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Abstract. In this paper we establish a new local convergence theorem for partial sums of
arbitrary stochastic adapted sequences. As corollaries, we generalize some recently obtained
results and prove a limit theorem for the entropy density of an arbitrary information source,
which is an extension of case of nonhomogeneous Markov chains.
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1. Introduction and the main results

Let {Xn, Fn, n > 0} be a stochastic adapted sequence on a probability space
(Ω, F ,P), that is, {Fn, n > 0} is an increasing sequence of sub σ-algebras of F ,
and Xn is Fn-measurable. Liu, Yan and Yang proved a limit theorem for partial

sums of bounded stochastic adapted sequences (see [2]). Liu obtained a limit theorem
for multivariate function sequences of discrete random variables (see [3]). The main

purpose of this paper is to establish a new limit theorem for partial sums of stochastic
adapted sequences. As corollaries, we generalize the above results and establish

a limit theorem for the entropy density of an arbitrary information source, which
extends the case of nonhomogeneous Markov chains (see [4]).

Theorem 1. Let {Xn, Fn, n > 0} be a stochastic adapted sequence, and let
(an) be a sequence of non-negative r.v.’s defined on (Ω, F ,P). Let α > 0, and set

(1) D(α) =
{

lim
n

an = ∞, lim sup
n

1
an

n∑

k=1

E[X2
keα|Xk ||Fk−1] < ∞

}
.
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Then

(2) lim
n

1
an

n∑

k=1

{Xk − E[Xk|Fk−1]} = 0 a.e., ω ∈ D(α).

���������
. Define M0(λ) = 1 and

(3) Mn(λ) =
eλ
∑n

k=1 Xk

n∏
k=1

E[eλXk |Fk−1]
, n > 1.

Since

(4) E[Mn(λ)|Fn−1] = Mn−1(λ)E
[

eλXn

E[eλXn |Fn−1]

∣∣∣Fn−1

]
= Mn−1(λ) a.e.,

and Mn(λ) > 0, {Mn(λ), Fn, n > 0} is a non-negative martingale. By Doob’s
Martingale Convergence Theorem, lim

n
Mn(λ) = M∞(λ) < ∞ a.e. Let A = {lim

n
an =

∞}. We have

(5) lim sup
n

1
an

log Mn(λ) 6 0 a.e., ω ∈ A.

By (3) and (5) we have

(6) lim sup
n

1
an

{
λ

n∑

k=1

Xk −
n∑

k=1

log E[eλXk |Fk−1]
}

6 0 a.e., ω ∈ A.

Letting λ > 0 and λ < 0, dividing both sides of (6) by λ, we have respectively

lim sup
n

1
an

n∑

k=1

{
Xk −

log E[eλXk |Fk−1]
λ

}
6 0 a.e., ω ∈ A, λ > 0,(7)

lim inf
n

1
an

n∑

k=1

{
Xk −

log E[eλXk |Fk−1]
λ

}
> 0 a.e., ω ∈ A, λ < 0.(8)

Using the inequalities log x 6 x − 1 (x > 0), 0 6 ex − 1 − x 6 1
2x2e|x| and the

properties of the superior and inferior limits,

lim sup
n

(an + bn) 6 lim sup
n

an + lim sup
n

bn,

lim inf
n

(an + bn) > lim inf
n

an + lim inf
n

bn,
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it follows by (7) that when 0 < λ < α,

lim sup
n

1
an

n∑

k=1

{Xk −E[Xk|Fk−1]}(9)

6 lim sup
n

1
an

n∑

k=1

{
log E[eλXk |Fk−1]

λ
−E[Xk|Fk−1]

}

6 lim sup
n

1
an

n∑

k=1

{
E[eλXk |Fk−1]− 1

λ
−E[Xk|Fk−1]

}

= lim sup
n

1
an

n∑

k=1

{
E[(eλXk − 1− λXk)|Fk−1]

λ

}

6 λ

2
lim sup

n

1
an

n∑

k=1

E[X2
keλ|Xk||Fk−1]

6 λ

2
lim sup

n

1
an

n∑

k=1

E[X2
keα|Xk||Fk−1] a.e., ω ∈ D(α);

and when −α < λ < 0, it similarly follows from (8) that

lim inf
n

1
an

n∑

k=1

{Xk −E[Xk|Fk−1]}(10)

> λ

2
lim sup

n

1
an

n∑

k=1

E[X2
keα|Xk||Fk−1] a.e., ω ∈ D(α).

