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Abstract. In this paper we classify real hypersurfaces with constant totally real bisectional
curvature in a non flat complex space formMm(c), c 6= 0 as those which have constant holo-
morphic sectional curvature given in [6] and [13] or constant totally real sectional curvature
given in [11].
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Introduction

The sectional curvature offers a lot of information concerning the intrinsic geome-
try of a Riemannian manifold. For instance, manifolds which have constant sectional

curvature have been a great source of study. In complex manifolds, the holomorphic
sectional curvature and the totally real sectional curvature arise naturally and it is

known that the constancy of the holomorphic sectional curvature is equivalent to
the constancy of the totally real sectional curvature (See Goldberg and Kobayashi

[4] and Houh [5]).

A complex m-dimensional Kaehler manifold of constant holomorphic sectional
curvature c is called a complex space form, which is denoted by Mm(c). A complete
and simply connected complex space form is either a complex projective space P m(c),
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2871-C04-01 and the third author by grant Proj. No R14-2002-003-01001-0 from the
Korea Research Foundation, Korea 2005.
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a complex Euclidean space
� m or a complex hyperbolic spaceHm(c), provided c > 0,

c = 0 or c < 0, respectively.
Let M be a connected real hypersurface of a non flat complex space form Mm(c),

c 6= 0, N a local unit normal vector field to M . If J is the almost complex structure
of Mm(c), c 6= 0, we will denote ξ = −JN . Given a vector field X tangent to M ,

we will write JX = ϕX + η(X)N , where ϕX and η(X)N are the tangential and the
normal component of JX , respectively. We recall that M is ruled if the distribution

D(p) = {X ∈ TpM : X ⊥ ξ}, p ∈ M , is integrable and its leaves are totally geodesic
Mm−1(c).
If π is a 2-plane included in D(p), where p ∈ M , we will say that π is totally real

if ϕπ is orthogonal to π. We denote by T (π) = T (X, Y ) the sectional curvature of a
totally real 2-plane π = Span{X, Y } included in D(p), p ∈ M , and we will call it the
totally real sectional curvature of π. If T (π) is constant for any π included in D(p)
and any p ∈ M , we will say thatM has a constant totally real sectional curvature. If
the complex dimension of the complex space form is m = 2, there are no totally real
2-planes tangent to M . Therefore, the totally real sectional curvature is meaningful
when m > 3.
On the other hand, Bishop and Goldberg [2] introduced the notion of totally real

bisectional curvatureB(X, Y ) on a Kaehler manifoldM . It is determined by a totally

real plane [X, Y ] and its image [JX, JY ] by the complex structure J , where [X, Y ]
denotes the plane spanned by linearly independent vector fields X and Y . Moreover,

the above two planes [X, Y ] and [JX, JY ] are orthogonal to each other. And it is
known that two orthonormal vectors X and Y span a totally real plane if and only

if X , Y and JY are orthonormal.

Houh [5] showed that an m(> 3)-dimensional Kaehler manifold with a constant
totally real bisectional curvature is congruent to a complex space form of a constant
holomorphic sectional curvature H(X) = c, where H(X) is determined by the holo-
morphic plane [X, JX ]. Also Barros and Romero[1] asserted that for a connected
indefinite Kaehler manifold M with complex dimension m > 3 to be an indefinite
complex space form with a constant holomorphic sectional curvature c a necessary
and sufficient condition is to have a constant totally real bisectional curvature 1

2c at

any point.

Goldberg and Kobayashi [4] introduced the notion of a holomorphic bisectional

curvature H(X, Y ), which is determined by two holomorphic planes [X, JX ] and
[Y, JY ], and asserted that a complex projective space P m(c) is the only compact
Kaehler manifold with a positive holomorphic bisectional curvature H(X, Y ) and a
constant scalar curvature. If we compare the notion of B(X, Y ) with H(X, Y ) and
H(X), the holomorphic bisectional curvature H(X, Y ) turns out to be the totally
real bisectional curvature B(X, Y ) (respectively, the holomorphic sectional curvature
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H(X)) when two holomorphic planes [X, JX ] and [Y, JY ] are orthogonal to each
other (coincide with each other).

