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Abstract. Suppose E is an ordered locally convex space, X1 and X2 Hausdorff completely
regular spaces and Q a uniformly bounded, convex and closed subset of M+

t (X1 ×X2, E).
For i = 1, 2, let µi ∈ M+

t (Xi, E). Then, under some topological and order conditions on E,
necessary and sufficient conditions are established for the existence of an element in Q,
having marginals µ1 and µ2.
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1. Introduction and notation

In ([7], [5]) some interesting results are proved about the existence of positive

vector measures having given marginals when the measures take their values in or-
dered locally convex spaces and KB Banach spaces. In this paper, these results are

extended to more general settings.

All vector spaces are taken over reals. For locally convex spaces and ordered locally
convex spaces, we use the notation and results from ([13]).Throughout the paper, E
is assumed to be an ordered, quasi-complete locally convex space whose positive cone

is normal and whose topology is generated by a family of semi-norms | · |p, p ∈ P

such that 0 6 x 6 y, p ∈ P ⇒ |x|p 6 |y|p ([13] 3.1, p. 215); being an ordered locally
convex space, the positive cone of E is closed ([13] p. 222).

For a completely regular Hausdorff space X , X∼ will always denote its the Stone-
Čech compactification of X ; Cb(X) and C(X∼) will denote space of all real-valued
bounded continuous functions on X and X∼ respectively. Borel subsets of X will be
denoted by B(X).
A positive countably additive bounded mapping µ : B(X) → E will be called a

measure; for every p ∈ P , this µ gives rise to a submeasure µ̇p : B(X) → [0,∞),
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µ̇p(B) = sup{|µ(A)|p : A ∈ B(X), A ⊂ B}, for every Borel set in X . This sub-

measure serves the same purpose as the p-semivariation ‖µ‖p, defined in ([10], [11]),
as they are connected by the relation µ̇p 6 ‖µ‖p 6 4µ̇p ([11], p. 158)). Since the
measure is positive, µ̇p(B) = |µ(B)|p. The submeasure is increasing, countably sub-
additive and order sigma-continuous in the sense of ([3] p. 279; also cf. [8]); it will
be called a Radon measure if, for each p ∈ P , a Borel set B in X and c > 0, there
exist a compact K and an open V in X such that K ⊂ B ⊂ V and µ̇p(V \K) 6 c.
The set of all positive Radon measures: B(X) → E will be denoted by M+

t (X, E).
Integration of real-valued function with respect to these measures will be taken in
the sense of ([11], [10]).

Suppose Y is a compact Hausdorff space and assume E is also semi-reflexive.

In this case, a positive linear mapping (automatically continuous) µ : C(Y ) → E

will give rise to a unique positive Radon measure µ : B(Y ) → E ([11], p. 163) and

conversely. Now suppose that Y is a compactification of X , a completely regular
Hausdorff space, and µ is a positive, Radon, E-valued measure on Y . If for each

p ∈ P there exists a sigma-compact C(p) ⊂ X such that µ̇p(Y \ C(p)) = 0, then µ

can be considered to be an element ofM+
t (X, E) by defining, for a Borel set B ⊂ X ,

µ(B) = µ(B0), where B0 is any Borel subset of Y such that B = B0 ∩ Y (it is easily
verified that it is well-defined). Also an element of M+

t (X, E) can be considered a
Radon measure on Y . The set of positive E-valued Radon measures on a compact
Y will be denoted by M+(Y, E). Considering M+(Y, E) to be a subspace of EC(Y ),

we take onM+(Y, E) the topology induced by the product topology on EC(Y ). If X
is completely regular Hausdorff space and Y its Stone-Čech compactification, con-

sidering M+
t (X, E) as a subspace of M+(Y, E), we take on M+

t (X, E) the topology
induced by M+(Y, E). It is easily verified that this is identical with that induced
by ECb(X) with the product topology, when M+

t (X, E) is considered a subspace of
ECb(X) (note: for a µ ∈ M+

t (X, E), if we denote it by µ̄, when considered to be an

element ofM+(Y, E), and for a function f ∈ Cb(X), denoting its extenson to Y by f

we have µ(f) = µ̄(f)). For any completely regular space X , onM+
t (X, E) we always

take the topology induced by ECb(X).

For a compact Hausdorff space Y , we will identify the elements of M+(Y, E) with
weakly compact positive linear maps from C(Y ) to E and conversely.

For i = 1, 2, let Xi be compact Hausdorff spaces and λ ∈ M+(X1 ×X2, E). For
i = 1, 2, We get λ(i) ∈ M+(Xi, E), defined by λ(1)(B) = λ(B ×X2) and λ(2)(B) =
λ(X1 ×B)) for the respective Borel sets B. This is the same as λ(1)(f1) = λ(f1 ⊗ 1)
and λ(2)(f2) = λ(1 ⊗ f2) for fi ∈ C(Xi). λ(1) and λ(2) will be called the marginals

of λ.

