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Abstract. The exponential stability property of an evolutionary process is characterized in
terms of the existence of some functionals on certain function spaces. Thus are generalized
some well-known results obtained by Datko, Rolewicz, Littman and Van Neerven.
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1. Introduction

One of the most remarkable results in the theory of stability for a strongly con-

tinuous semigroup of linear operators has been obtained by Datko [1] in 1970 and
it says that the semigroup T = {T (t)}t>0 is uniformly exponentially stable if and

only if, for each vector x from the Banach space X , the function t → ‖T (t)x‖ lies in
L2(

�
+ ). Later, A. Pazy [see for instance 9] shows that the result remains true even if

we replace L2(
�

+ ) with Lp(
�

+ ), where p ∈ [1,∞). In 1973, R.Datko [2] generalized
the results above, and proved that an evolutionary process U = {U(t, s)}t>s>0 with

exponential growth is uniformly exponentially stable if and only if there is p ∈ [1,∞)
such that sup

s>0

∫∞
s
‖U(t, s)x‖p dt < ∞, for each x ∈ X. This result was improved by

Rolewicz in 1986 (see [10]) when he proved that if ϕ :
�

+ → �
+ is a continuous,

nondecreasing function with ϕ(0) = 0 and ϕ(u) > 0 for each strictly positive u,

and U = {U(t, s)}t>s>0 is an evolutionary process on X with exponential growth
such that sup

s>0

∫∞
s

ϕ(‖U(t, s)x‖ dt < ∞ for each x ∈ X then U is uniformly expo-

nentially stable. We note here that an analogous result was obtained independently
by Littman [4] in 1989, in the case of C0-semigroup, but without the assumption
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of continuity for ϕ. Jan van Neerven generalized the results above in the case of

C0-semigroups and he presented a unified treatment in terms of Banach function
spaces as in [6], Theorem 3.1.5. In fact he proved that the semigroup T = {T (t)}t>0

is exponentially stable if there exists a Banach function space E over R+ with the

property that lim
t→∞

‖χ[0,t]‖ = ∞ such that ‖T (·)x‖ ∈ E for all x ∈ X. The Datko-

Pazy theorem follows from this by taking E = Lp(
�

+ ) and Rolewicz’s result can be
derived as well by taking for E a suitable Orlicz space over

�
+ . These and related

results were extended recently by Jan van Neerven where characterizations of expo-
nential stability for semigroups in terms of lower semi-continuous functionals were

obtained. In the spirit of this idea the aim of this paper is to extend this line of re-
sults on the general case of evolutionary processes using another type of functionals.

A discrete-time variant of the obtained results is also presented.

2. Preliminaries

In the beginning of this section let us recall some standard notations. In all that

follows
�

+ denotes the set of all positive real numbers,
� ∗

+ =
�

+ \{0} and � ∗ the set
of all strictly positive natural numbers. Also, X will be a Banach space, and B(X)
the Banach algebra of all bounded linear operators from X into itself. We recall that
a family of bounded linear operators {U(t, s)}t>s>0 is called an evolutionary process

if

ep1) U(t, t) = I (where I is the identity operator on X), for all t > 0;
ep2) U(·, s)x is continuous on [s,∞), for all s > 0, x ∈ X ;

U(t, ·)x is continuous on [0, t), for all t > 0, x ∈ X ;

ep3) U(t, s) = U(t, r)U(r, s), for all t > r > s > 0;
ep4) there exist M, ω > 0 such that

‖U(t, s)‖ 6 Meω(t−s) for all t > s > 0.

We also remind that an evolutionary process U = {U(t, s)}t>s>0 is uniformly
exponentially stable (u.e.s.) if there exist N, ν > 0 such that ‖U(t + s, s)‖ 6 Ne−νt,

for all (t, s) ∈ � 2
+ .

Proposition 2.1. The following statements are equivalent
(i) U = {U(t, s)}t>s>0 is u.e.s.;

(ii) there exists a sequence a : � → �
+ with

inf
n∈ � ∗ a(n) = 0, ‖U(n + s, s)‖ 6 a(n), for all (n, s) ∈ � × �

+ ;
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(iii) there exists a function b :
�

+ → �
+ with

inf
t>0

b(t) = 0, ‖U(t + s, s)‖ 6 b(t), for all (t, s) ∈ � 2
+ .