Summing up all of the situations mentioned above, the main goal of this paper is
to study whether the relations of constancy among some kinds of curvatures defined
on Kaehler manifolds also hold on real hypersurfaces in non flat complex space forms

Mm(c), c 6= 0. Real hypersurfaces with a constant holomorphic sectional curvature
in Mm(c), c 6= 0, m > 3, have been classified by Kimura in [6] when c > 0, i.e., in
the complex projective space P m(c), and by the authors in [10] and [13] when c < 0,
i.e., in the complex hyperbolic space Hm(c).
Now in this paper we give our results as follows:

Theorem. Let M be a real hypersurface of Mm(c), c 6= 0, m > 3, on which the
totally real bisectional curvature B is constant. Then B = 1

2c and we have one of

the following cases:

(a) M is a ruled real hypersurface,

(b) M is a real hypersurface which admits a foliation of codimension two such

that each leaf is contained in a totally geodesic Mm−1(c), c 6= 0, as a ruled
real hypersurface,

(c) c > 0 and M is an open subset of a geodesic hypersphere,

(d) c < 0 and M is an open subset of either

d.1) a tube over a totally geodesic Hm−1(c), or
d.2) a Montiel tube, or

d.3) a geodesic hypersphere.

On the other hand, a 2-plane π tangent to M is called holomorphic if it admits

an orthonormal basis of the form {X, ϕX}. The holomorphic sectional curvature is
the sectional curvature of any holomorphic 2-plane tangent to M . We will denote it

by H(π) = H(X). Moreover, by virtue of Theorem A and Theorem B in the next
Preliminaries all real hypersurfaces of types (a), (b), (c) and (d) mentioned above

have a constant holomorphic sectional curvature H(X) = const. The next corollary
gives an affirmative answer to the main question of this paper.

Corollary. Let M be a real hypersurface of Mm(c), c 6= 0, m > 3. Then M has

a constant holomorphic sectional curvature if and only if M has a constant totally

real bisectional curvature.

The present authors would like to express their sincere gratitude to the referee for
his comments and encouragements to develop this paper.
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1. Preliminaries

Let M be a real hypersurface in Mm(c), c 6= 0, m > 3. Let ∇ be the Levi-Civita
connection ofM . In the introduction we wrote JX = ϕX +η(X)N for all X ∈ TM .

Thus, ϕ is a skew-symmetric tensor field of type (1,1) of M and η is a 1-form on M .
We denote by g both the metric on Mm(c) and the induced metric on M . Now it

is easy to see that η(X) = g(X, ξ). The set (ϕ, ξ, η, g) is called an almost contact
metric structure on M and its elementary properties are

ϕ2X = −X + η(X)ξ and ϕξ = 0, η(ϕX) = 0,

g(ϕX, Y ) + g(X, ϕY ) = 0 and g(ϕX, ϕY ) = g(X, Y )− η(X)η(Y )

for any X, Y ∈ TM , where A is the Weingarten endomorphism associated with N .

Since the ambient space Mm(c) is of a constant holomorphic sectional curvature
c, the equations of Gauss and Codazzi are respectively given as

R(X, Y )Z =
c

4
{g(Y, Z)X − g(X, Z)Y + g(ϕY, Z)ϕX − g(ϕX, Z)ϕY(1.1)

− 2g(ϕX, Y )ϕZ}+ g(AY, Z)AX − g(AX, Z)AY,

(∇XA)Y − (∇Y A)X =
c

4
{η(X)ϕY − η(Y )ϕX − 2g(ϕX, Y )ξ},(1.2)

where R denotes the Riemannian curvature tensor of M and ∇XA denotes the

covariant derivative of the shape operator A with respect to X .
Now let us consider a distribution D of the tangent space TpM , p ∈ M defined in

such a way that
D(p) = {X ∈ TpM : g(X, ξ) = 0}.

Then its unit distribution of D can be given by

UD(p) = {X ∈ D(p) : ‖X‖ = 1}.