E′, E′′ will denote the dual and bidual of E. For an x ∈ E and f ∈ E ′, 〈x, f〉 will
stand for f(x).
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2. Main results

The next lemma reduces the discussion of marginals to compact Hausdorff spaces.

It generalizes Lemma 5.1 of ([6], p. 31); this lemma is the key result used in the
main result of ([7], Theorem 1, p. 3294). It reduces the proof of the Strassen theorem

about marginals ([14], Theorem 7) to a simple application of the separation theorem
([13], Theorem 9.2, p. 65).

Lemma 1. Suppose X1 and X2 are Hausdorff completely regular spaces and

λ ∈ M+((X1 × X2)∼, E). If the marginals of λ are in M+
t (Xi, E) (i = 1, 2), then

λ ∈ M+
t (X1 ×X2, E).

���������
. Take a p ∈ P and fix a c > 0. For i = 1, 2 let µi ∈ M+

t (Xi, E) be
the marginals of λ. Let ϕ : (X1 × X2)∼ → (X∼

1 × X∼
2 ) be the extension of the

identity mapping X1 × X2 → (X∼
1 × X∼

2 ). Because of this, C(X∼
1 × X∼

2 ) can be
considered a subspace of C((X1 × X2)∼). For i = 1, 2 take compacts Ci such that
µi(Xi \ Ci) = ui with p(ui) < c. Take fi ∈ Cb(Xi), 0 6 fi 6 1, fi > χCi . Denote

by f i, the extension of fi to X∼
i . Then, from 1 − f1f2 = 1 − f1 + f1(1 − f2), we

have 1 − f1f2 6 (1 − f1) + (1 − f2) on (X1 × X2)∼. This means λ(1 − f1f2) 6
µ1(X1 \ C1) + µ2(X2 \ C2) 6 u1 + u2. Because of the regularity of λ, taking limits
over f i as they decrease to χCi , we get λ((X1 × X2)∼ \ C1 × C2) 6 u1 + u2. This

means λ̇p((X1 ×X2)∼ \ C1 × C2) 6 2c. This proves λ ∈ M+
t (X1 ×X2, E).

A subset of E will be called absolutely convex if it is convex and circled; also, for

a completely regular Hausdorff space X , a Q ⊂ M+
t (X, E) will be called uniformly

bounded if there is a bounded set B ⊂ E such that λ(B) ⊂ B, ∀λ ∈ Q, B being the
collection of all Borel subsets of X .

Theorem 2. Suppose E is a semi-reflexive ordered locally convex space whose

positive cone is normal, X1 and X2 Hausdorff completely regular spaces and Q a

uniformly bounded, convex and closed subset of M+
t (X1 ×X2, E). For i = 1, 2, let

µi ∈ M+
t (Xi, E). Then there exists a λ ∈ M+

t (X1 × X2, E) such that λ(i) = µi,

i = 1, 2 iff for any finite collections {fi} ⊂ Cb(X1), {gi} ⊂ Cb(X2) and {hi} ⊂ E′ we

have
∑ 〈(µ1(fi) + µ2(gi)), hi〉 6 sup{∑(λ(fi ⊗ 1 + 1⊗ gi), hi), λ ∈ Q}.

���������
. Using the fact that Q is uniformly bounded, take a weakly compact,

absolutely convex subset B of E such that λ(B) ⊂ B, ∀λ ∈ Q, B being the collection
of all Borel subsets of X1 ×X2. Now assume Q is a subset of M+((X1 × X2)∼, E)
and let Q̄ be its closure.

Let U be the closed unit ball of C((X1 × X2)∼) and, for i = 1, 2, let Ui be the
closed unit ball of C(X∼

i ). Considering Q̄ ⊂ EU with product topology and with
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weak topology on E, we see that λ(U) ⊂ B, ∀λ ∈ Q̄, and so Q̄ is compact and convex.

Further the condition of the theorem holds for Q iff it holds for Q̄. For i = 1, 2,
{λ(i) : λ ∈ Q̄} is compact and convex in EUi . This means Q0 = {(λ(1), λ(2)) : λ ∈
Q̄} ⊂ EU1 × EU2 is compact and convex. If (µ1, µ2) = (λ(1), λ(2)) for some λ ∈ Q,

the condition of the theorem is trivially satisfied.

To prove the converse, we consider, for i = 1, 2, µi to be elements ofM+(X∼
i , E) ⊂

EC(X∼i ). If (µ1, µ2) /∈ Q0, then by the separation theorem ([13], 9.2, p. 65), condition

of the theorem does not hold (note that
(∏

α
Eα

)′
= ⊕αE′

α). Thus (µ1, µ2) ∈ Q0. So

there is a λ ∈ Q̄ such that (µ1, µ2) = (λ1, λ2). By Lemma 1, λ ∈ M+
t (X1 ×X2, E).