�������
	
. (i) ⇒(ii) It is obvious for a(n) = Ne−νn.

(ii) ⇒ (iii) If (t, s) ∈ � 2
+ and n = [t] then

‖U(t + s, s)‖ 6 ‖U(t + s, n + s)‖‖U(n + s, s)‖ 6 Meω(t−n)a(n) = b(t)

(iii) ⇒ (i). Let δ > 0 be such that b(δ) < e−1, (t, s) ∈ � 2
+ , n = [t/δ] . It is easy to

check that

‖U(t + s, s)‖ 6 ‖U(t + s, nδ + s)‖‖U(nδ + s, s)‖

6 Meω(t−nδ)
n∏

k=1

‖U(kδ + s, (k − 1)δ + s)‖ 6 Meωδ
n∏

k=1

b(δ)

6 Meωδe−n 6 Meωδ− t
δ +1 = Ne−νt,

where N = Meωδ+1, ν = 1
δ .

For (Ω, A , µ) a measurable space, we will denote by M (Ω,
�
) the space of all

measurable functions from Ω to
�
and byM +(Ω,

�
) the set of all h ∈ M (Ω,

�
) with

h(ξ) > 0, for all ξ ∈ Ω.

Definition 2.1. A function N : M (Ω,
�
) → [0,∞] is called a generalized norm

on M (Ω,
�
) if the following conditions are satisfied:

(n1) N(h) = 0 if and only if h = 0 µ-a.e.;

(n2) N(h1 + h2) 6 N(h1) + N(h2), for all h1, h2 ∈ M (Ω,
�
);

(n3) N(ch) = |c|N(h), for all c ∈ �
and all h ∈ M (Ω,

�
) with N(h) < ∞;

(n4) if h1, h2 ∈ M (Ω,
�
) with |h1| 6 |h2| then N(h1) 6 N(h2).

Remark 2.1. If N is a generalized norm onM (Ω,
�
) then E = {f ∈ M (Ω,

�
) :

N(f) < ∞} is a normed function space with the norm ‖f‖E = N(f).

If we take Ω = � with the standard counting measure we have that M ( � ,
�
) =

S (
�
), the space of all real sequences, and M +( � ,

�
) = S +(

�
), the set of all

positive sequences. Another interesting case is when Ω =
�

+ with the Lebesgue
measure. In order to simplify the notations we will use in what follows M (

�
+ ) =

M (
�

+ ,
�
), M +(

�
+ ) = M +(

�
+ ,
�
).

Also let E ( � ) be the set of all normed sequence spaces with the properties
(e1) χ{0,...,m} ∈ E, for all m ∈ � ;
(e2) lim

m→∞
‖χ{0,...,m}‖E = ∞;

(e3) inf
m∈ N

‖χ{m}‖E > 0.

Here χA denotes the characteristic function of a set A.
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Example 2.1. lp ∈ E ( � ), for all p ∈ [1,∞). Analogously, we will denote by
E (
�

+ ) the set of all function spaces over
�

+ with the properties

(e1) χ[0,t] ∈ E, for all t > 0;
(e2) lim

t→∞
‖χ[0,t]‖E = ∞;

(e3) inf
t>0

‖χ[t,t+1)‖E > 0.

Example 2.2. Lp(
�

+ ) ∈ E (
�

+ ), for all p ∈ [1,∞).

Another important set in what follows is F , the set of all functions F : S +(
�
) →

[0,∞] with the properties
(f1) if s1, s2 ∈ S +(

�
) with s1 6 s2 then F (s1) 6 F (s2);

(f2) there exist c > 0 such that F (αχ{n}) > cα, for all (α, n) ∈ � ∗
+ × � ∗ ;

(f3) lim
n→∞

F (αχ{0,...,n}) = ∞, for all α ∈ � ∗
+ .

Example 2.3. The map F : S +(
�
) → [0,∞] defined by

F (s) =
∞∑

n=0

s(n),

belongs to F .

Proposition 2.2. If F ∈ F , L > 0 then

lim
n→∞

inf
α∈(0,L]

F (αχ{0,...,n})
α2

= ∞.

