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DIMENSION IN ALGEBRAIC FRAMES

Jorge Martínez, Gainesville

(Received August 22, 2003)

Abstract. In an algebraic frame L the dimension, dim(L), is defined, as in classical ideal
theory, to be the maximum of the lengths n of chains of primes p0 < p1 < . . . < pn, if such
a maximum exists, and ∞ otherwise. A notion of “dominance” is then defined among the
compact elements of L, which affords one a primefree way to compute dimension.
Various subordinate dimensions are considered on a number of frame quotients of L,

including the frames dL and zL of d-elements and z-elements, respectively. The more
concrete illustrations regarding the frame convex `-subgroups of a lattice-ordered group
and its various natural frame quotients occupy the second half of this exposition.
For example, it is shown that if A is a commutative semiprime f -ring with finite `-

dimension then A must be hyperarchimedean. The d-dimension of an `-group is invariant
under formation of direct products, whereas `-dimension is not. r-dimension of a commuta-
tive semiprime f -ring is either 0 or infinite, but this fails if nilpotent elements are present.
sp-dimension coincides with classical Krull dimension in commutative semiprime f -rings
with bounded inversion.

Keywords: algebraic frame, dimension, d-elements, z-elements, lattice-ordered group,
f -ring

MSC 2000 : 06D22, 06F15

1. Introduction

This article considers the notion of a “Krull” dimension in an algebraic frame,

which is the structure of discourse throughout. We assume the Axiom of Choice
from the outset, all the while realizing that one can get by with less to produce

“points”, that is to say, the primes of the frame.

In spirit, this paper picks up where [23] leaves off. Following a general review of
the relevant frame-theoretic principles, we will recall from [23] the notions of the

d-element and z-element. These two concepts are motivated by ideas that form the
basis for the discussion in [11], [12].
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The reader familiar with commutative algebra will presumably recall that Krull

dimension is a number which records the length of the longest chain of prime ideals
(relative to inclusion). We consider the corresponding notion in algebraic frames. It
is fair to say that in [23] the “dimension zero” case was thoroughly examined, with

ample illustration. For rings of continuous functions, [10] studies the topological
properties of a space X such that, for the associated ring C(X) of all continuous real
valued functions on X , the frame of z-ideals has dimension not exceeding one.

During the remainder of this introduction we review the basic information which
will be relevant the rest of the way.

Definition & Remarks 1.1. A frame is a complete lattice L in which the
following distributive law holds:

a ∧
( ∨

S
)

=
∨
{a ∧ s : s ∈ S}

for each a ∈ L and S ⊆ L.

Let us also fix some notation: a complete lattice has a largest and a least element,
denoted 1 and 0, respectively. For each a ∈ L we denote ↑ a = {x ∈ L : x > a} and
↓ a = {x ∈ L : x 6 a}.
A small directory of terms now follows; it is assumed throughout that L is a

complete lattice. The terminology discussed here is that of [23]; we concede that it
differs in places from usage elsewhere.

(i) An element a ∈ L is compact if a 6
∨

X implies that a 6
∨

Xo for some finite

subset Xo of X . L is algebraic if every element of L is a supremum of compact
elements. We denote the set of compact elements of L by k(L). k(L) is always
closed under finite joins.

L is said to be compact if 1 is compact.

It is well known that if L is algebraic, then it is a frame if and only if it is

distributive; this is Exercise 9, p. 189, in [4].
(ii) Call p < 1 prime if x ∧ y 6 p implies that x 6 p or y 6 p. Note that if L is

distributive then p is prime if and only if it is meet-irreducible; that is, x∧y = p

implies that x = p or y = p. Spec(L) denotes the set of all primes of L; this

is the spectrum of the frame. Observe that if L is algebraic and p < 1 satisfies
that a ∧ b 6 p implies that a 6 p or b 6 p, for all a and b compact, then p is

prime.

Now assume that L is a frame.
(iii) L is said to be coherent if it is algebraic and k(L) is closed under finite meets.

This includes the empty meet; thus, it is built into this definition that 1 is
compact.
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(iv) When k(L) has the feature that a, b ∈ k(L) implies that a∧ b ∈ k(L) we say that
L has the finite intersection property on compact elements, abbreviated FIP.
Thus, a frame is coherent if and only if it is compact and has the FIP.

(v) For each a ∈ L, let

a⊥ =
∨
{x ∈ L : x ∧ a = 0}.

We also denote (a⊥)⊥ = a⊥⊥. The elements of the form x⊥ are referred to in
most of the literature as the pseudo-complemented elements of L; coming from

the theory of lattice-ordered groups, we prefer the term polar for these elements.

An element a ∈ L is complemented if a ∨ a⊥ = 1.
(vi) Finally, in this presentation of introductory material, if L is any frame and

x, y ∈ L, then

x → y ≡
∨
{a ∈ L : x ∧ a 6 y}.

Evidently, x ∧ (x → y) 6 y, and x → y is the maximum with this property.
Observe as well that x⊥ = x → 0 for each x ∈ L.

For general lattice theory we refer the reader to [4]; for the background on frame
theory, the most comprehensive reference is still [14].

The work in [23] was motivated by our interest in lattice-ordered groups and f -
rings. The relevant aspects of these theories will be presented as the circumstances

and the development below warrant it. For now it will suffice to remark that for all
the applications we have in mind there is an underlying algebraic frame of substruc-

tures and, in many applications, there are several that will interest us.

This concludes our general introduction.

2. Primes and dimension

This section records the background on primes of algebraic frames, as well as the
definition of dimension.

Let Min(L) denote the set of minimal primes of the frame L. An application of

Zorn’s Lemma easily shows that in an algebraic frame each prime element exceeds a
minimal prime. We begin by recalling a well known characterization of the minimal

primes. A proof of the following lemma appears in [17].

Lemma 2.1. Suppose L is an algebraic frame possessing the FIP. Then p ∈
Spec(L) is minimal if and only if

p =
∨
{c⊥ : c ∈ k(L), c 66 p}.
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Remark 2.2. It is a routine matter to verify that, in any algebraic frame, each
polar is an infimum of minimal primes.

Definition & Remarks 2.3. Here is a recapitulation of the main result in [17,
Theorem 2.4]. We say that an algebraic lattice L has the compact splitting property,

abbreviated CSP, if every compact element of L is complemented. [17, Theorem 2.4]
asserts that an algebraic frame L has the CSP if and only if L has the FIP and every

prime is minimal.
[23, Theorem 2.4] shows that the above two conditions are, in turn, equivalent to

the regularity of the frame. We will review the concept of a regular frame in 2.5
below.

In [17] and again in [23, 3.5] the reader may find examples showing that both the
conditions listed are needed in the theorem cited above.

Now here are the main definitions of the paper.

Definition & Remarks 2.4. Let L be an algebraic frame. The length of a

chain of primes p0 < p1 < . . . < pn is the number n. The dimension of L, written
dim(L), is the maximum of the lengths of chains of primes, if such a maximum exists,
and ∞ otherwise.
This is in the spirit of Krull dimension in the ring theory, indeed. However, since

this dimension will be applied to a number of different structures associated with a
given algebraic frame, one ought to resist calling it Krull dimension.

Definition & Remarks 2.5. (a) Suppose that L is a frame. Define a ∈ L to

be well below b ∈ L if a⊥ ∨ b = 1; if so we write a � b. a ∈ L is regular if

a =
∨
{x ∈ L : x � a}.

L is regular if each a ∈ L is regular. This terminology is adapted from topology. Let
X be a topological space, and suppose that O(X) denotes the frame of open sets,
with respect to union and infimum defined as

∧
S = int

X

(⋂
S

)
.

Then O(X) is regular if and only if X is regular in the familiar sense.
(b) [23, Theorem 2.4(a)] shows that an algebraic frame is regular if and only if it

satisfies the CSP.
(c) Finally, note that if a � b then a⊥⊥ 6 b.

The following simple proposition defines h(L); in an algebraic frame with the FIP
it is the largest element x such that ↓ x is regular. The proofs of Proposition 2.6 and

Theorem 2.8 may be found in [21].
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Proposition 2.6. Suppose that L is an algebraic frame. Define

h(L) =
∧

c∈k(L)

c ∨ c⊥.

Then ↓ h(L) is a regular frame. If L also has the FIP and x ∈ L is such that ↓ x is

regular, then x 6 h(L).

Definition & Remarks 2.7. Throughout this commentary L denotes a fixed

algebraic frame with the FIP. The element h(L) defined in Proposition 2.6 will be
referred to as the regular top of L.

(a) We sketch now the construction of a transfinite sequence in L. h1(L) ≡ h(L);
assuming that β is an ordinal and that hα(L) is defined for each ordinal α < β, let

hβ(L) =
∨

α<β

hα(L)

if β is a limit ordinal. Otherwise (if β0 precedes β), let

hβ(L) = h(↑ hβ0(L)).

This produces a sequence 0 = h0(L) 6 h1(L) 6 . . . 6 hβ(L) 6 . . . of elements of L

such that each interval

(↓ hβ+1(L)) ∩ (↑ hβ(L))

is a regular frame.

We shall call the above sequence the canonical regular interval series of L (or

cris(L)).

(b) The cris(L) terminates; that is, there is an ordinal τ such that hτ (L) =
hτ+1(L) = . . .. If 1 = hτ (L) (for some τ) we shall say that L is a limit-regular
frame.

Next, we have a characterization of limit-regular frames with FIP. Recall that a
frame homomorphism is a map between frames which preserves all suprema and all
finite infima. The proof hinges on the well known fact that the image under any

frame homomorphism of a regular frame is again regular.
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Theorem 2.8. Suppose that L is an algebraic frame with the FIP. Then L is

limit-regular if and only if there is a transfinite sequence

(†) x1 6 x2 6 . . . 6 xβ 6 . . .

such that xτ = 1 for some τ , xβ = ∨α<βxα for each limit ordinal β, and

(↓ xβ+1) ∩ (↑ xβ)

is regular for each ordinal β.

Remark 2.9. Assume that L is a limit-regular algebraic frame with the FIP.

(a) A sequence (xβ) such as in (†) of Theorem 2.8 is referred to as a regular interval
series. The theorem may be reasonably interpreted as stating that the cris(L) is the
maximum among regular interval series.
Now the index of a regular interval series (xβ) is the least ordinal τ for which

1 = xτ . The regular index of L, denoted Reg(L), is the least of the indices among all
regular interval series. Theorem 2.8 implies that Reg(L) is the index of the cris(L).
To underscore, to say that Reg(L) = τ is to say that hτ (L) = 1, but xα < 1 for

all α < τ and all regular interval series (xβ).
(b) Reg(L) could be a limit ordinal. However, if L is compact (and therefore

coherent) then it is a successor ordinal.