By the Gauss equation (1.1) we compute the following expressions for the totally real
bisectional curvature and the holomorphic sectional curvature of M , respectively:

(1.3) B(X, Y ) =
c

2
+ g(AϕX, ϕY )g(AX, Y )− g(AX, ϕY )g(AϕX, Y )

where X, Y ∈ UD and g(X, Y ) = g(ϕX, Y ) = 0, and

(1.4) H(X) = c + g(AX, X)g(AϕX, ϕX)− g(AX, ϕX)2

for any X ∈ UD.

Now in order to prove our main theorem we introduce the following results.
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Theorem A ([6]). Let M be a real hypersurface in P m(c), m > 3, which has a
constant holomorphic sectional curvature H . Then M is one of the following cases:

(a) an open subset of a geodesic hypersphere, H > c,

(b) a ruled real hypersurface, H = c,

(c) a real hypersurface which admits a foliation of codimension two such that

each leaf is contained in a totally geodesic hyperplane P m−1(c) as a ruled
real hypersurface H = c.

Theorem B ([10] and [13]). Let M be a real hypersurface of Hm(c), c < 0,
m > 3, which has a constant holomorphic sectional curvature H . Then M is one of

the following cases:

(a) an open subset of a geodesic hypersphere of radius r > 0, 3
4c < H =

{
1 −

1
4 sinh2(r)

}
c,

(b) an open subset of a Montiel tube, H = 3
4c,

(c) an open subset of a tube of radius r > 0 over a hyperplane Hm−1(c), c <

H = {1− 1
4cosh2(r)}c < 3

4c,

(d) ruled, H = c,

(e) a real hypersurface which admits a foliation of codimension two such that
each leaf is contained in a totally geodesic hyperplane Hm−1(c) as a ruled
real hypersurface, H = c.

If p is a point of M , the rank of A at p is called the type number of M at p, and
will be denoted by t(p).

Theorem C ([10] and [14]). Let M be a real hypersurface of Mm(c), c 6= 0,
m > 3, which satisfies t(p) 6 2 for all p ∈ M . Then M is a ruled real hypersurface.

Now let us recall some relations for B(X, Y ), H(X) and T (X, Y ) on a Kaehler
manifold (See Goldberg and Kobayashi [4], Houh [5]). For any totally real two planes
[X, Y ], [JX, JY ] we have

(1.5) B(X, Y ) = T (X, Y ) + T (JX, Y ).

In fact,

(1.6) B(X, Y ) = g(R(X, JX)JY, Y )

= − g(R(JX, JY )X, Y )− g(R(JY, X)JX, Y )

= g(R(X, Y )Y, X) + g(R(JY, X)X, JY )

= K(X, Y ) + K(JY, X)

= T (X, Y ) + T (JY, X),
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where T (X, Y ) denotes the totally real sectional curvature determined by the totally
real plane [X, Y ] and we have used the fact that

(1.7) g(R(JX, JY )Y, X) = g(R(X, Y )Y, X).

From these formulas on a Kaehler manifold we know that it is not trivial to show

the constancy of the totally real sectional curvature T (X, Y ) from the constancy of
the totally real bisectional curvature B(X, Y ).
When we consider real hypersurfaces M in a complex space form Mm(c), we can

consider a distribution D in the tangent space TpM , p ∈ M . Then the distribution

D is invariant with respect to the structure tensor ϕ and can be regarded as a
holomorphic distribution in a Kaehler manifold.

But, if we apply the equation of Gauss to the above formulas, the situation is
not the same as in a Kaehler manifold. Even the formulas (1.6) and (1.7) need not

hold for such real hypersurfaces in a complex space form Mm(c). So it is not trivial
to show the constancy mentioned above. Due to such a situation the purpose of

this paper is to classsify all real hypersurfaces in Mn(c) with a constant totally real
bisectional curvature and to assert that such a hereditary property also can be hold

for real hypersurfaces.

