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Abstract. In this paper we characterize all prime and primary submodules of the free
R-module Rn for a principal ideal domain R and find the minimal primary decomposition of
any submodule of Rn. In the case n = 2, we also determine the height of prime submodules.
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1. Introduction

Throughout this note all rings are commutative with identity and all modules are
unitary.

Let S be a ring andM an S-module. A proper submodule N ofM is called a prime
submodule if sm ∈ N for s ∈ S and m ∈ M implies that m ∈ N or s ∈ (N : M),
where

(N : M) = {t ∈ S : tM ⊆ N}.

The following lemma is well-known (see for example [2]).

1.1 Lemma. Let N be a submodule of an S-module M . Then

i) N is a prime submodule of M if and only if P = (N : M) is a prime ideal of S
and the S/P -module M/N is torsion-free.

ii) If (N : M) is a maximal ideal of S, then N is a prime submodule of M .

iii) If N is a maximal submodule of M , then N is a prime submodule of M .

Let K be a prime submodule of an S-module M . It is said that K has height n

for some non-negative integer n, if there exists a chain

Kn ⊂ Kn−1 ⊂ . . . ⊂ K1 ⊂ K0 = K
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of prime submodules Ki (0 6 i 6 n) of M , but no longer such chain.

Let M be a module over a ring S. Recall that a proper submodule Q of M is a

primary submodule provided that for any s ∈ S and m ∈ M , sm ∈ Q implies that
m ∈ Q or sn ∈ (Q : M) for some positive integer n.

Let Q be a primary submodule of M , then the radical of the ideal (Q : M) is a
prime ideal of S, [4]. If P =

√
(Q : M), then Q is called a P -primary submodule

of M .

A submodule N of M has a primary decomposition if N = Q1 ∩ . . . ∩ Qt with

each Qi a Pi-primary submodule of M for some prime ideal Pi. If no Qi contains
Q1 ∩ . . .∩Qi−1 ∩Qi+1 ∩ . . .∩Qt and if the ideals P1, . . . , Pt are all distinct, then the

primary decomposition is said to be minimal.

It is known that every prime ideal of the ring S1×S2× . . .×Sn, where Si is a ring
(1 6 i 6 n), is of the form S1× . . .×Si−1×Pi×Si+1× . . .×Sn for some prime ideal

Pi of Si, [3]. Now it is natural to ask about the prime submodules of the S-module
Sn for an arbitrary ring S.

Tiras and Harmanci in [5] studied prime submodules of the R-module R×R for a

principal ideal domain (PID) R and investigated the primary decomposition of any
submodule of R × R. In Section 2 we will characterize all prime submodules of Rn

where R is a PID and n > 2 is a positive integer. In Section 3 we find the height of
prime submodules of R×R for a PID R. Finally, the primary decomposition of any

submodule of Rn is discussed in Section 4.

2. Prime submodules of Rn

In this section R denotes a principal ideal domain and M the free R-module Rn

for some positive integer n > 2.

Let N be a non-zero submodule of M . There exist a basis {x1, . . . , xn} of M and
non-zero elements d1, . . . , dr (r 6 n) of R such that N = Rd1x1 + . . . + Rdrxr, [4].
Therefore any submodule of M can be generated by n elements.

Let N = Ra1 + . . . + Ran be a submodule of M . Suppose that ai = (ai1, . . . , ain)
(1 6 i 6 n). Put A = (aij) ∈ Mn×n(R) and ∆ = det A. Let A′ = (a′ij) be the adjoint
matrix of A. Then AA′ = A′A = ∆In, where In is the identity of the ringMn×n(R).
By considering all possible choices of ∆, we will characterize prime submodules of
M . First we show that ∆ is unique up to multiplication by a unit.

2.1 Lemma. Let N be a submodule of M . Suppose that N = Ra1 + . . . + Ran

and also N = Rb1 + . . . + Rbn for some ai, bi ∈ M (1 6 i 6 n). Let A = (aij) and
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B = (bij) be as above. Then
det A = u(det B)

for some unit u of R.
���������

. For each 1 6 i 6 n, there are cij ∈ R (1 6 j 6 n) such that ai =
n∑

j=1

cijbj . Let C = (cij) ∈ Mn×n(R). Then A = CB. Therefore

det A = det(CB) = (det C)(det B)

and hence det B divides det A. By symmetry det A divides det B. Thus det A =
u(det B) for some unit u ∈ R, as required. �

Now we consider the submodules ofM with non-zero ∆. For our purpose we need
the following result.