Finally, in this section we have a connection with dimension. We sketch the easy

induction proof.

Corollary 2.10. Let L be an algebraic frame with the FIP such that Reg(L) =
n + 1 (with n a nonnegative integer). Then dim(L) 6 n.
���������

. For n = 0 we have a regular frame in L. Thus dim(L) = 0 by 2.5(b).
Assume that n > 0 and Reg(L) = n + 1; denote h = hn(L). By assumption we have
that Reg(↓ h) = n and ↑ h is regular. By the inductive hypothesis, dim(↓ h) 6 n−1.
Now, if p0 < p1 < . . . < pk is a sequence of primes, we must have pi > h for each
i > n, and then it follows that k 6 n. Thus, dim(L) 6 n. �

Remark 2.11. (a) One would like to conclude in Corollary 2.10 that dim(L) = n

when Reg(L) = n + 1. In general this is false. We shall give an example of an
algebraic frame of dimension 1 for which Reg(L) = 3; see Example 5.12. For now,
we have the corollary following these comments. The proof is easy, and an imitation
of that of [18, Proposition 1.11]; we therefore omit it.

(b) A word of caution though: there are examples of algebraic frames L of dimen-
sion 1 for which h(L) = 0; in particular, these frames are not even limit-regular. In
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[7, §52] one may find an account of the free abelian lattice-ordered groups, and the

relevance of that information here lies in [7, Corollary 52.17], which states that for
the algebraic frame C (F ) of the free abelian `-group on two generators the dimension
is 1. On the other hand, it is well known that h(C (F )) = 0; see [19, Proposition 2.4].

Corollary 2.12. Suppose that L is an algebraic frame with the FIP. If Reg(L) = 2
then dim(L) = 1.

3. Good vs. bad supplements

Our aim in this section is to calculate the dimension of an algebraic frame without

reference to primes. As a companion to dimension it is convenient to consider the
following measuring standard on compact elements.

Definition & Remarks 3.1. Suppose that L is an algebraic frame and a0 <

a1 < . . . < ak is a chain of compact elements of L. We say that it is a dominance
chain of length k if there is a prime p of L such that, in ↑ p,

p < a0 ∨ p < . . . < ak ∨ p.

The dominance of L, denoted dom(L), is the supremum of the lengths of dominance
chains of L.

A companion definition: a chain a0 < a1 < . . . < an < . . . is an ascending

dominance chain if there is a prime p such that

p < a0 ∨ p < . . . < an ∨ p < . . . .

If p0 < p1 < . . . < pk is a chain of primes, we may find, for each i = 0, 1, . . . , k, a
compact element ai such that ai 6 pi+1 for each i = 0, 1, . . . , k − 1, and ai 66 pi for

each i = 0, 1, . . . , k. Without loss of generality we may assume that a0 < a1 < . . . <

ak. It is then easy to see that p0 < a0∨p0 < . . . < ak∨p0, so that a0 < a1 < . . . < ak

is a dominance chain. Thus, dim(L) 6 dom(L).
In Proposition 3.4 we provide a reasonable sufficient condition for the reverse

inequality to hold. Let us first record a definition.

Definition & Remarks 3.2. Let L be an algebraic frame. We say that L has

the disjointification property (or, simply, that L is a frame with disjointification) if
for each pair of compact elements a, b ∈ L there exist disjoint c, d ∈ k(L) such that

1. c 6 a and d 6 b, and
2. a ∨ b = a ∨ d = c ∨ b.
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In Section 5 and subsequent sections we shall encounter some natural examples of

algebraic frames with disjointification.

The reader who knows the frame-theoretic terminology in this regard will recognize
the hand of “normality” in the above. Recall that a frame L is normal if for each pair

x, y ∈ L such that x ∨ y = 1 there exist disjoint a and b such that a ∨ x = 1 = b ∨ y.
Further, L is coherently normal if ↓ a is normal for each a ∈ k(F ). It is obvious
that the disjointification in an algebraic frame L implies coherent normality, and if
L possesses the FIP then the converse is also true. We emphasize that compactness

(of 1) is not assumed here.

For the proof of Proposition 3.4 the following lemma is a must. When the condition
in the lemma is satisfied it is said that k(L) is relatively normal. One also says that
Spec(L) is a root system. This lemma is apparently due to Monteiro ([24]); see also
[25, Lemma 2.1], where a proof is given.

Lemma 3.3. Suppose that L is an algebraic frame with disjointification. Then,

for any p ∈ Spec(L), ↑ p is a chain. The converse is true if L has the FIP.

Proposition 3.4. Suppose that L is an algebraic frame with disjointification.

Then dim(L) = dom(L).
���������

. What remains to be shown is that dom(L) 6 dim(L). To this end
suppose that a0 < a1 < . . . < ak is a dominance chain. As p < ai ∨ p, we may select

a prime pi > p which is maximal with respect to ai−1 ∨ p 6 pi and ai ∨ p 66 pi (for
each i = 1, . . . , k) and a0 ∨ p 66 p0. Since ↑ p is a chain, we have

p 6 p0 < a0 ∨ p 6 p1 < . . . 6 pk < ak ∨ p.

In particular, p0 < p1 < . . . pk, which proves that dom(L) 6 dim(L), as claimed. �

The following is a corollary of the proof of Proposition 3.4.

Corollary 3.5. Suppose that L is an algebraic frame with disjointification. Then

Spec(L) satisfies the ascending chain condition if and only if there are no ascending
dominance chains in L.

Next, a comment which also introduces the framework for a primefree version of
dominance. First a general definition.

Definition 3.6. Suppose that L is an algebraic frame and a 6 c are compact
elements. We say that b ∈ k(L) supplements a for c if a ∨ b = c.
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Definition & Remarks 3.7. Throughout this commentary L denotes a fixed

algebraic frame which possesses the FIP.

Suppose that we have compact elements 0 < a0 < . . . < ak in L and F1, . . . , Fk is
a collection of finite subsets of k(L). We say that F1, . . . , Fk is a supplementing array

for the ai if for each i = 1, . . . , k, each c ∈ Fi supplements ai−1 for ai.
The supplementing array F1, . . . , Fk for the ai is good if

a0 ∧
(∧

F1

)
∧ . . . ∧

(∧
Fk

)
> 0.

Otherwise, F1, . . . , Fk is called a bad supplementing array.

We make a number of observations about supplementing arrays:
1. Some of the Fi above may be empty.
2. Given 0 6 a 6 b ∈ k(L) and compact elements 0 6 c1, c2 6 b which supplement

a for b, then c1 ∧ c2 also supplements a for b. This implies that if there is a bad
supplementing array for the ai, then there is one for which |Fi| 6 1 for each
i = 1, . . . , k.

3. If F1, . . . , Fk and G1, . . . , Gk are supplementing arrays for the ai, then so is

F1 ∪G1, . . . , Fk ∪Gk.
4. Finally, if F1, . . . , Fk is a supplementing array for the ai with |Fi| 6 1, then by
definingGi to be Fi if Fi 6= ∅, andGi = {ai} otherwise, we have a supplementing
array G1, . . . , Gk, for which |Gi| = 1 for each i = 1, . . . , k, and which is good if

and only if the original one is.
Concluding these remarks, if there is a bad supplementing array for the ai, then

there is a bad supplementing array F1, . . . , Fk for the ai for which |Fi| = 1 for
each i = 1, . . . , k.

The connection between supplementing arrays and the dimension of L is the fol-
lowing.

Theorem 3.8. Suppose that L is an algebraic frame with the FIP and disjoin-

tification. Then dim(L) = k if and only if

(a) for each chain of compact elements a0 < a1 < . . . < am with the property that

every supplementing array for it is good we have m 6 k, and

(b) there exists a chain of compact elements of length k for which every supple-

menting array is good.
���������

. It suffices, by Proposition 3.4, to show that a chain 0 < a0 < . . . < ak

of compact elements is a dominance chain if and only if every supplementing array
for the ai is good.

On the one hand, suppose that 0 < a0 < . . . < ak is a dominance chain in L.
There is a minimal prime p such that p < a0 ∨ p < . . . < ak ∨ p. This means that
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ai 66 ai−1 ∨ p for each i = 1, . . . , k, which, in turn, implies that ai 66 ai−1 ∨ c for each

compact element c 6 p. Putting it differently, if ai 6 ai−1 ∨ c with c ∈ k(L), then
c 66 p. Thus, if F1, . . . , Fk is a supplementing array for the ai, we have that

a0 ∧
(∧

F1

)
∧ . . . ∧

(∧
Fk

)
66 p,

whence it is clear that the array is good.

Conversely, suppose that every supplementing array for the ai is good. Consider
the set S defined as follows:

S =
{(∧

F1

)
∧ . . . ∧

(∧
Fk

)
: F1, . . . , Fk is a supplementing array for the ai

}
.

Since all supplementing arrays for the ai are good, 0 /∈ S. Moreover, in view of the
comment in 3.7.3, it is clear that S is closed under finite meets. Thus, S is a filter

base of compact elements which meet a0 nontrivially. Applying [17, Lemma 2.5],
there is a minimal prime q such that a0 66 q and each c ∈ S ⇒ c 66 q. We leave it

to the reader that the prime q witnesses that 0 < a0 < a1 . . . < ak is a dominance
chain in L. �

4. d-Elements and z-Elements

In this section we interpret Proposition 3.4 and Theorem 3.8 for the frames of
d-elements and z-elements.

We begin with a review of the basics on d-elements, and, in the second part of
the section, follow with a similar review of z-elements; for additional information we

refer the reader to §5 and §6 of [23]. Throughout it is assumed that L is an algebraic
frame.

If j is any closure operator on L we denote by fix(j) the set of all x ∈ L for which
j(x) = x.

Definition & Remarks 4.1. a ∈ L is a d-element if

(†∗) a =
∨
{c⊥⊥ : c 6 a, c ∈ k(L)},

dL denotes the subset of all d-elements of L. It is easy to see that a ∈ dL if and
only if c 6 a, with c compact, implies that c⊥⊥ 6 a. There is an associated closure

operator, given by
d(x) =

∨
{c⊥⊥ : c 6 x, c ∈ k(L)},

for each x ∈ L.
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Let us summarize the principal features of d; for amplification the reader is referred

to §4 and §5 in [23]:
(i) d is a closure operator; if L also has the FIP then, as a consequence of the
identity

(x ∧ y)⊥⊥ = x⊥⊥ ∧ y⊥⊥,

one also has d(x ∧ y) = d(x) ∧ d(y). Since fix(d) = dL, the upshot is that dL is
an algebraic frame; note that

k(dL) = {a⊥⊥ : a ∈ k(L)}.