�������
	
. Let us consider the non-decreasing function r : � → [0,∞] given by

r(n) = inf
α∈(0,L]

F (αχ{0,...,n})
α2

and denote by l = lim
n→∞

r(n). We shall prove that l = ∞. Assume for a contradiction
that l < ∞. Then it is easy to see that for every n ∈ � ∗ there exist αn ∈ (0, L] with

c

αn
=

cαn

α2
n

6
F (αnχ{0,...,n})

α2
n

6 r(n) +
1
n

,

and hence

αn > c

r(n) + 1/n
, for every n ∈ � ∗ .
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Using the fact that l < ∞ we obtain lim inf
n→∞

αn > 0 which implies that there exist
α > 0 and n0 ∈ � ∗ such that αn > α for all n ∈ � with n > n0. Then

F (αχ{0,...,n}) 6
L2F (αnχ{0,...,n})

α2
n

6 L2r(n) +
L2

n

and hence lim
n→∞

F (αχ{0,...,n}) 6 L2l < ∞, which is the required contradiction.
It makes sense to consider also the set G of all functions G : M +(

�
) → [0,∞]

with the properties:

(g1) if u1, u2 ∈ M +(
�
) with u1 6 u2 then G(u1) 6 G(u2);

(g2) there exists c > 0 such that G(αχ[t,t+1)) > cα, for all (α, t) ∈ � ∗
+ × �

+ ;

(g3) lim
t→∞

G(αχ[0,t]) = ∞, for all α > 0. �

Example 2.4. The function G : M +(
�
) → [0,∞] defined by

G(f) =
∫ ∞

0

f,

belongs to G .

Let Φ be the set of all nondecreasing functions ϕ :
�

+ → �
+ with the property

ϕ(t) > 0, for all t > 0.

Proposition 2.3. If ϕ ∈ Φ then the function Ψ:
�

+ → �
+ , defined by Ψ(t) =∫ t

0
ϕ(s) ds, is a non-decreasing, continuous bijection.
�������
	

. It is easy to see that Ψ is continuous, Ψ(0) = 0 and lim
t→∞

Ψ(t) = ∞,
which implies that Ψ is surjective. If there exists t1 < t2 such that Ψ(t1) = Ψ(t2)
then

0 6 t2 − t1
2

ϕ
( t1 + t2

2

)
6

∫ t2

t1+t2
2

ϕ(s) ds 6
∫ t2

t1

ϕ(s) ds = 0

and hence ϕ( 1
2 (t1 + t2)) = 0, which is a contradiction because t1 + t2 > 0. �

3. Discrete characterizations for the uniform exponential stability

of the evolutionary processes

Let U = {U(t, s)}t>s>0 be an evolutionary process. For every (x, t0) ∈ X × �
+

we denote by sx,t0 : � → �
+ the sequence defined by

sx,t0(n) = ‖U(n + t0, t0)x‖.
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Theorem 3.1. The evolutionary process U is u.e.s. if and only if there exists

F ∈ F such that the set

AF =
{
x ∈ X : sup

t0>0
F (sx,t0) < ∞

}

is of the second Baire category.

�������
	
. Necessity. This is a simple verification for F (s) =

∞∑
n=0

s(n).

Sufficiency. Having in mind that AF =
∞⋃

n=1
(AF ∩ {x ∈ X : ‖x‖ 6 n}), it results

that there exists n0 ∈ � ∗ such that the set AF ∩ {x ∈ X : ‖x‖ 6 n0}, denoted by
A0, is of the second Baire category. Let L = sup

x∈A0

‖x‖ and

Mx = sup
t0>0

F (sx,t0), for x ∈ A0.

One can see that

sx,t0(n) 6 1
c
F (sx,t0(n)χ{n}) 6 1

c
F (sx,t0) 6 1

c
Mx,

for all (x, t0, n) ∈ A0 ×
�
+ × � ∗ . It follows that

sup
(n,t0)∈ � ∗× � +

‖U(n + t0, t0)x‖ < ∞

for all x ∈ A0. Using the fact that A0 is of the second Baire category by the Uniform

Boundedness Principle (see for instance [3], Theorem 2.5.5, page 26), we obtain

(∗) K1 = sup
(n,t0)∈ � × � +

‖U(n + t0, t0)‖ < ∞.