2.2 Proposition. LetN = Ra1+. . .+Ran be a submodule ofM and let A = (aij)
be as above. If ∆ = det A 6= 0, then

N =
{

(x1, . . . , xn) ∈ M : ∆ divides
n∑

i=1

xia
′
ij (1 6 j 6 n)

}
,

where A′ = (a′ij) is the adjoint matrix of A. Moreover, ∆M ⊆ N .
���������

. Let

K =
{

(x1, . . . , xn) ∈ M : ∆ divides
n∑

i=1

xia
′
ij (1 6 j 6 n)

}
.

Then K is a submodule of M . Since AA′ = ∆In, we have ai ∈ K (1 6 i 6 n)
and hence N ⊆ K. On the other hand, suppose that (x1, . . . , xn) ∈ K. There is
(y1, . . . , yn) ∈ M such that

(x1, . . . , xn)(a′ij) = ∆(y1, . . . , yn).

Therefore

∆(x1, . . . , xn) = (x1, . . . , xn)(a′ij)(aij) = ∆(y1, . . . , yn)(aij).

Since ∆ 6= 0, we have (x1, . . . , xn) = (y1, . . . , yn)(aij). Thus (x1, . . . , xn) = y1a1 +
. . . + ynan ∈ N . Consequently, K = N . Now the last assertion follows immediately
from the equality. �

643



2.3 Corollary. Let N = Ra1 + . . .+Ran be a submodule ofM and let A = (aij).
Then N = M if and only if ∆ = det A is a unit of R.
���������

. If ∆ is a unit of R, then by Proposition 2.2, M = ∆M ⊆ N .

Conversely, suppose that N = M . Then

N = R(1, 0, . . . , 0) + R(0, 1, 0, . . . , 0) + . . . + R(0, . . . , 0, 1).

Now Lemma 2.1 implies that ∆ is a unit of R. �

Let C ∈ Mn×n(R) and let C ′ be the adjoint matrix of C. If d = det C 6= 0, then
CC ′ = dIn implies that

d(det C ′) = (det C)(det C ′) = det(CC ′) = det(dIn) = dn.

Therefore, det C ′ = dn−1 = (det C)n−1.

Now we are ready to characterize prime submodules of M with non-zero ∆.

2.4 Theorem. Let N = Ra1 + . . .+Ran be a submodule ofM and let A = (aij).
If ∆ = det A 6= 0, then N is a prime submodule if and only if ∆ = upr for some

unit u ∈ R, a prime element p ∈ R, and a positive integer r 6 n and moreover, pr−1

divides a′ij (1 6 i 6 n, 1 6 j 6 n) where A′ = (a′ij) is the adjoint matrix of A.
���������

. First suppose that N is a prime submodule of M . Since N 6= M , by

Corollary 2.3, ∆ is not a unit of R. Assume that ∆ = st for some relatively prime
elements s, t ∈ R. Proposition 2.2 implies that st ∈ (N : M), which is a prime ideal
of R. Thus s ∈ (N : M) or t ∈ (N : M). Suppose that s ∈ (N : M). Thus for any
1 6 i 6 n, (0, . . . , 0, s, 0, . . . , 0) ∈ sM ⊆ N with s as the ith component. Therefore

by Proposition 2.2, st = ∆ divides sa′ij (1 6 j 6 n) and so t divides a′ij (1 6 j 6 n).
Hence tn divides det(a′ij) = (det A)n−1 = sn−1tn−1. Thus t divides sn−1. Since s

and t are relatively prime, t divides 1, i.e., t is a unit. Consequently, ∆ = upr for
some unit u ∈ R, a prime element p ∈ R and a positive integer r. Since ∆ ∈ (N : M)
and (N : M) is a prime ideal of R, p ∈ (N : M). As in the above case, upr divides
pa′ij (1 6 i 6 n, 1 6 j 6 n) and so pr−1 divides a′ij (1 6 i 6 n, 1 6 j 6 n). Hence
pn(r−1) divides det(a′ij) = (det A)n−1 = un−1pr(n−1). Therefore, n(r− 1) 6 r(n− 1)
and so r 6 n.
Conversely, since ∆ is not a unit, N is a proper submodule of M . We shall

show that (N : M) is a maximal ideal of R and hence by Lemma 1.1, N is a prime
submodule of M . Let (x1, . . . , xn) ∈ pM . Since pr−1 divides a′ij (1 6 i 6 n,

1 6 j 6 n), ∆ = upr divides
n∑

i=1

xia
′
ij (1 6 j 6 n). Thus (x1, . . . , xn) ∈ N and so

pM ⊆ N . Therefore, p ∈ (N : M) and hence Rp ⊆ (N : M) ⊂ R. Consequently,
(N : M) = Rp is a maximal ideal of R, as required. �
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Remark. Note that in the above theorem, if ∆ = up for some unit u ∈ R and

a prime element p ∈ R, then N is a prime submodule of M (because the second
condition holds trivially).