(ii) For each c ∈ k(L) we have d(c) = c⊥⊥.

For the remainder of this commentary, assume that L has the FIP.
(iii) The term “prime d-element” is unambiguous; it refers to a d-element which

is prime in L ([23, 5.1(iii)]). Note that a minimal prime element of L is a
d-element.

(iv) Using 2.5(b) and [23, Proposition 5.2] we conclude that the following are equiv-
alent.

(a) dL is regular.
(b) For each pair of compact elements a 6 c in L there is a compact b ∈ L such
that a ∧ b = 0 and (a ∨ b)⊥⊥ = c⊥⊥.

(c) Every prime d-element is a minimal prime.
(d) For any d-element x, any prime p which is minimal in ↑ x is a minimal prime.

If dL is a regular frame then we call L d-regular, following the usage in [11],
[12].

Theorem 3.8 reads as follows in dL. Since the closure operator d preserves dis-
jointness, (a) follows. We leave the translation of the rest to the reader.

Theorem 4.2. Suppose that L is an algebraic frame with the FIP and disjoin-

tification.

(a) dL has disjointification.

(b) dim(dL) 6 k if and only if for each chain a0 < a1 < . . . < ak+1 of nonzero

compact elements of L, there exist b1, . . . , bk+1 ∈ k(L) such that (ai∨bi+1)⊥⊥ =
a⊥⊥i+1 for each i = 0, 1, . . . , k, and

a0 ∧ b1 ∧ . . . ∧ bk+1 = 0.

Next, we present a brief review of z-elements, once again following [11], [12]. We
do it in two parts, discussing archimedean lattices first.
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Definition & Remarks 4.3. (a) With x ∈ L we say that m < x is maximal

under x if m is maximal in ↓ x. Denote the set of elements which are maximal
under x by Max(x). There should be no confusion issuing from the convention that
Max(L) ≡ Max(1). In the sequel we will also be interested in such relatively maximal
elements for an interval ↑ y (with y 6 x ∈ L). Maxy(x) will denote the set of elements
which are maximal under x in the lattice ↑ y.

Owing to [23, Lemma 4.6], the elements of Max(x) are in a one-to-one correspon-
dence with

{p ∈ Spec(L) : x 66 p and p is maximal with this property}.

(b) L is an archimedean lattice if, for each c ∈ k(L),
∧

Max(c) = 0. This concept
first appeared in [17].

We say that x ∈ L is upper-archimedean if ↑ x is archimedean. Denote the set of

all upper-archimedean elements of L by a↑(L). Observe that if L is compact then L

is archimedean if and only if
∧

Max(L) = 0. Thus, if L is compact then x ∈ a↑(L)
precisely when x is an infimum of maximal elements of L.

Definition & Remarks 4.4. [23, Lemma 6.2] guarantees that there is a closure
operator ar on L which preserves finite infima, such that fix(ar) = a↑(L). Note that
ar(0) = 0 if and only if L is archimedean. Also, if L is archimedean then a↑(L)
contains all polars of L ([23, 6.3(a)]). If L is compact then, in view of the comments

in 4.3(c),

ar(x) =
∧
{m ∈ Max(L) : x 6 m}.

Now define x ∈ L to be a z-element if c 6 x, with c ∈ k(L), implies that ar(c) 6 x.

The following features of z-elements are taken from [23, 6.3]:

(a) Assume L is archimedean. Then ar(x) 6 x⊥⊥ for each x ∈ L, and we have that

every d-element is necessarily a z-element.

(b) For any algebraic frame L we have

z(x) =
∨
{ar(c) : c 6 x, c ∈ k(L)}.

The lattice zL of all z-elements, is an algebraic lattice. If L satisfies the FIP,
then zL is a frame, also with the FIP.

(c) If L is an archimedean frame, then z(x) 6 d(x) for each x ∈ L.

(d) It follows from (a) that, for any archimedean frame L,

dim(dL) 6 dim(zL) 6 dim(L).
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In the upcoming sections we investigate the concept of dimension in a number of

contexts involving lattice-ordered algebraic structures. However, with regard to z-
dimension—the dimension of zL—we postpone any applications of Theorem 3.8 until
the exposition in [20]. Any substantial calculations involving the closure operators

ar and z, in an archimedean lattice-ordered structure, turn on the concept of uniform
convergence. A discussion of that does not really fit in the present exposition and,

with the exception of the comments in 9.1, where the subject can’t be avoided in
preparation for Theorem 9.2, we will not have anything further to say in this article

about uniform convergence.

5. The `-dimension of an `-group

Here we consider the dimension of the algebraic frame of all convex `-subgroups
of a lattice-ordered group. Our standard references for the theory of lattice-ordered

groups are [3] and [7].

Definition & Remarks 5.1. All lattice-ordered groups in this paper will

be written additively, though they are not necessarily abelian. For the record,
(G, +, 0,−(·),∨,∧) is a lattice-ordered group (abbreviated `-group) if (G, +, 0,−(·))
is a group with (G,∨,∧) as an underlying lattice, and the following distributive law
holds:

a + (b ∨ c) = (a + b) ∨ (a + c),

together with the left-right dual of the above. These then imply the corresponding
distributive laws for sum over infimum.

The elements of G for which g > 0 are said to be positive; the set of positive
elements of G is denoted by G+. For each g ∈ G, g+ = g ∨ 0 and g− = (−g) ∨ 0.
Then also |g| = g ∨ (−g) = g+ + g−.

A group homomorphism between two `-groups which is simultaneously a lattice

homomorphism is called an `-homomorphism.

We recite some of the basic information about these structures. In the sequel G
stands for an `-group.

1. The underlying lattice of an `-group is distributive ([7, Corollary 3.17]), and the

group structure is torsion free ([7, Propositions 3.15 & 3.16]).

2. G is archimedean if a, b ∈ G+ and na 6 b for each n ∈ � imply that a = 0. In
general, if na 6 b for each positive integer n, we say that a is infinitesimal with

respect to b and write a � b.

3. A subgroup of G is called an `-subgroup if it is a sublattice as well. The `-
subgroup C is convex if a 6 g 6 b with a, b ∈ C implies that g ∈ C. Let C (G)
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denote the lattice of all convex `-subgroups of G. C (G) is a complete sublattice
of the lattice of all subgroups of G ([7, Theorem 7.5]), and an algebraic frame;
the latter is due to G. Birkhoff ([7, Proposition 7.10]). C (G) possesses the FIP
([7, Proposition 7.15]) but, in general, fails to be coherent.

In C (G) the convex `-subgroup generated by a ∈ G is denoted by G(a). It
is well known that each compact element of C (G) is of this form; this follows
from the fact that every finitely generated convex `-subgroup is principal ([7,
Proposition 7.16]).

Note that G is archimedean if and only if C (G) is archimedean.
4. The polars of C (G) are also called polars in this context. We also adopt the
conventions that a⊥ ≡ G(a)⊥ for each a ∈ G; note that a⊥⊥ ≡ G(a)⊥⊥.

5. We will need this fact about the elements of Min(C (G)): there is a one-to-one
correspondence betweenMin(C (G)) and the set of all ultrafilters of positive ele-
ments. To each P ∈ Min(C (G)) one assignsG+\P . The reverse correspondence
is

U 7→
⋃
{a⊥ : a ∈ U}.

(See [7, pp. 77–79].)

6. It is well known that, for every `-groupG, C (G) is a frame with disjointification.
Indeed, if a, b > 0 in G, let c = a− (a ∧ b) and d = b − (a ∧ b); then G(c) and
G(d) witness the disjointification of G(a) and G(b). Lemma 3.3 then guarantees
that Spec(C (G)) is a root system.

7. Finally, in this series of remarks, observe that if C ∈ C (G), a natural lattice
ordering is induced on the set G/C of cosets of the form C + g (g ∈ G) by
setting

C + a 6 C + b iff a 6 g + b for some g ∈ C.

The above lattice ordering is a total ordering if and only if C ∈ Spec(C (G)). If
C is a normal subgroup then G/C is an `-group and the natural map g 7→ C +g

is an `-homomorphism. G/C is a totally ordered group if and only if C is a
normal prime in C (G).
For purposes of this paper we will assume that each `-group is rep-
resentable; that is, that G is a subdirect product of totally ordered
groups. It is well known that G is representable if and only if each polar G is

a normal subgroup, or, alternatively, if and only if each minimal prime convex
`-subgroup of G is normal. (See [7, Proposition 47.1].)

This is the appropriate place to define `-dimension.

Definition & Remarks 5.2. Let G be an `-group. We define dim`(G) ≡
dim(C (G)), and call it the `-dimension of G.
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Note that dim`(G) = 0 means that G is hyperarchimedean; that is, every `-homo-

morphic image of G is archimedean. (See [23, 3.6].) The study of hyperarchimedean
`-groups originated with Conrad in [5]; [7, Theorem 55.1] gives some of the principal
conditions which characterize a hyperarchimedean `-group; (d) of this theorem tells

us that G is hyperarchimedean if and only if C (G) has the CSP.

The goal of this section is to give an elementwise characterization of the `-groups
of finite `-dimension. Instead of adapting the language of supplementing arrays here,

we opt for a direct application of Proposition 3.4, which is less cumbersome and more
transparent.

Definition 5.3. Let G be an `-group and a0 < a1 < . . . < ak a sequence of

positive elements. It is an `-dominance chain of length k if

a0 ∧ (a1 − n1a0)+ ∧ . . . ∧ (ak − nkak−1)+ > 0

for all positive integers n1, . . . , nk.

a0 < a1 < . . . < an < . . . is an ascending `-dominance chain if

a0 ∧ (a1 − n1a0)+ ∧ . . . ∧ (ak − nkak−1)+ > 0,

for all positive integers n1, . . . , nk and every positive integer k.

Theorem 5.4. Let G be an `-group. Then dim`(G) 6 k if and only if every

`-dominance chain of G has length 6 k.
���������

. What we actually show is that if a0 < a1 < . . . < al is an `-dominance

chain, then G(a0) ⊂ G(a1) ⊂ . . . ⊂ G(al) is a dominance chain in C (G), and vice-
versa.

Indeed, suppose that a0 < a1 < . . . < al is an `-dominance chain. Then the set

S = {a0 ∧ (a1 − n1a0)+ ∧ . . . ∧ (al − nlal−1)+ : n1, . . . , nl ∈ � }

is a filter base of strictly positive elements of G, which may then be embedded in an

ultrafilter. In view of 5.1.5, there is a minimal prime of C (G), say P , that excludes
each member of S. Then, in the totally ordered group G/P , we have

P < P + a0 � . . . � P + al.

