( � \ 2 � ) < ∞ and z /∈ Bp
µ,fin( � \ 2 � ),

we have that Bp
µ,fin( � \ 2 � ) = Bp

µ( � \ 2 � ) = A p
µ ( � \ 2 � ) = {f : f is constant}.

Moreover, 1 ∈ Bp
µ,fin( � ), but 1 /∈ Bp

µ( � ) = A p
µ ( � ). Hence 2 � is strongly removable

for Bp
µ,fin( � \ 2 � ), but not for Bp

µ( � \ 2 � ), nor for A p
µ ( � \ 2 � ).

Finally, let Ω = � \ � and E = 4 � \ {0}. Lemma 14.1 shows that E is weakly
removable for Bp

µ(Ω \E) = A p
µ (Ω \E). Let f ∈ Bp

µ(Ω \E) = A p
µ (Ω \E), then

f(z) =
∞∑

j=1

ajz
−j , |z| > 1. Since z−1 ∈ Bp

µ(Ω), it follows that f ∈ Bp
µ(Ω), and hence

E is strongly removable for Bp
µ(Ω \E). On the other hand, z−1 ∈ A p

µ (Ω \E), but
z−1 /∈ A p

µ (Ω), so E is not strongly removable for A p
µ (Ω \E).

By Remarks 4.2 we see that strong removability for A p
µ (Ω \E) does not imply

strong removability for any of the spaces Bp
µ(Ω \E), Bp

µ,fin(Ω \E) or Bp
µ,bdd(Ω \E).

In the next example we will show that strong removability for Bp
µ(Ω \E) does not

imply strong removability for Bp
µ,fin(Ω \E).

The author has not been able to determine whether it is true or false that if E is
strongly removable for Bp

µ(Ω \E) (or Bp
µ,fin(Ω \E)), then E is strongly removable

for Bp
µ,bdd(Ω \E). Though, since Bp

µ,bdd( � ) = Hol( � ), a counterexample would have
to be of a little different nature.

Example 14.5. Let 0 < p < ∞, w(z) = min{1, |z|−p−3}min{1, |Im z|p−1} and

dµ = w dm +
∞∑

k=1

δ−k +
1
kp

δk.
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Let also E1 = � \ {0}, E2 = −E1 and E = � \ {0}. Lemma 14.1 shows that E is

weakly removable for Bp
µ( � \E) and Bp

µ,fin( � \E).
Since z ∈ A p

w( � ) and any subset of E2 with µ(E2) < ∞ is bounded, z ∈ Bp
µ,fin( � \

E1). On the other hand, µ( � \E2 ) < ∞ and z /∈ A p
µ ( � \E2 ), so z /∈ Bp

µ,fin( � ), i.e.E1

is not strongly removable for Bp
µ,fin( � \E1).

As in the previous example a function in Bp
µ( � \ E1) ⊂ Hol( � ) does not have an

essential singularity at ∞. Since � \ E1 satisfies condition (2.1), it is easy to see
that 1 /∈ Bp

µ( � \ E1). Hence Bp
µ( � \ E1) = {0}, and E1 is strongly removable for

Bp
µ( � \E1).

In the next example we show that Proposition 6.3 does not hold with Bp
µ,fin re-

placed by Bp
µ.

Example 14.6. Let 0 < p < q < ∞ be such that q/p ∈ � . Let further
w(z) = min{1, |z|−p−3}min{1, |Im z|p−1},

dµ = w dm +
∞∑

j=1

jpδj ,

E = � \ {0} and Ω = � . Lemma 14.1 shows that E is weakly removable for Bp
µ.

We will first show that E is strongly removable for Bp
µ( � \E). Let f ∈ Bp

µ( � \E) ⊂
Hol( � ). Assume that Ω′ ⊂ � is a domain that satisfies (2.1) for p. Then,

∞ >
∑

j∈Ω′∩E

jp 1
jp

=
∑

j∈Ω′∩E

1 = card(Ω′ ∩ E).

It follows that Ω′∩E is compact and hence strongly removable for Bp
µ(Ω′\E). Hence

f ∈ Bp
µ( � \E) ⊂ Bp

µ(Ω′ \E) = Bp
µ(Ω′). It follows that f ∈ Bp

µ( � ), which shows that
E is strongly removable for Bp

µ( � \E).
Furthermore � satisfies condition (2.1) for q. Now ‖1‖Lq

µ(

�
\E) < ∞ = ‖1‖Lq

µ(

�
) .