2. Proof of the Theorem

Let p be a point ofM . Let X, Y, Z ∈ UD(p) be such that Span{Y, X} is totally real
and g(X, Z) = 0. Then there is a curve X(t), t ∈ (−δ, δ), such that X(t) ∈ UD(p),
Span{Y, X(t)} is totally real, X(0) = X and X ′(0) = Z.
Now we assume that M is a real hypersurface in Mn(c) on which the totally

real bisectional curvature B(X, Y ) determined by two totally real planes [X, Y ] and
[JX, JY ] is constant. Then by differentiating (1.3) we obtain

d
dt

∣∣∣
t=0

g(AϕX(t), ϕY )g(AX(t), Y )− g(AX(t), ϕY )g(AϕX(t), Y ) = 0,

thus

(2.1) g(AϕZ, ϕY )g(AX, Y ) + g(AϕX, ϕY )g(AZ, Y )

− g(AZ, ϕY )g(AϕX, Y )− g(AX, ϕY )g(AϕZ, Y ) = 0

for any X, Y and Z in UD(p) such that Span{Y, X} is totally real and g(X, Z) = 0.
Let us take an orthonormal basis {ξ1, E1, . . ., E2m−2} of TxM such that

(∗) AEi|D = aiEi, i = 1, 2, . . ., 2m− 2.
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Now let us choose i ∈ {1, 2, . . ., 2m − 2} such that [X, Z] ⊥ [Ei, ϕEi]. Differentiat-
ing (2.1) one more time and using X ′(0) = Z, we arrive at

(2.2) g(AϕZ, ϕY )g(AZ, Y )− g(AZ, ϕY )g(AϕZ, Y ) = 0.

Now let us replace Z by ϕY in (2.1), because [X, Y ] and [Y, ϕX ] are also totally real
sections such that g(X, ϕY ) = 0. Then it follows that

−g(AY, ϕY )g(AX, Y ) + g(AϕX, ϕY )g(AϕY, Y )(2.3)

− g(AϕY, ϕY )g(AϕX, Y ) + g(AX, ϕY )g(AY, Y ) = 0.

If we substitute Y = Ei into the above equation and use the formula (∗), we have

(2.4) aig(AX, ϕEi)− g(AϕEi, ϕEi)g(AϕX, Ei) = 0.

For a totally real plane [ϕEi, X ] we know that aig(AX, ϕEi) = 0. Thus for any X

orthogonal to Ei and ϕEi we know that aig(AX, ϕEi) = 0.
Now we have to discuss the following three cases:

Case 1. At least two of the ai’s are not zero. We can suppose without losing
any generality that a1, a2 are not zero. Let Ω = {p ∈ M : a1(p) 6= 0, a2(p) 6= 0}.
Throughout this case, p ∈ Ω unless otherwise stated. From this and (2.4) we know
that a1g(AX, ϕE1) = 0 for any X ⊥ E1, ϕE1. This means

AϕE1 ∈ [ξ, ϕE1].

Similarly, for any X ⊥ E2, ϕE2 we have

AϕE2 ∈ [ξ, ϕE2].

By virtue of this fact, even if we consider the case that all of ai, i = 1, . . ., m− 1 are
different from zero, all of its holomorphic sectional curvatures are constant:

H(Ei) = c + g(AEi, Ei)g(AϕEi, ϕEi)− g(AEi, ϕEi)2 = c.

Now let us consider the case when a3 = . . . = am−1 = 0. Then it follows that

g(AϕEk , Ej) = g(ϕEk, AEj) = ajg(ϕEk, Ej) = 0 for j > 3.

This means
AϕEk ∈ Span{ξ, ϕE1, . . ., ϕEm−1}.
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Now putting Z = Ei in (2.1) and using AEi|D = 0 for i = 3, . . ., m − 1, for any
totally real section [X, Y ] such that X, Y ∈ UD we know

(2.5) g(AϕEi, ϕY )g(AX, Y )− g(AX, ϕY )g(AϕEi, Y ) = 0.

We take another totally real section [X ′, Y ′] defined by

X ′ =
1√
2
(X + Y ), Y ′ =

1√
2
(X − Y ).

Then it follows that

{g(AϕEi, ϕX)− g(AϕEi, ϕY )}{g(AX, X)− g(AY, Y )}
− {g(AX, ϕX) + g(AY, ϕX)− g(AX, ϕY )

− g(AY, ϕY )}{g(AϕEi, X)− g(AϕEi, Y )} = 0.