Clearly, P ⊂ P + G(a0) ⊂ . . . ⊂ P + G(al), proving that G(a0) ⊂ . . . ⊂ G(al) is a
dominance chain of C (G).
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Conversely, suppose that G(a0) ⊂ . . . ⊂ G(al) is a dominance chain of C (G). First,
we may assume that 0 < a0 < . . . < al. Next, pick a prime P ∈ C (G) such that
P ⊂ P +G(a0) ⊂ . . . ⊂ P +G(al). Without loss of generality we may assume that P

is minimal. Then, since G/P is totally ordered, we have that P < P + a0 � . . . �
P + al. We leave it to the reader to check that this implies that 0 < a0 < . . . < al is
an `-dominance chain. �

The preceding theorem has a number of consequences. The first two are easy to

prove.

Corollary 5.5. If G is an `-group and dim`(G) < ∞, then the same is true of
any `-subgroup and any `-homomorphic image of G.

Indeed, if A is an `-subgroup of G, then dim`(A) 6 dim`(G), and if ϕ : G → H is

any surjective `-homomorphism, then dim`(H) 6 dim`(G).
���������

. For `-subgroups the conclusion is an immediate consequence of Theo-
rem 5.4. If ϕ : G → H is a surjective `-homomorphism, then the map N 7→ ϕ−1(N)
embeds Spec(C (H)) as a partially ordered subset of Spec(C (G)). This makes it clear
that if dim`(G) is finite then so is dim`(H).
The inequalities claimed in the corollary are now also clear. �

Recall that an `-group G is laterally σ-complete if each countable set of pairwise
disjoint elements has a supremum. We will say that G is properly laterally σ-complete

if it is laterally σ-complete and contains an infinite pairwise disjoint set.
Next we have the following.

Corollary 5.6. If dim`(G) < ∞ then G contains no `-subgroup which is properly

laterally σ-complete.
���������

. Suppose that {g1, g2, . . .} is an infinite pairwise disjoint set, lying in the
laterally σ-complete `-subgroup H . Put

an =
∨

m∈ 	
mngm, ∀n > 0.

(Interpret the supremum as being calculated in H .) We leave it to the reader to
verify that, for each integer k, a0 < a1 < . . . < ak is an `-dominance chain. This

contradicts the assumption that dim`(G) < ∞. �

Since any infinite direct product of nontrivial `-groups contains a copy of the group
of all integer-valued sequences, 
 	 , and the latter is properly laterally σ-complete,

we have, in particular:
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Corollary 5.7. Suppose that G is an `-group of finite `-dimension. Then there is

no `-subgroup of G which is `-isomorphic to an infinite product of nontrivial `-groups.

The counterpart of Corollary 3.5 and an easy adaptation of the proof of Theo-
rem 5.4 yield the following.

Corollary 5.8. Let G be an `-group. Then Spec(C (G)) satisfies the ascending
chain condition precisely when there are no ascending `-dominance chains. If this is

the case then no `-subgroup of G is properly laterally σ-complete.

���������
. (Sketch) If a0 < a1 < . . . < an < . . . is an ascending `-dominance chain,

then

S = {a0 ∧ (a1 − n1a0)+ ∧ . . . ∧ (al − nlal−1)+ : n1, . . . , nl ∈ � and each l ∈ � }

is a filter of strictly positive elements. Embed that in an ultrafilter; then proceed as
in the proof of Theorem 5.4. Apply Corollary 3.5. �

Remark 5.9. Any attempt at a converse of these results on subgroups which are
properly laterally σ-complete is hopeless. If G is any totally ordered group then it
has no `-subgroup which is properly laterally σ-complete, but there are such groups

with arbitarily long ascending chains of prime subgroups.

One can even manufacture archimedean `-groups with these properties. For exam-
ple, let G be the `-group of all sequences of integers which are eventually polynomial.

In G the subgroup S of sequences which are eventually zero is in Spec(C (G)), and
G/S has an infinite ascending chain of convex subgroups. Yet G contains no prop-

erly laterally σ-complete `-subgroups, as such a subgroup is necessarily uncountable,
whereas G is countable.

The other application we have in mind concerns f -rings. For this reason and for

later use, we review here the basic information on f -rings.

Definition & Remarks 5.10. In this commentary A stands for a commu-

tative ring with identity. A is an `-ring if it has a lattice structure such that
(A, +, 0,−(·),∨,∧) is an `-group and A+ is closed under multiplication.

1. If A is an `-ring such that a ∧ b = 0 and c > 0 imply that ac ∧ b = 0 then we
say that A is an f -ring. Assuming the Axiom of Choice, A is an f -ring if and
only if it is a subdirect product of totally ordered rings; see [3, Theorem 9.1.2].

(In the product one assumes coordinatewise operations, and the substructure is
both an `-subgroup and a subring.)
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2. The `-ring A is an f -ring if and only if each polar is a ring ideal or, equivalently,

if and only if each minimal prime of C (A) is a ring ideal [3, Theorem 9.1.2].
3. Recall that a ring A is semiprime if there are no nonzero nilpotent elements

in A. Suppose that A is an f -ring. If A is semiprime then ab = 0 if and only
if |a| ∧ |b| = 0 [3, Theorem 9.3.1]. Thus, in a semiprime f -ring the polars of

(A, +, 0,−(·),∨,∧) are annihilator ideals and conversely.
4. In a semiprime f -ring A, Min(C (A)) consists of all the minimal prime ring
ideals [3, Theorem 9.3.2].

5. Any f -ring A for which (A, +, 0,−(·),∨,∧) is archimedean, is necessarily semi-
prime. We say that an f -ring is hyperarchimedean if the additive structure is a
hyperarchimedean `-group.

It is well known, and an application of [7, Theorem 55.1], that if A is an f -ring
then it is hyperarchimedean if and only if it can be represented as a ring of real

valued functions on a set X such that the identity is associated to the constant
function 1, and each 0 < f ∈ A is represented as a bounded function which is

also bounded away from zero; that is, if 0 < f ∈ A, then there is a positive real
number r such that f(x) 6= 0 ⇒ f(x) > r.

6. Suppose that f ∈ A; if 1 < f ∨ 1 is an `-dominance chain we say that f

is unbounded ; otherwise, we say that f is bounded. The reader will easily

determine that f ∈ A+ is bounded if and only if f 6 n·1 for some positive integer
n, which conforms to the most reasonable—i.e., intuitive—interpretations of

boundedness.

Likewise, if 0 < f ∧ 1 < 1 is an `-dominance chain we call f unbounded away

from zero; otherwise, f is bounded away from zero. In the proof of Theorem 5.11
it will be claimed that if each f ∈ A is both bounded and bounded away from

zero, then A is hyperarchimedean. This follows from [9, Theorem 2.3], and
shows what is claimed in the second paragraph of 5, without appealing to the

representation.

7. If A is an f -ring we may consider convex `-subgroups which are simultaneously

ring ideals. These are called the `-ideals of A; the lattice I`(A) of all `-ideals of
A is a subframe of C (A). In fact, I`(A) is a coherent frame; see [2, Proposition
2.2] and also the discussion comprised by Lemma 4.2 of [23] and its consequences.

Now here is the application of Theorem 5.4 we had in mind.

Theorem 5.11. Suppose that A is a semprime, commutative f -ring with identity.

Then

(a) if Spec(C (A)) satisfies the ascending chain condition then every 0 < f ∈ A is

bounded;
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(b) if Spec(C (A)) satisfies the descending chain condition then every 0 < f ∈ A is

bounded away from zero;

(c) if dim`(A) is finite then A is hyperarchimedean.

���������
. (a) It suffices to show that each f > 1 in A is bounded. By way of

contradiction, suppose that 1 < f is an `-dominance chain. Then, as in the proof
of Theorem 5.4, there is a P ∈ Min(C (A))—which is also a minimal prime ideal of
the ring A—such that P + 1 � P + f in the totally ordered domain A/P . But then
also P + 1 � P + f � . . . � P + fn � . . ., which contradicts the assumption that
Spec(C (A)) satisfies the ascending chain condition.
The proof of (b) is similar, and is therefore omitted. As to (c), if dim`(A) < ∞,

then both the ascending and descending chain conditions hold for Spec(C (A)), so
that each f ∈ A+ is both bounded and bounded away from zero; this implies that A

is hyperarchimedean, as has already been explained. �

Finally, in this section, we have the example promised in 2.11.

Example 5.12. An archimedean `-group G such that dim`(G) = 1, yet for which
Reg(C (G)) = 3.

Let E be a partition of � into a countably infinite number of infinite subsets. For
each E ∈ E we enumerate E = {sE

1 , sE
2 , . . .}, with sE

1 < sE
2 < . . ., in the natural

ordering. Next, we consider the real vector space of real valued sequences generated

by
• the finitely nonzero sequences;
• the characteristic functions χE for each E ∈ E ; and
• the functions gE (E ∈ E ), g and g2, where, for each E ∈ E ,

gE(m) =

{
n if m = sE

n ,

0 otherwise,

and g(sE
n ) = n for each natural number n and each E ∈ E , and g(m) = 0

elsewhere.

The following facts are then easily verified:

1. G is an archimedean `-group for which G/S is `-isomorphic to the vector lat-
tice H generated by the eventually constant sequences and a single unbounded

sequence of integers, where S denotes the subgroup of bounded sequences in G.
2. Reg(C (H)) = 2, proving that Reg(C (G)) = 3.
3. S is the regular top of C (G).
4. All but one of the minimal primes of C (G) fail to contain S; that singular prime

is the subgroup of all sequences in G generated by S and the gE.
5. Putting the above together, one concludes that dim`(G) = 1.
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6. The d-dimension of an `-group

We retain the assumption that the `-groups be representable.

Recall that if L is an algebraic frame with the FIP, then dL denotes the algebraic

frame of all d-elements. If G is an `-group we denote d(C (G)) ≡ Cd(G); the d-

dimension of G is defined as

dimd(G) = dim(Cd(G)).

Observe that since C (G) has the FIP and disjointification, so does Cd(G).

Remark 6.1. The elements of Cd(G) will be called d-subgroups. They have been
given different names in literature; for a discussion of this see [23, Remark 5.6].

We have already recalled in 4.1(iv) a characterization of the algebraic frames L

with the FIP for which dim(dL) = 0. If G is an `-group and dimd(G) = 0—that is to
say, Cd(G) is a regular frame—we say that G is d-regular. Also in [23, Remark 5.6]
a reference is made to [6, Theorem 3.1], showing that G is d-regular precisely when

every prime d-subgroup is minimal.