Hence 1 ∈ Bq
µ( � \ E), but 1 /∈ Bq

µ( � ), from which it follows that E is not strongly
removable for Bq

µ( � \E).

In the next example we show that Proposition 6.3 does not hold when q/p /∈ � .
Example 14.7. Let 0 < p < ∞, 0 < q < ∞ and let q/p = N + ε, where

0 < ε < 1. Let also

dµ = w dm +
∞∑

n=0

γnδ2−n , where w(z) =

{
|Im z|p−1|Re z|Np−1, if |z| < 1,

|z|−3, if |z| > 1,

and where γn will be specified below. Let further E = {2−n : n ∈ � } and K =
E ∪ {0}. Note that A p

µ ( � \K) = Bp
µ( � \K) = Bp

µ,fin( � \K) = Bp
µ,bdd( � \K) and

similarly with p replaced by q or � \K replaced by any domain containing ∞.
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It follows from Lemma 14.1 that E is weakly removable for Bp
µ( � \K). It is

now straightforward to verify that z−m ∈ Br
µ( � \K), m ∈ � , if and only if m <

(N + 1)p/r. Let mr = d(N + 1)p/r − 1e. Thus z−m ∈ Br
µ( � \K) if and only if

m 6 mr.

Now pmp = pdNe = Np and

qmq = q

⌈
(N + 1)p

q
− 1

⌉
= (N + ε)p

⌈
N + 1
N + ε

− 1
⌉

> (N + ε)p > pmp.

Thus we can find γn such that

∞∑

n=1

γn2npmp < ∞,(14.1)

∞∑

n=1

γn2nqmq = ∞.(14.2)

If follows from (14.1) that E is strongly removable for Bp
µ( � \K), whereas from

(14.2) it follows that E is not strongly removable for Bq
µ( � \K).

15. Isometrically removable sets

We also have a related definition of removability.

Definition 15.1. The set A is isometrically removable for A p
µ (Ω \A) if A is

weakly removable for A p
µ (Ω \A) and

(15.1) ‖f‖Lp
µ(Ω\A) = ‖f‖Lp

µ(Ω) for all f ∈ A
p
µ (Ω \A).

Remark. Isometric removability is a stronger requirement than strong remov-
ability.

Proposition 15.2. The set A is isometrically removable for A ∞
µ (Ω \A) if and

only if A is removable for A ∞
µ (Ω \A).

�	��
�
�

. This follows directly from the proof of Theorem 5.2. �
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Proposition 15.3. Assume that 0 < p < ∞. Then a sufficient condition for
A to be isometrically removable for A p

µ (Ω \A) is that µ(A) = 0 and A is weakly

removable for A p
µ (Ω \A). If µ(Ω \A) < ∞, then the condition is also necessary.

If Ω satisfies condition (2.1) and µ(G) = 0 for all sets G ⊂ Ω with dimH G 6 1,
then A is isometrically removable for A p

µ (Ω \A) if and only if A is weakly removable
for A p

µ (Ω \A).
�	��
�
�


. We start with the sufficiency for the first part. Assume that A is weakly

removable for A p
µ (Ω \A) and that µ(A) = 0. Let f ∈ A p

µ (Ω \A) ⊂ Hol(Ω). Since
µ(A) = 0, we have ‖f‖p

Lp
µ(Ω)

= ‖f‖p
Lp

µ(Ω\A)
. Hence A is isometrically removable for

A p
µ (Ω \A).
For the necessity in the first part we assume that µ(Ω \ A) < ∞ and that A is

isometrically removable for A p
µ (Ω \A). Since 1 ∈ A p

µ (Ω \A), we have

µ(Ω \A) = ‖1‖p
Lp

µ(Ω\E)
= ‖1‖p

Lp
µ(Ω)

= µ(Ω) = µ(Ω \A) + µ(A).

As µ(Ω\A) < ∞ we have µ(A) = 0. Moreover, A is weakly removable for A p
µ (Ω \A).

As for the second part assume that A is weakly removable for A p
µ (Ω \A) =

Bp
µ(Ω \A). By Corollary 6.2 we have dimH A 6 1, and hence µ(A) = 0. From
the first part we conclude that A is isometrically removable for A p

µ (Ω \A). The
converse follows directly from Definition 15.1. �
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