Taking X = Ej and Y = El such that AEj |D = 0 and AEl|D = alEl, al 6= 0, l = 1, 2
we have

{g(AϕEi, ϕEj)− g(AϕEi, ϕEl)}g(AEl, El) = 0.

Since AEl|D = alEl, al 6= 0, it follows that

g(AϕEi, ϕEj) = g(AϕEi, ϕE1) = g(AϕEi, ϕE2) = g(ϕEi, AϕE2) = 0

for any distinct i 6= j ∈ {3, . . ., m− 1}. This yields

AEi|D = diEi and AϕEi|D = biϕEi.

Now let us put α = 1√
3
, β =

√
2/3. Let us consider the vectors

X = αEi + βEj , Y = βEi − αEj and Z = βϕEi − αϕEj .

Then it can be easily seen that the planes [X, Y ] and [X, Z] are totally real and their
bisectional curvature is given by

(2.6) B(X, Y ) =
c

2
+ g(AϕX, ϕY )g(AX, Y )− g(AX, ϕY )g(AϕX, Y ).

So it follows that

B(X, Y )− c

2
(2.7)

= α2β2g(AϕEi, ϕEi)g(AEi, Ei)− α2β2g(AϕEi, ϕEi)g(AEj , Ej)

− α2β2g(AϕEj , ϕEj)g(AEi, Ei) + α2β2g(AϕEj , ϕEj)g(AEj , Ej)

= α2β2(di − dj)(bi − bj).
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Now let us take another totally real section [X, Y ] spanned by two vectors X =
1√
2
(Ei +Ej) and Y = 1√

2
(ϕEi −ϕEj). Then we know g(X, ϕY ) = 0, which together

with (2.6) implies that

4
{
B(X, Y )− c

2

}
(2.8)

= g(αAϕEi + βAϕEj ,−βEi + αEj)g(αAEi + βAEj , βϕEi − αϕEj)

− g(αAEi + βAEj ,−βEi + αEj)g(αAϕEi + βAϕEj , βϕEi − αϕEj)

= (di − dj)(bi − bj).

Then (2.7) and (2.8) yield that

(2.9) (di − dj)(bi − bj) = 0

for any i 6= j. From this together with the assumption we know that all of the totally
real bisectional curvatures are constant, that is B(X, Y ) = 1

2c for any totally real
section [X, Y ]. Then for another totally real plane [X, Y ] spanned by the vectors
X = 1√

2
(Ei + ϕEj) and Y = 1√

2
(ϕEi + Ej), from (2.6) we have

0 = g(AϕEi −AEj ,−Ei + ϕEj)g(AEi + AϕEj , ϕEi + Ej)(2.10)

− g(AEi + AϕEj ,−Ei + ϕEj)g(AϕEi −AEj , ϕEi + Ej)

= − (bi − dj)(bj − di)

for any distinct i 6= j. From (2.9) we know that bi = bj or di = dj . Hence taking

into account (2.10) we can consider the cases

bi = bj = dj or bi = bj = di

for any distinct i 6= j. Similarly we can also consider the cases

di = dj = bi or di = dj = bj .

At any case we assert that all bk and dk coincide with each other. So it follows that

AX
∣∣
D

= bX

for any X ∈ UD. This implies that the holomorphic sectional curvature H(X) =
c + b2 is constant.

Now in order to complete our proof we consider two cases. To do this we suppose
that the interior of the set Γ = {p ∈ M : a1(p) = 0 or a2(p) = 0} is not empty.
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Case 2. Let us suppose a1 = . . . = a2m−2 = 0 on an open subset Ω of M , which
can be supposed to be included in Γ. By virtue of (∗), t(p) 6 2 on Ω. By Theorem C,
Ω is a ruled real hypersurface. On such an open subset Ω we can write

Aξ = αξ + βU, AU = βξ, AϕU = 0 and AX = 0

for anyX ∈ D orthogonal to U and ϕU . If the function β is equal to 0, then the set Ω
has at most two distinct pincipal curvatures. So the set Ω is a geodesic hypersphere
for c > 0 (See Cecil and Ryan [3]) and a horosphere or a geodesic hypersphere for
c < 0 (See Montiel [8]). This makes a contradiction. From this we know that the
function β is non-vanishing on Ω, that is, Ω = {p ∈ M : β(p) 6= 0}.
Now let us consider a subdistribution D1 of the distribution D defined by

D1(p) = {X ∈ TpM : η(X) = g(X, U) = g(X, ϕU) = 0}.