Recall that an `-group G is complemented if for each 0 < a ∈ G there is a b ∈ G+

such that a ∧ b = 0 and a ∨ b is a weak order unit. G is locally complemented if

each principal convex `-subgroup is complemented. We shall express this here as
follows (leaving it to the reader to check that this condition is equivalent to local

complementation): for each pair 0 6 a 6 g in G there exists a 0 6 b 6 g such that
a ∧ b = 0 and (a ∨ b)⊥⊥ = g⊥⊥.

It is also shown in [6] that G is d-regular if and only if G is locally complemented.

In the following we will apply Theorem 4.2 to Cd(G) to obtain information about
the d-dimension of an `-group.

Among finite valued `-groups, dimd(G) 6 k has an interesting interpretation in
the root system of values. Prior to stating the result, let us review some information

about values in `-groups and set up some terminology.

Definition & Remarks 6.2. In this commentary G stands for a fixed `-group.

1. A convex `-subgroup V of G which is maximal with respect to not containing
some g ∈ G is called a value of G; we say that g has a value at V . It is well

known that values are prime subgroups. In fact, V ∈ C (G) is a value precisely
when it is a meet-irreducible element of the frame C (G); that is, V = ∩i∈ICi in

C (G) implies that V = Cj for some j ∈ I .

In addition, for a, b ∈ G+ we have G(a) ⊆ G(b) if and only if each value of a is
contained in a value of b. This is a consequence of the fact that in any algebraic
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frame L, each compact element is the infimum of meet-irreducible elements ([17,

Lemma 1.3]; for `-groups, see [7, Proposition 10.7]).
Let Val(G) denote the set of values of G.

2. A value V is said to be special if it is the only value of some g ∈ G. An element

having a single value is also called special. By a theorem of Conrad ([7, §46]),
the following are equivalent.

(a) G is finite valued; that is, every nonzero element of G has at most finitely many
values.

(b) Each g ∈ G+ can be written uniquely as

g = g1 + . . . + gn,

where gi ∧ gj = 0 for all i 6= j, with each gi special.
(c) Every value of G is special.

3. Let P be a prime convex `-subgroup of G. P is a branch point of Spec(C (G))
if there exist prime convex `-subgroups Q1 and Q2, both properly contained

in P such that P = Q1 ∨ Q2. If P is a branch point, then Q1, Q2, . . . , Qm is
a branching set for P if each Qi ⊂ P and Qi ∨ Qj = P for each i 6= j. The

branching index of P is the size of the largest branching set for P if there is
some maximum size, or ∞ otherwise. We denote the branching index of P by
br(V ).

4. Last, suppose that V0 ⊂ V1 ⊂ . . . ⊂ Vm is a chain of values in G. We will call it
adequately branched if for each i = 1, . . . , m, Vi−1 does not lie in any maximal

finite antichain of Val(G) ∩ (↓ Vi). The reader will easily verify that if each
Vi (i = 1, . . . , m) in this chain has infinite branching index, then the chain is

adequately branched.

Here is the theorem we had in mind.

Theorem 6.3. Suppose that G is a finite valued `-group. Then dimd(G) 6 k

if and only if for each adequately branched chain of values V0 ⊂ V1 ⊂ . . . ⊂ Vm, it

follows that m 6 k.
���������

. Let us first assume that there is an adequately branched chain of values
V0 ⊂ V1 ⊂ . . . ⊂ Vm. Choose, for each j = 0, 1, . . . , m, a positive special element aj

having its value at Vj . Let P be any minimal prime convex `-subgroup contained in
V0. Observe that a0 � . . . � am. We now establish that

a⊥⊥0 ⊂ . . . ⊂ a⊥⊥m

is a dominance chain in Cd(G) and appeal to Proposition 3.4 directly. To that end,
suppose that g ∈ P + and write g = g1 + . . . + gn as a sum of pairwise disjoint
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special elements; let Wi be the value of gi. Since g ∈ P it follows that Vj 6⊆ Wi for

each j = 0, 1, . . . , m and i = 1, . . . , n. Now choose s ∈ G+ to be special with value
W , such that W ⊂ Vj and W ‖ Wi for each i = 1, . . . , n; since the chain of Vj is
adequately branched, this can be done. Note that then s∧ g = s∧ aj−1 = 0, whence
s∧ (aj−1 + g) = 0, while s � aj . All this implies that aj /∈ (aj−1 + g)⊥⊥, and hence

d(G(aj−1) ∨ P ) ⊂ d(G(aj) ∨ P ).

This proves that a⊥⊥0 ⊂ . . . ⊂ a⊥⊥m is a dominance chain in Cd(G), as claimed.
Conversely, suppose that a⊥⊥0 ⊂ . . . ⊂ a⊥⊥m is a dominance chain. We shall exhibit

an adequately branched chain of values of lengthm. It is easily checked that, without
loss of generality, each of the ai may be assumed to be special, and then a0 � . . . �
am. We denote the value of ai by Vi. Now we show that V0 ⊂ V1 ⊂ . . . ⊂ Vm is
adequately branched. We shall apply Theorem 4.2.

By way of contradiction, suppose that Vj−1 lies in the maximal antichain of values

{Vj−1 = W0, W1, . . . , Wn} in Val(G) ∩ (↓ Vj). Pick a positive special element bi

having its value at Wi; do this for i > 1. Then it is easy to see that aj ∈ (aj−1 +
b1 + . . .+bn)⊥⊥, which establishes {{b1 + . . .+bn}⊥⊥} as a bad supplementing array
in Cd(G) for a⊥⊥j , contradicting the dominance. This shows that V0 ⊂ V1 ⊂ . . . ⊂ Vm

is adequately branched, as asserted. �

By the comment in 6.2.4 we have the following immediate consequence of the

preceding theorem.

Corollary 6.4. Suppose that G is a finite valued `-group. If dimd(G) 6 k then,

for each chain of values V1 ⊂ . . . ⊂ Vm such that br(Vj) = ∞ for each j = 1, . . . , m,

it follows that m 6 k.

The following comment is for the reader who is expert in the theory of `-groups.

Remark 6.5. One might be tempted to generalize Theorem 6.3 to special valued
`-groups. (For the definition of this concept the reader is referred to [7, p. 276].
It suffices to say here that in a special valued `-group the special values also play

a pivotal role, although not every value is necessarily special.) To discourage any
attempts at generalization, we observe that all Hahn groups are special valued, no

matter how complicated the root system on which they are defined, yet they are all
d-regular, that is to say, locally complemented.

Still in the realm of finite valued `-groups the following example is telling, we
believe, although how typical it is is not clear.
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Example 6.6. A finite valued abelian `-group G of d-dimension 1 having no

primes in C (G) with infinite branching index.
G is the direct sum of copies of � , indexed over the set {m1, n1, m2, n2, . . . , p},

where g = (gm1 , gn1 , . . . ; gp) is positive if there is an mi for which gmi 6= 0, and
gmj > 0 for the first such index, and if so then gnk

> 0 for each k < j; or else each
gmi = 0, and then each gni > 0 and also gp > 0. It is easily verified that G is a finite

valued `-group.
Now Spec(C (G)) consists of the following subgroups:
• P = {g ∈ G : gmi = 0, ∀ i ∈ � } and Q = {g ∈ G : gmi = 0, ∀ i ∈ � and gp = 0},
with Q ⊂ P .

• For each i ∈ � , Pi = {g ∈ G : gmj = 0, ∀ j 6 i} and Qi = {g ∈ G : gni =
0 and gmj = 0, ∀ j 6 i}.

The diagram below depicts Spec(C (G)). Note that Min(G) = {Q} ∪ {Qi : i ∈ � },
while each prime subgroup is a value, except P . On the other hand, P is the only
nonminimal prime d-subgroup; thus dimd(G) = 1.
It is also interesting to note that any chain of values which is adequately branched

must begin (at the bottom) with Q, and clearly, from the picture, cannot include

more than one of the Pi. This is what Theorem 6.3 predicts. However, each prime
in C (G) has finite branching index.

P1

||
|| CC

CC

P2

BB
BB

Q1

Q2

. . . . . . . . . . . . . . . . . . . .

P

��
��

Q

Since an infinite product of copies of � is not hyperarchimedean, we have that the
class of `-groups G for which dim`(G) = 0 is not closed under products. d-dimension
behaves differently.

Theorem 6.7. Suppose that {Gλ : λ ∈ Λ} is a family of `-groups. Let G =∏
λ∈Λ

Gλ, the direct product with coordinatewise operations. Then

dimd(G) = sup{dimd(Gλ) : λ ∈ Λ}.
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���������
. Suppose that 0 < a0 < a1 < . . . < ak is a sequence in Gλ such that

0 ⊂ a⊥⊥0 ⊂ . . . ⊂ a⊥⊥k is a dominance chain in Cd(Gλ). In G define bi by

(bi)µ =

{
0 if µ 6= λ,

ai otherwise.

We show, using Theorem 4.2, that 0 ⊂ b⊥⊥0 ⊂ . . . ⊂ b⊥⊥k defines a dominance

chain in Cd(G). Suppose, to the contrary, that g1, g2, . . . , gk ∈ G+ are such that
(bi ∨ gi+1)⊥⊥ = b⊥⊥i+1 for each i = 0, . . . , k − 1, yet b0 ∧ g1 ∧ . . . ∧ gk = 0. Then,
as the reader will easily be able to check, ((bi)λ ∨ (gi+1)λ)⊥⊥ = (bi+1)⊥⊥λ for each
i = 0, . . . , k − 1, with (b0)λ ∧ (g1)λ ∧ . . . ∧ (gk)λ = 0, which is a contradiction.
The preceding argument shows that dimd(G) > sup

λ∈Λ
dimd(Gλ).

As to the reverse inequality, it suffices to show that if 0 < x0 < . . . < xk in G

is such that 0 ⊂ x⊥⊥0 ⊂ . . . ⊂ x⊥⊥k is a dominance chain in Cd(G), then, for some
λ ∈ Λ, the polars in Gλ of the coordinates

(∆λ) 0 ⊂ (x0)⊥⊥λ ⊂ . . . ⊂ (xk)⊥⊥λ ,

define a dominance chain.

To the contrary, suppose that for each λ ∈ Λ there exists a subset of G+
λ ,

{gλ
1 , . . . , gλ

k}, such that (gλ
1 )⊥⊥, . . . , (gλ

k )⊥⊥ is a bad supplementing array in Cd(Gλ)
for the chain (∆λ). Now form elements gi ∈ G defined by (gi)λ = gλ

i for each
i = 1, . . . , k. We shall leave it to the reader to verify that g⊥⊥1 , . . . , g⊥⊥k is a bad

supplementing array in Cd(G) for the original chain of xi’s. This contradicts our
assumption about the xi, and it follows that there is an index λ ∈ Λ such that

0 ⊂ (x0)⊥⊥λ ⊂ . . . ⊂ (xk)⊥⊥λ

defines a dominance chain. This also completes the proof. �

What follows is an immediate consequence. The second claim can be proved
directly; it is mentioned in [23, 5.6(b)].