Letting λ ↓ 0 and λ ↑ 0 in (9) and (10) respectively, we have

lim sup
n

1
an

n∑

k=1

{Xk −E[Xk|Fk−1]} 6 0 a.e., ω ∈ D(α),(11)

lim inf
n

1
an

n∑

k=1

{Xk −E[Xk|Fk−1]} > 0 a.e., ω ∈ D(α),(12)

which implies (2). �

Corollary 1 (see [2]). Let {Xn, Fn, n > 0} be a bounded stochastic adapted
sequence, that is, there exists K > 0, such that |Xn| 6 K for all n > 0. Let
{an, n > 0} be a sequence of non-negative r.v.’s. Put

(13) Ω0 =
{

lim
n

an = ∞, lim sup
n

1
an

n∑

k=1

E[|Xk|
∣∣Fk−1] < ∞

}
.
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Then

(14) lim
n

1
an

n∑

k=1

{Xk −E[Xk|Fk−1]} = 0 a.e., ω ∈ Ω0.

���������
. Let {Xn, Fn, n > 0} be a bounded stochastic adapted sequence. Since

for α > 0

E[X2
keα|Xk ||Fk−1] 6 KeαKE[|Xk|

∣∣Fk−1],

we have Ω0 ⊂ D(α). The corollary follows directly from Theorem 1. �

Theorem 2. Let {Xn, Fn, n > 0} be a non-negative stochastic adapted sequence
for which there exist α > 0 and K > 0 such that

(15) E[X2
neαXn |Fn−1] 6 KE[Xn|Fn−1] a.e.

Set

(16) A =
{ ∞∑

n=1

Xn = ∞
}

, B =
{ ∞∑

n=1

E[Xn|Fn−1] = ∞
}

.

Then A = B a.e., and

(17) lim
n

n∑
k=1

Xk

n∑
k=1

E[Xk|Fk−1]
= 1 a.e., ω ∈ B.

Remark. If {Xn, Fn, n > 0} is a bounded non-negative stochastic adapted se-
quence, then (15) holds; if {Xn, n > 0} is a sequence of non-negative r.v.’s such
that

sup
n

E[X2
neαXn |Fn−1] < ∞, inf

n
E[Xn|Fn−1] > 0,

then (15) also holds.

���������
. If we set an =

n∑
k=1

E[Xk|Fk−1], then by (15) and Theorem 1 we

obtain (17), which implies B ⊂ A a.e. If we let an =
n∑

k=1

Xk, by the definition of the
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sets A and B and Theorem 1 we have

lim sup
n

n∑
k=1

E[Xk|Fk−1]

n∑
k=1

Xk

= 0, ω ∈ ABc,

and

lim
n

n∑
k=1

E[Xk|Fk−1]

n∑
k=1

Xk

= 1 a.e., ω ∈ ABc.

Thus we have ABc = ∅ a.e. Hence we must have A = B a.e. �

This theorem implies immediately

Corollary 2. Let {Xn, Fn, n > 0} be a bounded non-negative stochastic adapted
sequence such that 0 6 Xn 6 K, for all n > 0. Put

A =
{ ∞∑

n=1

Xn = ∞
}

, B =
{ ∞∑

n=1

E[Xn|Fn−1] = ∞
}

.

Then A = B a.e., and (17) holds.

This corollary is an extension of the Extended Borel-Cantelli Lemma (see [2]).

Corollary 3 (see [3]). Let {Xn, n > 0} be a sequence of arbitrary discrete r.v.’s
taking values in S = {t0, t1, . . .}, and let gn(x0, . . . , xn) be real functions defined on
Sn+1. Let {an, n > 1} be a sequence of non-negative r.v.’s. Let α > 0 and put

D(α) =
{

lim
n

an = ∞,

lim sup
n

1
an

n∑

k=1

E[g2
k(X0, . . . , Xk)eα|gk(X0,...,Xk)||X0, . . . , Xk−1] < ∞

}
.

Then

lim
n

1
an

n∑

k=1

{gk(X0, . . . , Xk)−E[gk(X0, . . . , Xk)|X0, . . . , Xk−1]} = 0 a.e., ω ∈ D(α).