Then for any X ∈ D1 we have AX = 0, so it follows that ∇Xξ = 0. From this, by
virtue of the equation of Codazzi (1.2) we obtain that

(∇XA)ξ − (∇ξA)X = − c

4
ϕX

and
(∇XA)ξ − (∇ξA)X = (Xα)ξ + β∇XU + (Xβ)U + A(∇ξX).

This gives finally ∇XU = − 1
4β−1cϕX on Ω. Since M is connected, this shows

that M = Ω, because if the sequence {xj} is a sequence in Ω which converges to
some boundary point of Ω, then lim

j→∞
β(xj) = 0, which implies that the sequence

{‖∇XU‖(xj)} diverges. Therefore M is ruled. By definition, the distribution D is

integrable and totally geodesic in M , so that if X, Y ∈ D, then ∇XϕY ∈ D, that is
to say, 0 = g(ξ,∇XϕY ). By (1.1) we conclude

0 = g(∇Xξ, ϕY ) = g(ϕAX, ϕY ) = g(AX, Y )

for any X, Y ∈ UD. Then H(X) = c, which shows that M has a constant holomor-
phic sectional curvature. Moreover, it is clear that B(X, Y ) = 1

2c for any X, Y ∈ UD.

Case 3. Let us suppose that exactly one of the ai’s is different from zero and all
the other ak’s are zero. Without losing any generality we can suppose i = 1. Let Ω
be an open subset of M where a1 6= 0, which can be supposed to be included in Γ.
Throughout this case, p ∈ Ω unless otherwise stated. From (∗) we obtain

AX |D = a1g(X, E1)E1
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for any X ∈ D in a neigbourhood of each point p ∈ Ω. By (1.2) and (1.3), H(X) = c

for any X ∈ UD(p) and any p ∈ Ω. By Theorem A and Theorem B, either Ω is
ruled or Ω admits a foliation of codimension two such that each leaf is contained
in a totally geodesic hyperplane Mm−1(c) as a ruled real hypersurface. As a1 6= 0,
t(p) > 3 on Ω, and by Theorem C, Ω cannot be ruled. Then on such an open subset
Ω = {p ∈ M : a1(p) 6= 0} we have the following expression for the shape operator:





Aξ = αξ + β1e1 + β1ϕe1 + β2e2,

Ae1 = β1ξ + a1e1,

Aϕe1 = β1ξ,

Ae2 = β2ξ,

Aϕej = Aek = 0 (2 6 j 6 n− 1, 3 6 k 6 n− 1).

Thus by using the equation of Codazzi (1.2) repeatedly, bearing in mind the above
formulas and using a similar method as in Kimura [6], Sohn and the third author

[13], we can finally assert that

∇e1e1 = grad log |a1| − β1ϕe1.

Then by the connectedness of M we know that M = Ω. In fact, if M 6= Ω, then
by the definition of Ω, there is a sequence of points {yj} in Ω which converges to
a boundary point of Ω, so that lim

j→∞
a1(yj) = 0. Hence the above equation implies

that {‖∇e1e1 +β1ϕe1‖(yj)} diverges. Then Ω = M and thereforeM is either case c)
of Theorem A or case e) of Theorem B. Moreover, from the expression of the shape

operator mentioned above and (1.3) we can show that

B(e1, e2) = B(ϕe1, e2) =
c

2

and also 1
2c for other totally real sections. So in this case we conclude that B(X, Y ) =

1
2c for any X, Y ∈ UD.

Conversely, in [11] the present authors have already proved that all model spaces

of Theorem A and Theorem B have constant totally real sectional curvatures, that is
T (X, Y ) = const for any totally real section [X, Y ]. This, together with the formula
(1.5), yields that all the model spaces mentioned in Theorem A and Theorem B have
constant totally real bisectional curvatures. This completes the proof of our theorem.
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