Corollary 6.8. The direct product of `-groups of d-dimension k has d-dimension

k. In particular, the direct product of d-regular `-groups is d-regular.
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7. The r-dimension of an f-ring

There are at least two obvious dimensions associated with an f -ring. In this section

we consider the r-dimension, arising from the frame of `-ideals of a commutative f -
ring. We begin with basic definitions; the reader might also refer to 5.10.7 and [23,

7.2].

Definition & Remarks 7.1. In this discussion A stands for a commutative

f -ring with identity.

(a) Recall that a convex `-subgroup of A which is also a ring ideal is called an

`-ideal. I`(A) stands for the algebraic frame of all `-ideals of A; recall that it is a
subframe of C (A).
Now I`(A) = fix(%) for the closure operator % defined on C (A) by letting %(K)

denote the `-ideal of A generated by K for K ∈ C (A); see [2, Lemma 2.2]. As
explained in [23, 7.2]„ the prime elements of I`(A) are the `-ideals r which are
prime in C (A); that is, those for which A/r is a totally ordered ring; see also [2,

Remark 2.3].

As has already been noted, I`(A) is a coherent frame and, in particular, has the
FIP. It is also easy to see that any finitely generated `-ideal is principal. Moreover,
it is well known that % preserves finite intersections, which implies that I`(A) has
disjointification.

(b) The r-dimension of A, written dimr(A), is dim(I`(A)). Applying 2.5(b),
we have the following characterization of the f -rings with r-dimension 0. See [23,
Proposition 7.3]. An f -ring with these properties is said to be `-regular. For an

f -ring A, the following are equivalent.

(i) dimr(A) = 0.
(ii) For each a > 0 in A there exist d > 0 and an idempotent e 6 ad such that

a = ea.

(iii) Each `-ideal of A is an intersection of minimal prime convex `-subgroups of A.

(iv) If r ∈ I`(A) and P is any prime convex `-subgroup which is minimal over r,
then P is a minimal prime convex `-subgroup and, in particular, an `-ideal.

(v) Each `-ideal of A is an intersection of minimal prime ideals of A.

The reader will readily observe that (ii) above implies that `-regular f -rings are

semiprime; it will follow from Corollary 7.6, in any event. However, as noted in
[23, §7], such f -rings need not be von Neumann regular, nor hyperarchimedean.

In fact, every singular f -ring and, indeed, every bounded away f -ring is `-
regular; the reader should refer to [23, §7] and [9, Theorem 2.3] for details.

Condition (ii) also implies that the class of `-regular f -rings is closed under
formation of products, as observed in [23, 7.4].
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To study the r-dimension of an f -ring we need the f -ring-theoretic version of

dominance chains.

Definition 7.2. Once again, A stands for a commutative f -ring with 1.

The sequence a0 < a1 < . . . < ak of positive elements of A is an r-dominance

chain if

a0 ∧
( k∧

i=1

(ai − riai−1)+
)

> 0,

for each r1, r2, . . . , rk ∈ A+. The length of the chain is k.

Here is the current analogue of Theorem 5.4. The proof is hardly surprising by

now, and so a sketch will suffice.

Theorem 7.3. SupposeA is a commutative f -ring with identity. Then dimr(A) 6
k if and only if every r-dominance chain of A has length 6 k.

���������
. Suppose that an r-dominance chain a0 < . . . < ak of length k exists.

Then there is a minimal prime convex `-subgroup P—which is a minimal prime in

I`(A)—such that

a0 ∧
( k∧

i=1

(ai − riai−1)+
)

> 0

for each r1, r2, . . . , rk ∈ A+. The reader will readily check that this produces a chain
of `-ideals in the totally ordered ring A/P ,

0 ⊂ %({P + a0}) ⊂ . . . ⊂ %({P + ak}),

and then one may choose primes P1 ⊂ . . . ⊂ Pk in I`(A) containing P such that

%({P + a0}) ⊆ P1/P0 ⊂ %({P + a1}) ⊆ . . . ⊆ Pk/P0 ⊂ %({P + ak}).

Thus it is clear that dimr(A) > k.

Conversely, suppose that a chain Q0 ⊂ . . . ⊂ Qk of primes in I`(A) exists. Choose
positive elements bi ∈ Qi+1 \ Qi for each i = 0, 1, . . . , k (with A = Pk+1); without

loss of generality the bi may be chosen such that b0 < b1 < . . . < bk. Then, for each
choice r1, . . . , rk > 0 in A, we have b0 /∈ Q0 and bi − ribi−1 > 0 mod Q0. Then it is

easy to verify that b0 < b1 < . . . < bk is an r-dominance chain. �

We have already observed that dimr(A) = 0 forces the ring to be semiprime.
Here is an example of a totally ordered ring with nonzero nilpotent elements and
r-dimension 1.
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Example 7.4. For starters, let B be any `-group, endowed with the zero multi-

plication. Form A = B × 
 , with coordinatewise addition and multiplication given
by the rule

(b1, m1)(b2, m2) = (m2b1 + m1b2, m1m2).

Order A lexicographically: (b, m) > 0 if m > 0, or else m = 0 and b > 0. This
defines an f -ring structure on A, in which B × {0} is the set of nilpotent elements.
(Note: the reader familiar with general algebra will recognize the product above as

that which serves to adjoin an identity to a ring, whether it already possesses one or
not.)

Next, observe that, as B bears the zero multiplication, every convex `-subgroup
of B, and hence also of A, is an `-ideal. Thus, dim`(A) = dimr(A) = dim`(B) + 1 =
dimr(B)+1. So, letting B = 
 , we have that A is totally ordered, and dimr(A) = 1.

A good deal of information about r-dimension comes out of an examination of
when the chain a < 1 is an r-dominance chain. First, let us establish an easy lemma.

Lemma 7.5. Suppose that A is a commutative f -ring with identity. Then, for

a ∈ A+, a < 1 is not an r-dominance chain precisely when %({a}) is a summand
of A.
���������

. If a < 1 is not an r-dominance chain, then there is a positive r ∈ A

such that
a ∧ (1− (ra ∧ 1)) = a ∧ (1− ra)+ = 0.

This means that 1 = (ra ∧ 1) + (1− (ra ∧ 1)) is the desired decomposition of 1 into
a sum of components in %({a}) and a⊥, respectively, whence it easily follows that

A = %({a}) + a⊥.
Conversely, suppose that A = %({a}) + a⊥ with 0 < a < 1. Then there exists

an e, necessarily idempotent, such that a ∧ (1 − e) = 0 and e 6 ra for a suitable
positive r ∈ A. Thus, a ∧ (1− ra)+ 6 a ∧ (1− e) = 0, proving that a < 1 is not an
r-dominance chain. �

Here is a corollary of the lemma, which substantiates our earlier observation that

an `-regular f -ring is necessarily semiprime.

Corollary 7.6. Let A be a commutative f -ring with 1. If a ∈ A+ is nilpotent,

then a ∧ 1 < 1 is an r-dominance chain.
���������

. If a > 0 is nilpotent then so is a∧ 1. To simplify notation, let b = a∧ 1.
If b < 1 is not r-dominant, then e 6 rb for a suitable choice of e, r ∈ A+, with

be = b. Then if k is the least integer for which bk = 0, we have bk−1 6 rbk = 0, a
contradiction. �
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The next result reveals the consequences of having a < 1 r-dominant, at least in a

semiprime f -ring: in this context, finite dimension is an all-or-nothing proposition.

Theorem 7.7. Suppose that A is a semiprime commutative f -ring with 1. Then

if a ∈ A+ with a < 1 r-dominant, it follows that

ak < ak−1 < . . . < a < 1

is an r-dominance chain for each positive integer k. Thus, if dimr(A) < ∞ then A

is `-regular.
���������

. All we need to prove is the first claim, as the second clearly follows
from the first. Now if a < 1 is r-dominant, then a ∧ (1− ra)+ > 0 for each r ∈ A+.

Owing to the semiprimeness of A, we have the following string of estimates for each
k ∈ � and all r1, r2, . . . , rk ∈ A+, the first inequality being a consequence of the

observation that if 0 6 x, y 6 1 in any f -ring, then xy 6 x ∧ y:

ak ∧
( k−1∧

i=0

(ai − ri+1a
i+1)+

)
> ak(a . . . ak−1)(1− r1a)+ . . . (1− rka)+

> a(k(k+1)/2)(1− (r1 ∨ . . . ∨ rk)a)+ > 0.

This proves that ak < . . . < a < 1 is an r-dominance chain, as claimed. �

Combining the preceding theorem with the proof of Theorem 7.3, one gets the
following corollary.

Corollary 7.8. Suppose that A is a semiprime commutative f -ring with identity.

If dimr(A) > 0 then Spec(I`(A)) fails the descending chain condition.

We now turn to the dimension of a semiprime f -ring defined by its frame of radical

`-ideals.

8. The sp-dimension of a semiprime f-ring

Definition & Remarks 8.1. In this discussion A stands for a semiprime

commutative f -ring with identity. Define the closure operator on C (A)
√

K = {a ∈ A : an ∈ %(K) for a suitable n ∈ � }
= {a ∈ A : |a|n 6 rb for suitable n ∈ � , r ∈ A+, b ∈ K+}.

From [23, Lemma 4.2] it follows that Rad`(A) ≡ fix(
√

(·)) is a coherent frame. For
every semiprime f -ring A, Rad`(A) has disjointification. Recall—see 5.10.4—that
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in a semiprime f -ring the minimal prime ideals and the minimal prime convex `-

subgroups coincide. Thus,

Spec(Rad`(A)) = Rad`(A) ∩ Spec(C (A)),

and it contains all the minimal prime ideals of A.

The sp-dimension of A is dimsp(A) ≡ dim(Rad`(A)). It should be clear that
dimsp(A) 6 dimr(A) for every A. In brief we shall have more to say about the
comparison of the various dimensions introduced thus far.

Next up is a discussion of the dominance feature in the context of Rad`(A).

Definition 8.2. Suppose that A is a semiprime commutative f -ring with 1,
and a0 < . . . < ak is a chain of positive elements. We say that it is an sp-dominance

chain if, for each choice of r1, r2, . . . , rk ∈ A+ and n1, n2, . . . , nk ∈ � ,

a0 ∧
( k∧

i=1

(ani

i − riai−1)+
)

> 0.

k is the length of the chain.

The following lemma simplifies calculations involving sp-dominance. Recall that
the commutative f -ring A with 1 is bounded if A(1), the convex `-subgroup of A

generated by 1, is A.