On the other hand we have

sx,t0(n)χ{0,...,n} =
n∑

k=0

‖U(n + t0, t0)x‖χ{k} 6
n∑

k=0

‖U(n + t0, k + t0)‖sx,t0(k)χ{k}

6 K1

n∑

k=0

sx,t0(k)χ{k} = K1sx,t0χ{0,...,n} 6 K1sx,t0 ,

and sx,t0(n)/K1 6 L, for all (x, t0, n) ∈ A0 ×
�

+ × � which implies that

s2
x,t0(n)
K2

1

r(n) 6 F
(sx,t0(n)

K1
χ{0,...,n}

)
6 F (sx,t0) 6 Mx,
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for all (x, t0, n) ∈ A0 ×
�
+ × � and hence

sup
(n,t0)∈ � × � +

√
r(n)‖U(n + t0, t0)x‖ < ∞,

for all x ∈ A0. Using again the fact that A0 is of the second Baire category and the

Uniform Boundedness Principle we obtain

(∗∗) K2 = sup
(n,t0)∈ � × � +

√
r(n)‖U(n + t0, t0)‖ < ∞.

Adding up (∗) and (∗∗) we obtain that ‖U(n + t0, t0)‖ 6 (K1 + K2)/(1 +
√

r(n)).
Denoting by a : � → �

+ , a(n) = (K1 + K2)/(1 +
√

r(n)), by Proposition 2.2.we
have inf

n∈ � a(n) = 0 and by using Proposition 2.1.we obtain that U is u.e.s. �

Corollary 3.1. The evolutionary process U is u.e.s. if and only if there exists

p ∈ [1,∞) such that the set

{
x ∈ X : sup

t0>0

∞∑

n=0

‖U(n + t0, t0)x‖p < ∞
}

,

is of the second Baire category.

�������
	
. This follows from Theorem 3.1. for

F (s) =
( ∞∑

n=0

s(n)p

)1/p

.

�

Corollary 3.2. The evolutionary process U is u.e.s. if and only if there exists

E ∈ E ( � ) and A0 a set of the second Baire category such that sx,t0 ∈ E, for all

(x, t0) ∈ A0 ×
�

+ and

sup
t0>0

‖sx,t0‖E < ∞, for all x ∈ A0.

�������
	
. This follows from Theorem 3.1. for F (s) = N(s), where N is given by

Definition 2.1. for Ω = � . �
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Corollary 3.3. The evolutionary process U is u.e.s. if and only if there exists

ϕ ∈ Φ such that the set

Aϕ =
{

x ∈ X : sup
t0>0

∞∑

n=0

ϕ(‖U(n + t0, t0)x‖) < ∞
}

is of the second Baire category.

�������
	
. Necessity. This is a simple verification for ϕ(t) = t.

Sufficiency. First we will denote by Mx = sup
t0>0

∞∑
n=0

ϕ(‖U(n + t0, t0)x‖) for all
x ∈ Aϕ. Next we shall prove that sup

(n,t0)∈ � × � +

‖U(n + t0, t0)x‖ < ∞, for all x ∈ Aϕ.

Assume for a contradiction that there exist x0 ∈ Aϕ such that sup
(n,t0)∈ � × � +

‖U(n +

t0, t0)x0‖ = ∞.
It is clear that

∞∑
i=0

ϕ(eωi) = ∞ and so we can consider n0 ∈ � such that

n0∑

i=0

ϕ(eωi) > Mx0 + 1.

Taking into account that sup
n6n0,t0>0

‖U(n + t0, t0)x0‖ < ∞ we have sup
n>n0,t0>0

‖U(n + t0, t0)x0‖ = ∞ and so there exist n1 > n0, t1 > 0 such that

‖U(n1 + t1, t1)x0‖ > Meωn0 .

However,

Mx0 >
n1∑

k=0

ϕ(‖U(k + t1, t1)x0‖) >
n1∑

k=0

ϕ

(‖U(n1 + t1, t1)x0‖
Meω(n1−k)

)

=
n1∑

j=0

ϕ

(‖U(n1 + t1, t1)x0‖
Meωj

)
>

n0∑

j=0

ϕ

(‖U(n1 + t1, t1)x0‖
Meωj

)

>
n0∑

j=0

ϕ
(
eω(n0−j)

)
=

n0∑

i=0

ϕ(eωi) > Mx0 + 1,

which is a contradiction. Hence, we have

sup
(n,t0)∈ � × � +

‖U(n + t0, t0)x‖ < ∞, for all x ∈ Aϕ
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and so using the fact that Ψ(t) 6 tϕ(t), for all t > 0 we obtain that

Kx = sup
t0>0

∞∑

n=0

Ψ(‖U(n + t0, t0)x‖) < ∞, for all x ∈ Aϕ.