Since Q is closed, λ ∈ Q.

Remark 3. The ordered locally convex space X∗
σ , with weak topology, consid-

ered in ([7], Theorem 1, p. 3294), is semi-reflexive, since X is assumed to be barrelled.

In the above Theorem 2, we are not necessarily taking weak topology on E.

In an order complete vector lattice E, an order bounded net {xα} is said to be
order convergent to x if yβ ↓ x and zβ ↑ x, where yβ = sup{xα : α > β} and
zβ = inf{xα : α > β} ([13], p. 238).
In the next theorem we remove the condition that E is semi-reflexive but assume

that E is an order complete locally convex vector lattice such that if an order-bounded
net {xα} order converges to x ∈ E, then xα → x, in E. These assumptions on E

imply that E is a complete sublattice of E ′′ ([13], 7.5, p. 239) and order the intervals
in E are σ(E, E′) compact ([1], Theorem 11.13., p. 170). By ([13], 7.5, Corollary 1),
if E is an order complete vector lattice whose order is regular and is of minimal type,
then E with the order topology ([13], Sec. 6, p. 230) has the above property (in [13],

p. 240, examples of these spaces are given).

Theorem 4. Suppose E is an order complete locally convex vector lattice such

that if an order bounded net {xα} order converges to x ∈ E, then xα → x in E. Let

X1 and X2 be Hausdorff completely regular spaces and let µi ∈ M+
t (Xi, E) for i =

1, 2. SupposeQ is a uniformly bounded, convex and closed subset ofM+
t (X1×X2, E).

Then there exists a λ ∈ Q such that λ(i) = µi, i = 1, 2, iff for any finite collections
{fi} ⊂ Cb(X1), {gi} ⊂ Cb(X2) and {hi} ⊂ E′ we have

∑ 〈(µ1(fi) + µ2(gi)), hi〉 6
sup{∑(λ(fi ⊗ 1 + 1⊗ gi), hi), λ ∈ Q} .
���������

. Let E′′ be the bidual of E; E can be considered a subspace of E ′′. On

E′′ we take the σ(E′′, E′) topology. Since Q is uniformly bounded, take a compact,
absolutely convex subset B of E ′′ such that λ(B) ⊂ B, ∀λ ∈ Q, B being the collection
of all Borel subsets ofX1×X2. Now considerQ to be a subset ofM+((X1×X2)∼, E′′)
(note that E′′ has the σ(E′′, E′) topology) and let Q̄ be its closure; the elements of
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Q̄ are positive linear mappings from C((X1×X2)∼) to E′′. Let U be the closed unit

ball of C((X1 × X2)∼), and for i = 1, 2, let Ui be the closed unit ball of C(X∼
i ).

Considering Q̄ ⊂ (E′′)U with product topology, we see that λ(U) ⊂ B, ∀λ ∈ Q̄ and
so Q̄ is compact and convex. Moreover the condition of the theorem holds for Q iff

it holds for Q̄. For i = 1, 2 {λ(i) : λ ∈ Q̄} is compact and convex in (E ′′)Ui .

This means Q0 = {(λ(1), λ(2)) : λ ∈ Q̄} ⊂ (E′′)U1 ×(E′′)U2 is compact and convex.
If (µ1, µ2) = (λ(1), λ(2)) for some λ ∈ Q the condition of the theorem is trivially

satisfied.

To prove the converse, we consider, for i = 1, 2, µi to be elements of M+(X∼
i ,

E′′) ⊂ (E′′)C(X∼i ). If (µ1, µ2) /∈ Q0, then by the separation theorem ([13], 9.2, p. 65)
the condition of the theorem does not hold. Thus (µ1, µ2) ∈ Q0. So there is a λ ∈ Q̄

such that (µ1, µ2) = (λ1, λ2). Let µ1(1) = v. This means v ∈ E and λ(1) = v.
Since E is an ideal in E′′ the order interval [0, v] in E ′′ is contained in E and is

weakly compact in E. From the positivity of λ, it follows now for every f ∈ U ,
1 > f > 0, that λ(f) ∈ [0, v]. This means λ : C((X1 × X2)∼) → E is positive and

weakly compact. Thus λ is an E-valued regular Borel measure on (X1×X2)∼ having
marginals µ1 and µ2. By Lemma 1, λ ∈ M+

t (X1 × X2, E). Since Q is closed, this

proves λ ∈ Q.