Lemma 8.3. Let A be a semiprime commutative f -ring with 1. Suppose 0 <

a0 < . . . < ak in A.

(a) If a0 < . . . < ak is an sp-dominance chain, then so is a0 ∧ 1 < . . . < ak ∧ 1.
(b) a0 < . . . < ak is an sp-dominance chain if and only if

a0 ∧
( k∧

i=1

(ani

i − rai−1)+
)

> 0

for each 0 6 r ∈ A and n1, n2, . . . , nk ∈ � .
(c) If a0 < . . . < ak 6 1 and

a0 ∧
( k∧

i=1

(an
i − rai−1)+

)
> 0

for all 0 6 r ∈ A and all n ∈ � , then a0 < . . . < ak is an sp-dominance chain.
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(d) Assume that A is bounded. Then a0 < . . . < ak is an sp-dominance chain if

and only if

a0 ∧
( k∧

i=1

(ani

i −mai−1)+
)

> 0

for each m, n1, n2, . . . , nk ∈ � .
���������

. Note that (c) easily follows from (a), and that (b) and (d) are routine.
We prove (a). Suppose, to the contrary, that r1, . . . , rk ∈ A+ and n1, . . . , nk ∈ �

exist such that

(a0 ∧ 1) ∧
( k∧

i=1

((ai ∧ 1)ni − ri(ai−1 ∧ 1))+
)

= 0.

Now repeatedly use the f -ring identity f = (f ∨ 1)(f ∧ 1) for f ∈ A+, multiplying
the above identity successively by (a0 ∨ 1), (a1 ∨ 1)n1 , . . . , (ak ∨ 1)nk and distributing

appropriately, to obtain

0 = a0 ∧ (a0 ∨ 1)
( k∧

i=1

((ai ∧ 1)ni − ri(ai−1 ∧ 1))+
)

> a0 ∧
( k∧

i=1

((ai ∧ 1)ni − ri(ai−1 ∧ 1))+
)

> 0,

followed by

0 = (a1 ∨ 1)a0 ∧ (an1
1 − (a1 ∨ 1)n1r1a0)+ ∧ . . . ∧ (a1 ∨ 1)n1(ank

k − rkak−1)+

> a0 ∧ (an1
1 − (a1 ∨ 1)n1r1a0)+ ∧ . . . ∧ (ank

k − rkak−1)+ > 0,

and so on to the identity

a0 ∧
( k∧

i=1

(ani

i − (ai ∨ 1)niriai−1)+
)

= 0,

which contradicts that a0 < . . . < ak is an sp-dominance chain. �

The reader should now expect what follows next; the proof is closely patterned on
that of Theorem 7.3, and we shall leave it as an exercise.

Proposition 8.4. Let A be a semiprime commutative f -ring with identity. Then

dimsp(A) 6 k if and only if every sp-dominance chain in A has length 6 k.

Now we combine the two descriptions in this section, of dimension via dominance.

The second assertion in the next corollary easily follows from the first.
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Corollary 8.5. Suppose that A is a semiprime commutative f -ring with 1. Then

if dimsp(A) = 0 then A is `-regular. Thus, dimr(A) = 0 if and only if dimsp(A) = 0.
���������

. By Lemma 7.5, it suffices to show that no a ∈ A+ with a < 1 is r-
dominant. Now, since such a chain is not sp-dominant, there is a positive r ∈ A and

an exponent n ∈ � such that a ∧ (1 − ra)+ = a ∧ (1n − ra)+ = 0; that is, a < 1 is
not r-dominant. �

It might appear that Proposition 8.4 could be used to show that products preserve
sp-dimension. This, however, is not the case. What is true is stated next; the proof

closely resembles the argument in the corresponding part of the proof of Theorem 6.7,
and is left to the reader.

Proposition 8.6. Suppose that {Aλ : λ ∈ Λ} is a family of semiprime commuta-
tive f -rings with 1; put A =

∏
λ∈Λ

Aλ. Then

dimsp(A) > sup{dimsp(Aλ) : λ ∈ Λ}.

Strict inequality is the norm in the preceding proposition; dramatically so, as we

shall presently see. Equality is achieved for 0 sp-dimension, because in that event it
coincides with r-dimension, according to Corollary 8.5.

Before proceeding to examine the sp-dimension of archimedean f -rings, we shall

give a number of examples, which we believe will assist the intuition of the reader.

Examples 8.7. (a) Let A = � [[T ]], the ring of formal power series in one variable
with real coefficients. This is a totally ordered integral domain when ordered as
follows:

f =
∞∑

n=0

rnT n > 0 ⇔ rk > 0, for the least k such that rk 6= 0.

It is well known that A is a discrete valuation ring—[1, p. 94]; thus, A is local. In

fact, its unique maximal ideal is convex. Thus, dimsp(A) = 1, and this is also the
Krull dimension. (We return to consider the relationship between Krull dimension

and the sp-dimension in the next section.)

Note that dimr(A) = ∞, while dimd(A) = 0.
(b) The result of (a) can be obtained with the following archimedean f -ring.

Consider the `-subring A of the ring of all bounded real-valued sequences, generated

by the eventually constant sequences and the sequence j(n) = 1/n. We leave it to
the reader to verify the following:
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1. A is a bounded archimedean f -ring with identity—the constant 1—in which the

only minimal prime ideal which is not maximal is P∞, the ideal of all sequences
which are eventually zero.

2. A/P∞ is a totally ordered integral domain with sp-dimension 1 and infinite
r-dimension.

3. dimsp(A) = 1, dimr(A) = ∞, while dimd(A) = 0, as A is complemented. (Recall
that an `-group G is complemented if for each 0 < a ∈ G there is a b ∈ G+ such
that a ∧ b = 0 and a ∨ b is a weak order unit.)

(c) We construct a countably infinite product A of f -rings whose sp-dimensions
are all 1, yet for which dimsp(A) = ∞. This example, though it is not archimedean,
will serve as a model for the arguments to follow in the archimedean case.

For each n ∈ � , An denotes the ring of formal power series, � [[T ]], from (a). Let

A =
∞∏

n=1
An. Denote the variable in An by Tn. For each nonnegative integer k, define

f0 = (1, 1, . . .) and
fk = (T1, T

2k

2 , . . . , T nk

n , . . .).

We verify that, for each k, fk < . . . < f1 < f0 is sp-dominant. For each coordinate

m, each g ∈ A+ and each exponent n, we have

(
fk ∧

( k∧

i=1

(fn
k−i − gfk−i+1)+

))

m

> T mk

m ∧
( k∧

i=1

(T mk−in
m − gmT mk−i+1

m )+
)

> T mk

m ∧
( k∧

i=1

(T mk−in
m − rmT mk−i+1

m )+
)

,

each rm being a suitable positive real number such that rm > gm. The reader will

now observe that, for all m > n, the last entry in the above array is strictly positive.
This shows that fk < . . . < f1 < f0 is an sp-dominance chain; it also follows that

dimsp(A) = ∞. (d) To get an archimedean example with the same behavior as the
example in (c), replace � [[T ]] in each coordinate by the example in (b), denote the
function j in the n-th coordinate by jn, and again define f0 = 1, while

fk = (j1, j2k

2 , . . . , jnk

n , . . .).

The same argument as in (c) shows that the product of such archimedean f -rings,
each of sp-dimension 1, has infinite sp-dimension.

Our next goal is the analogue of Corollary 5.6 for sp-dimension. In order to

decipher as exactly as possible why this kind of result works, we state it in a fairly
technical way. There is a simple consequence of a ∈ A+, with a < 1 not idempotent,
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which we highlight in a lemma prior to the theorem. The lemma is doubtless known,

but in this context we find it helpful to provide at least a sketch of a proof.

Lemma 8.8. Suppose that A is a semiprime commutative f -ring with identity

and 0 < a < 1 in A. If a is not idempotent, then for all n, q ∈ � there is a p ∈ �
such that (aq − nam)+ > 0 for all m > p.

���������
. Since a is not idempotent there is a minimal prime ideal p of A such

that, mod p, 1 > a > . . . > am > . . .. Now if a � 1 mod p, we may take p = 1
in the claim of the lemma. If, on the other hand, some ka > 1 mod p, then in the

field of quotients of A/p (with the natural ordering, which restricts to the given one
on A/p), p + 1 and (p + a)−m generate the same convex subgroup for every m ∈ � .
This is enough to ensure that, mod p and for any n ∈ � , 1 > nap for a sufficiently
high p, and then for all m > p. The lemma now follows easily. �

We say that an `-group G is boundedly laterally σ-complete if every countable set

of pairwise disjoint elements which has an upper bound in G has a supremum in G.

Theorem 8.9. Suppose that A is a commutative semiprime f -ring with iden-

tity, and that A is bounded. Assume that there is a countably infinite subset

{f1, f2, . . .} ⊆ A+ of pairwise disjoint elements such that

1. no fi < 1 is idempotent;
2. {f1, f2, . . .} is contained in an `-subring B of A which is boundedly laterally

σ-complete.

Then dimsp(A) = ∞.
���������

. Define, for each nonnegative integer n,

gn = f1 ∨ f2n

2 ∨ f3n

3 ∨ . . . ,

with the suprema being computed in B. Now, for every k ∈ � and r ∈ A+ we

calculate: first,

gk ∧ (gm
k−1 − rgk)+ ∧ . . . ∧ (gm

0 − rg1)+ > gk ∧ (gm
k−1 − tgk)+ ∧ . . . ∧ (gm

0 − tg1)+

for some positive integer t > r, which exists since A is bounded. Call the latter

expression a, for brevity; next, write a as a disjoint supremum:

a = 0 ∨
[ ∞∨

n=2

fnk

n ∧ (fnk−1m
n − tfnk

n )+ ∧ . . . ∧ (fm
n − tfn

n )+
]
.
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Now, invoking Lemma 8.8, we note that

fnk

n ∧ (fnk−1m
n − tfnk

n )+ ∧ . . . ∧ (fm
n − tfn

n )+ > 0

for sufficiently large n. Thus, a > 0, proving that, for any natural number k,

gk < . . . < g1 < g0 is an sp-dominance chain, and hence dimsp(A) = ∞. �

Here are some immediate consequences of Theorem 8.9.

Corollary 8.10. Suppose that A is a semiprime commutative f -ring with identity

which is also bounded. If dimsp(A) < ∞, then A contains no `-subring which is

isomorphic to the ring of bounded rational valued sequences.

Corollary 8.11. With the hypotheses of Theorem 8.9, the descending chain
condition fails in Spec(Rad`(A)).