���������
. Let Yn = gn(X0, . . . , Xn) and Fn = σ(X0, . . . , Xn). Then {Yn, Fn,

n > 0} is a stochastic adapted sequence. This corollary immediately follows from
Theorem 1. �
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2. A limit theorem for the entropy density

of an arbitrary information source

Let {Xn, n > 0} be arbitrary information source taking values in alphabet S =
{1, 2, . . . , N} with finite distributions

(18) p(x0, . . . , xn) = P (X0 = x0, . . . , Xn = xn), xi ∈ S, 0 6 i 6 n, n > 0.

Let

(19) fn(ω) = − 1
n

log p(X0, . . . , Xn), n > 0.

fn(ω) is called the entropy density of {Xn, n > 0}. Denote

(20) pn(xn|X0, . . . , Xn−1) = P (Xn = xn|X0, . . . , Xn−1).

Then

(21) p(x0, . . . , xn) = p(x0)
n∏

k=1

pk(xk|x0, . . . , xk−1).

In this case

(22) fn(ω) = − 1
n

[
log p(X0) +

n∑

k=1

log pk(Xk|X0, . . . , Xk−1)
]
.

If {Xn, n > 0} is a nonhomogeneous Markov chain taking values in the state
space S with the initial distribution

(23) p = (p(1), . . . , p(N)),

and transition matrices

(24) Pn = (pn(j|i)), i, j ∈ S, n > 0,

where pn(j|i) = P (Xn = j|Xn−1 = i), then

(25) p(x0, . . . , xn) = p(x0)
n∏

k=1

pk(xk |xk−1)

and

(26) fn(ω) = − 1
n

[
log p(X0) +

n∑

k=1

log pk(Xk|Xk−1)
]
.

The limit property of fn(ω) plays an important role in information theory (see [1]).
From Theorem 1 we can obtain easily a limit theorem for fn(ω) which holds for an
arbitrary information source.
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Theorem 3. Let {Xn, n > 0} be arbitrary information source taking values in
alphabet S = {1, 2, . . . , N} defined as before, and let fn(ω) be its entropy density.
Then

(27) lim
n

{
fn(ω)− 1

n

n∑

k=1

H [pk(1|X0, . . . , Xk−1), . . . , pk(N |X0, . . . , Xk−1)]
}

= 0 a.e.,

where H(p(1), . . . , p(N)) is the entropy of the distribution (p(1), . . . , p(N)), that is

H(p(1), . . . , p(N)) = −
N∑

k=1

p(k) log p(k).

���������
. Setting Yn = − log pn(Xn|X0, . . . , Xn−1), Fn = σ(X0, . . . , Xn) and

an = n, then {Yn, Fn, n > 0} is a stochastic adapted sequence. Using the inequality

x
1
2 (log x)2 6 16e−2, 0 6 x 6 1,

we have

E[Y 2
n e

1
2 |Yn||X0, . . . , Xn−1]

= E[(log pn(Xn|X0, . . . , Xn−1))2e−
1
2 log pn(Xn|X0,...,Xn−1)|X0, . . . , Xn−1)]

=
∑

xn

(p(xn|X0, . . . , Xn−1))
1
2 (log pn(xn|X0, . . . , Xn−1))2

6 16Ne−2, ω ∈ Ω.

Thus D( 1
2 ) = Ω. It follows from Theorem 1 that

(28) lim
n

{
1
n

n∑

k=1

Yk −
1
n

n∑

k=1

E[Yk |X0, . . . , Xk−1]
}

= 0 a.e.

Since

E[Yn|X0, . . . , Xn−1] = E[− log pn(Xn|X0, . . . , Xn−1)|X0, . . . , Xn−1](29)

= −
∑

xn

pn(xn|X0, . . . , Xn−1) log p(xn|X0, . . . , Xn−1)

= H [pn(1|X0, . . . , Xn−1), . . . , pn(N |X0, . . . , Xn−1)],

(27) follows from (22), (28) and (29). �
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Corollary 4 (see [4]). Let {Xn, n > 0} be a nonhomogeneous Markov chain
taking values in the state space S with initial distribution (23) and transition ma-
trices (24), let fn(ω) be its entropy density. Then

lim
n

{
fn(ω)− 1

n

n∑

k=1

H [pk(1|Xk−1), . . . , pk(N |Xk−1)]
}

= 0 a.e.
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