In the next theorem we establish the existence of a measure having given marginals,

which is partially supported by a given closed set. This comes easily from Hahn-
Banach type extension theroems discussed in ([12], Section 1.5, p. 43)

Theorem 5. Suppose E is an order complete locally convex vector lattice such

that if an order bounded net {xα} order converges to x ∈ E, then xα → x in E. Let

X1 and X2 be Hausdorff completely regular spaces. For i = 1, 2, let µi ∈ M+
t (Xi, E)

be such that µi(Xi) = v ∈ E; also take a γ ∈ E, 0 < γ 6 v, and a non-empty closed

subset S of X1 ×X2. Then there exists a λ ∈ M+
t (X1 ×X2, E) such that λ(S) > γ

and λ(i) = µi, i = 1, 2, iff for any open subsets Vi ⊂ Xi (i = 1, 2), the condition
(V1 ×X2) ∩ S ⊂ (X1 × V2) ∩ S implies µ1(V1) 6 µ2(V2) + v − γ.

���������
. The condition is trivially necessary. For i = 1, 2, take fi ∈ Cb(Xi) such

that f1(x) + f2(y) > 0 on X1 ×X2 and f1(x) + f2(y) > 1 on S. We claim that this
condition implies that µ1(f1) + µ2(f2) > γ. By adjusting constants in f1 and f2, we

can assume that fi > 0 on Xi, i = 1, 2. To prove the claim, we can replace fi by
inf(fi, 1). Thus we assume 0 6 fi 6 1.
Define, for any real t, 0 6 t 6 1, U1,t = {x ∈ X1 : 1 − f1(x) > t}, U2,t = {y ∈

X2 : f2(y) > t}. By the given condition, µ1(U1,t) 6 µ2(U2,t)+ v−γ. Integrating, we

get
∫ 1

0 µ1(U1,t) dt 6
∫ 1

0 µ2(U2,t) dt+v−γ ([4], p. 392) and so µ1(1−f1) 6 µ2(f2)+v−γ.
This implies that µ1(f1) + µ2(f2) > γ and so the claim is proved.
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Consider µi ∈ M+(X∼
i , E). Let F = {f ∈ C((X1 × X2)∼) : f = f1 + f2, fi ∈

C(X∼
i ), i = 1, 2} (note that C(X∼

1 ×X∼
2 ) can be considered a subspace of C((X1 ×

X2)∼). F is a majorizing ([12], p. 47) subspace of C((X1×X2)∼). Define T0 : F → E,
T0(f1 + f2) = µ1(f1) + µ2(f2). T0 is a well-defined positive linear operator on

F . Define θ : C((X1 × X2)∼) → E, θ(f) = inf{T0(g); g ∈ F, g > f}. It is
easily verified that θ is monotone and sublinear and θ(f) = T0(f), ∀f ∈ F ([12],

p. 47, Corollary 1.5.9). Let K = {f ∈ C((X1 × X2)∼), f > 0, f|S > 1}. K is
convex. Define τ : K → E, τ(k) = γ, ∀k ∈ K. It is a obvious that τ is concave and

τ(f) 6 θ(f) on K. As in ([12], Lemma 1.51, p. 44), define % : C((X1 ×X2)∼) → E,
%(f) = inf{θ(f + tk) − tτ(k) : t ∈ [0,∞), k ∈ K}. As in ([12], Lemma 1.51, p. 44),
% is sublinear and % 6 θ. We claim that T0 6 % on F : fix an f ∈ F and take a
k ∈ K and a t ∈ (0,∞). For any g ∈ F with g > f + tk we have g−f

t > k and so

T0( g−f
t ) > γ. This means T0(g)− tτ(k) > T0(f), ∀t ∈ [0,∞). This proves the claim.

As proved above, the mapping T0 : F → E satisfies the condition T0 6 %. By ([12],

Theorem 1.5.4, p. 45), it can be extended to a linear mappling λ : C((X1×X2)∼) → E

such that λ 6 %. This means ([12] Lemma 1.51., p. 44), λ 6 θ and, on K, λ > τ .

Now we will prove that λ is positive. Take an f 6 0. Now λ(f) 6 θ(f) 6 θ(0) = 0
(note that θ is monotone). This proves that λ is positive. Since the order intervals in

E are weakly compact, we prove that λ : C((X1 ×X2)∼) → E is a positive, weakly
compact operator and so λ is an E-valued regular Borel measure on the compact

Hausdorff space (X1×X2)∼ having marginals inM+
t (Xi, E) (i = 1, 2). By Lemma 1,

λ ∈ M+
t (X1 ×X2, E). To prove λ(S) > γ, note λ > τ on K.

Remark 6. The assumptions made on E in the above theorem are satisfied when
E is an order complete Banach lattice which is a KB-space ([12], Theorem 2.4.12,

p. 92). So, in our setting, the above theorem is a generalization of ([5], Theorem 2).

We are very thankful to the referee for pointing out some typographical errors and

also making some very useful suggestions which have improved the paper.
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