Let F : S +(
�
) → [0,∞] the map defined by

F (s) = Ψ−1

( ∞∑

n=0

Ψ(s(n))
)

.

Then F ∈ F and Aϕ ⊂
{

x ∈ X : sup
t0>0

F (sx,t0) < ∞
}
. By Theorem 3.1.we obtain

that U is u.e.s.

4. Continuous characterizations for the uniform exponential

stability of the evolutionary processes

Let U = {U(t, s)}t>s>0 be an evolutionary process. For every (x, t0) ∈ X × �
+

we denote by fx,t0 :
�
+ → �

+ the function defined by

fx,t0(t) = ‖U(t + t0, t0)x‖.

Theorem 4.1. The evolutionary process U is u.e.s. if and only if there exists

G ∈ G such that the set

BG =
{

x ∈ X : sup
t0>0

G(fx,t0) < ∞
}
,

is of the second Baire category.
�������
	

. Necessity. This is a simple verification for G(f) =
∫∞
0

f .

Sufficiency. For every (x, t0) ∈ X × �
+ let us consider the map

gx,t0 :
�

+ → �
+ defined by gx,t0(t) =

1
Meω

‖U([t] + 1 + t0, t0)x‖.

Also for s ∈ S +(
�
) let gs :

�
+ → �

+ be the map given by gs(t) = s([t] + 1)/Meω

and FG : S +(
�
) → [0,∞] the function defined by FG(s) = G(gs). Using the fact

that G ∈ G one can easily verify that FG ∈ F and by observing that

FG(sx,t0) = G(gx,t0) 6 G(fx,t0), for all (x, t0) ∈ X × �
+

it follows that BG ⊂ AFG and hence AFG is a set of the second Baire category. By

Theorem 3.1.we obtain that U is u.e.s.
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Corollary 4.1. The evolutionary process U is u.e.s. if and only if there exists

p ∈ [1,∞) such that
{

x ∈ X : sup
t0>0

∫ ∞

0

‖U(t + t0, t0)x‖p dt < ∞
}

,

is of the second Baire category.
�������
	

. This follows from Theorem 4.1. for G : M +(
�

+ ) → [0,∞]

G(f) =
(∫ ∞

0

fp

)1/p

.

�

Corollary 4.2. The evolutionary process U is u.e.s. if and only if there exist

E ∈ E (
�

+ ) and a set B0 of the second Baire category such that fx,t0 ∈ E for all

(x, t0) ∈ B0 ×
�

+ and

sup
t0>0

‖fx,t0‖ < ∞, for all x ∈ B0.

�������
	
. This follows from Theorem 4.1. for G : M +(

�
+ ) → [0,∞], G(f) =

N(f) where N is given by Definition 2.1. for Ω =
�

+ . �

Corollary 4.3. The evolutionary process U is u.e.s. if and only if there exists

ϕ ∈ Φ such that the set

Bϕ =
{

x ∈ X : sup
t0>0

∫ ∞

0

ϕ(‖U(t + t0, t0)x‖) dt < ∞
}

,

is of the second Baire category.
�������
	

. Necessity. This is a simple verification for ϕ(t) = t.
Sufficiency. Let γ :

�
+ → �

+ , γ(t) = ϕ(t/Meω). It is obvious that γ ∈ Φ and

∞∑

n=0

γ(‖U(n + t0, t0)x‖) = γ(‖x‖) +
∫ ∞

0

ϕ(gx,t0(t)) dt

6 γ(‖x‖) +
∫ ∞

0

ϕ(fx,t0(t)) dt, for all (x, t0) ∈ X × �
+ ,

where gx,t0 was defined in the proof of Theorem 4.1.

It follows that Bϕ ⊂ Aγ and hence Aγ is of the second Baire category and by
Corollary 3.3.we obtain that U is u.e.s.
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