Remark 8.12. One might wonder whether the hypothesis that A be bounded is

really needed in Theorem 8.9. It might be possible to weaken that assumption, but
not drop it entirely. The f -ring of all real sequences � 	 is von Neumann regular and
therefore `-regular, which means that its sp-dimension is also zero (by Corollary 8.5).

9. Comparison of dimensions

We turn now to a comparison of the various dimensions hitherto introduced. The
result is stated in the next theorem, which, for the most part, collects remarks made

earlier. It is here that we have to invoke some background on uniform closure.

Definition & Remarks 9.1. For the concepts of uniformly Cauchy and uni-

formly convergent sequences in an `-group we refer the reader to [16], in general, and
more specifically, regarding z-subgroups, to [11] and [12].

Let G be an abelian `-group. It is shown in [16, Theorem 60.2] that K ∈ a↑(C (G))
if and only if K is uniformly closed, provided that G is divisible. A reading of the

proof reveals that for the necessity divisibility is not required.
In particular, as is pointed out in [11], in a divisible `-group, our notion of “z-

subgroup” coincides with the concept of “z-ideal” presented there. We will not
use any of that here. Nonetheless, it seems reasonable to point out that—see [11,

Theorem 3.3]—that “z-subgroup” means the same thing as “z-ideal” in a ring of
continuous functions.

Further, and this is used in the upcoming proof, if A is an archimedean f -ring
with identity and K ∈ a↑(C (A)), then K is a ring ideal, by [13, Proposition 3.1].

We note that, once more, in the proof of this fact, the real vector lattice structure
and, indeed, divisibility is not needed.
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In the theorem, dimz(G) ≡ dim(zC (G)) for any `-group G.

Theorem 9.2. Suppose that A is a semprime f -ring. Then

dimd(A) 6 dimsp(A) 6 dimr(A) 6 dim`(A);

if, in addition, A is archimedean, then we have

dimd(A) 6 dimz(A) 6 dimsp(A) 6 dimr(A) 6 dim`(A).

���������
. Recall that any d-subgroup of A is a union over a directed supremum of

polars. Since every polar is an intersection of minimal primes in C (A), and each of
those is a prime ideal of A, we have that every polar, and hence every d-subgroup is
a semiprime ideal. That explains the first inequality in the initial claim. The others

are clear.

If A is archimedean, then, as has just been noted, K ∈ a↑(C (A)) is a ring ideal;
since A/K is an archimedean f -ring it is necessarily semiprime, which means that K

is a semiprime ideal. It is then clear that every z-subgroup is a semiprime ideal and,

thus, that the insertion of dimz(A) in the second string of inequalities is justified. �

The following corollary is intriguing; it is an immediate consequence of Theo-

rems 7.7 and 9.2.

Corollary 9.3. Suppose that A is an abelian `-group which admits a structure

making it into a commutative semiprime f -ring with identity. If dim`(A) is finite,
then A is `-regular and, consequently, also d-regular. Thus, A is complemented.

Let us now link these various dimensions to Krull dimension. Recall that the

Krull dimension of a commutative ring with identity A, written dimK(A), is the
supremum of the lengths of prime ideals.

Proposition 9.4. Suppose A is a commutative semiprime f -ring with identity.

Then dimsp(A) 6 dimK(A). If every prime ideal of A is also convex, then equality
holds.
���������

. Simply observe that if p ∈ Spec(Rad`(A)) then p is a prime ideal. �

Remark 9.5. A comment is in order concerning when prime ideals are convex in
a semiprime commutative f -ring A with 1. It is easy to check that this condition is

equivalent to

0 6 a 6 b ⇒ an = rb
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for a suitable r ∈ A and n ∈ � . This is implied by any of the n-convexity conditions

introduced by S. Larson in [15]. Recall that A is n-convex if

0 6 a 6 bn ⇒ a = rb

for suitable r ∈ A. It is well known that every ring of continuous functions is 2-
convex. The 1-convex f -rings are reasonably well understood; we refer the reader to
[8, Chapter 14] and [22].

Finally, and in spite of the length of this article, the following summary seems

appropriate. First, we give the following example, a variation on the one in 8.7(b).

Example 9.6. An archimedean f -ring which is complemented has z-dimension
1, and sp-dimension m < ∞.
We say that a sequence s(n) of real numbers is eventually k-logarithmic if there is

an integer m such that

s(n) =
1

ln(ln . . . (n))
,

k-fold, for each n > m.

Fix a positive integer m and let A be the `-subring of all bounded sequences of

real numbers generated by the eventually constant plus

j0(n) =
1
n

, j1, . . . , jm−1,

with jk eventually k-logarithmic. With the aid of a little elementary calculus, the
reader should readily verify all but the last of the following facts:

1. A is a bounded archimedean f -ring with identity, in which the only minimal

prime ideal which is not maximal is P∞ the ideal of all sequences which are
eventually zero.

2. A/P∞ is a totally ordered integral domain with sp-dimension m.

3. dimsp(A) = m, while dimd(A) = 0, as A is complemented.

4. dimz(A) = 1.

As to (4) above, let us first label M∞, the maximal ideal of sequences in A which
converge to zero. This is the only nonminimal prime z-ideal of A; it is, in fact, the

z-closure of any of the jk.

Remark 9.7. Let us consider a commutative semiprime f -ring A in light of the

foregoing discussion.

On the one hand, Theorem 7.7 surely says that r-dimension is not a suitable tool
to gauge the complexity of the ring: either the ring is `-regular, in which case all
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of the smaller dimensions considered in these pages are zero, or else dimr(A) = ∞,
which tells us very little. Thus, unless we are prepared to entertain the notion of
a dimension attached to a measure of ordinal complexity of spectra, r-dimension is
disappointing.

On the other hand, as the preceding remark points out, there are large and im-

portant classes for which the hypothesis of Proposition 9.4 is satisfied. So, if one is
classically inclined, it can be reasonably argued that the sp-dimension is the most

interesting.

Regardless, as Example 9.6 already hints at, it seems likewise reasonable to
propose—for subsequent investigations—that, regarding now an archimedean f -ring

A, it is the comparison of dimd(A) and dimz(A) and dimsp(A) which holds out the
most promise for purposes of classification.

References

[1] M.F.Atiyah and I.G.MacDonald: Introduction to Commutative Algebra. Addison-
Wesley, 1969. Zbl 0175.03601

[2] B.Banaschewski: Pointfree topology and the spectrum of f -rings. Ordered Algebraic
Structures. W.C.Holland and J.Martínez, Eds., Kluwer Acad. Publ., 1997, pp. 123–148.

Zbl 0870.06017
[3] A.Bigard, K.Keimel and S.Wolfenstein: Groupes et Anneaux Réticulés. Lecture Notes
in Mathematics 608, Springer-Verlag, Berlin-Heidelberg-New York, 1977.

Zbl 0384.06022
[4] G.Birkhoff: Lattice Theory (3rd Ed.). AMS Colloq. Publ. XXV, Providence, 1967.

Zbl 0153.02501
[5] P.F.Conrad: Epi-archimedean groups. Czechoslovak Math. J. 24 (1974), 192–218.

Zbl 0319.06009
[6] P.Conrad and J.Martínez: Complemented lattice-ordered groups. Indag. Math. (N.S.)
1 (1990), 281–297. Zbl 0735.06006

[7] M.Darnel: Theory of Lattice-Ordered Groups. Marcel Dekker, New York, 1995.
Zbl 0810.06016

[8] L.Gillman and M. Jerison: Rings of Continuous Functions. Graduate Texts Math. 43,
Springer Verlag, Berlin-Heidelberg-New York, 1976. Zbl 0327.46040

[9] A.W.Hager, C.M.Kimber and W.Wm.McGovern: Least-integer closed groups. Proc.
Conf. Ord. Alg. Struc. (Univ. of Florida, March 2001); J. Martínez, Ed.; Kluwer Acad.
Publ. (2002), 245–260. Zbl 1074.06005

[10] M.Henriksen, J.Martínez and R.G.Woods: Spaces X in which all prime z-ideals of
C(X) are either minimal or maximal. Comment. Math. Univ. Carolinae. 44 (2003),
261–294. Zbl 1067.54015

[11] C.B.Huijsmans and B. de Pagter: On z-ideals and d-ideals in Riesz spaces, I. Indag.
Math. 42, Fasc. 2 (1980), 183–195. Zbl 0442.46022

[12] C.B.Huijsmans, B. de Pagter: On z-ideals and d-ideals in Riesz spaces, II. Indag. Math.
42, Fasc. 4 (1980), 391–408. Zbl 0451.46003

[13] C.B.Huijsmans and de Pagter: Ideal theory in f -algebras. Trans AMS 269 (January,
1982), 225–245. Zbl 0483.06009

473



[14] P. J. Johnstone: Stone Spaces. Cambridge Studies in Adv. Math, Cambridge Univ. Press.
3 (1982). Zbl 0499.54001

[15] S.Larson: Convexity conditions on f -rings. Canad. J. Math. XXXVIII (1986), 48–64.
Zbl 0588.06011

[16] W.A. J. Luxemburg and A.C. Zaanen: Riesz Spaces, I. North Holland, Amsterdam-
London, 1971. Zbl 0231.46014

[17] J.Martínez: Archimedean lattices. Alg. Universalis 3 (1973), 247–260. Zbl 0272.06013
[18] J.Martínez: Archimedean-like classes of lattice-ordered groups. Trans. AMS 186 (1973),

33–49. Zbl 0298.06022
[19] J.Martínez: The hyper-archimedean kernel sequence of a lattice-ordered group. Bull.

Austral. Math. Soc. 10 (1974), 337–349. Zbl 0275.06026
[20] J.Martínez: The z-dimension of an archimedean f -ring. Work in progress.
[21] J.Martínez: The regular top of an algebraic frame. Work in progress.
[22] J.Martínez and S.D.Woodward: Bézout and Prüfer f -rings. Comm. in Alg. 20 (1992),

2975–2989. Zbl 0766.06018
[23] J.Martínez and E.R.Zenk: When an algebraic frame is regular. Alg. Universalis 50

(2003), 231–257.
[24] A.Monteiro: L’Arithmétique des filtres et les espaces topologiques. Segundo Symposium

de Matemática; Villavicencio (Mendoza). 1954, pp. 129–162. Zbl 0058.38503
[25] J.T. Snodgrass and C.Tsinakis: Finite-valued algebraic lattices. Alg. Universalis 30

(1993), 311–318. Zbl 0806.06011

Author’s address: Department of Mathematics, University of Florida, P.O.Box 118105,
Gainesville, FL 32611-8105, USA, e-mail: jmartine@math.ufl.edu.

474


		webmaster@dml.cz
	2020-07-03T15:57:50+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