Now we consider the submodules of M with zero ∆.

2.5 Theorem. Let N = Ra1 + . . . + Ran be a submodule of M and let ∆ =
det(aij) = 0. Then N is a prime submodule of M if and only if N is a direct

summand of M .
���������

. Suppose that M = N ⊕K for some submodule K of M . Since ∆ = 0,
we have N 6= M . Let r ∈ R and m ∈ M be such that rm ∈ N . There are m1 ∈ N

and m2 ∈ K with m = m1 + m2. If r 6= 0, then rm2 = rm − rm1 ∈ N ∩ K = 0.
Hence m2 = 0 and so m = m1 ∈ N . It follows that N is a prime submodule of M .
Conversely, suppose that N is a prime submodule of M . There exist a basis

{x1, . . . , xn} of M and non-zero elements d1, . . . , dr of R (r 6 n) such that N =
Rd1x1 + . . .+Rdrxr . Suppose that xi = (xi1, . . . , xin) (1 6 i 6 n), then det(xij ) = u

is a unit of R. If r = n, then det(dixij) = d1 . . . dnu 6= 0, which is impossible (because
N = Ra1 + . . .+ Ran = Rd1x1 + . . .+ Rdnxn implies that 0 = det(aij) = det(dixij),
by Lemma 2.1). Therefore r < n. Note that dixi ∈ N and diM 6⊆ N , thus xi ∈ N

(1 6 i 6 r). Hence N = Rx1 + . . . + Rxr. Let K = Rxr+1 + . . . + Rxn. Then

M = N ⊕K. �

3. Some special cases

In this section we consider the module M = R ×R over a principal ideal domain
R.

Let N be a submodule of M . There are elements a, b, c, and d of R such that

N = R(a, b)+R(c, d). Let A =
(

a b

c d

)
and ∆ = det A = ad− bc. Then the adjoint

matrix of A has the simple form

(
d −b

−c a

)
. Therefore we have the following result.

3.1 Proposition. Let N = R(a, b) + R(c, d) be a submodule of M and ∆ =
ad− bc 6= 0. Then

N = {(x, y) ∈ M : ∆ divides both ay − bx and cy − dx}.

Let N = R(a, b)+R(c, d) be a submodule of M and let ∆ = ad− bc 6= 0. If N is a
prime submodule of M , then Theorem 2.4 implies that ∆ = up or ∆ = up2 for some
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unit u ∈ R and a prime element p ∈ R. In the case ∆ = up2, p = p2−1 must divide

the entries of the adjoint matrix of

(
a b

c d

)
. Therefore p divides a, b, c and d and

hence N ⊆ pM . On the other hand, up2 ∈ (N : M), which is a prime ideal of R.
Thus p ∈ (N : M) so that pM ⊆ N . Hence N = pM and by [5, Proposition 2.4], N

is of height one. The height of prime submodules ofM with ∆ = up will be discussed
later.

3.2 Lemma. Let N = R(a, b) + R(c, d) be a submodule of M . Then N is cyclic

if and only if ∆ = 0.
���������

. Suppose thatN is cyclic. ThenN = R(x, y) for some (x, y) ∈ M . There

are r, s ∈ R such that (a, b) = r(x, y) and (c, d) = s(x, y) and so ∆ = ad − bc =
rxsy − rysx = 0.

Conversely, suppose that ∆ = 0. If one of the elements a, b, c or d is zero,
then the result is clear. (Indeed, if a = 0, then 0 = ad − bc = −bc. Therefore

b = 0 or c = 0. If b = 0, then N = R(c, d) and we are done. Now if c = 0, then
N = R(0, b) + R(0, d) = R(0, e), where Re = Rb + Rd.) Now suppose that a, b, c

and d are all non-zero. Let f be the greatest common divisor (gcd) of the elements
a and c and let g be the gcd of the elements b and d, so that a = a′f , c = c′f ,

b = b′g and d = d′g for some a′, b′, c′, d′ ∈ R. Since ad = bc, we have a′d′fg = b′c′fg

and so a′d′ = b′c′. As a′ and c′ are coprime, a′ divides b′ and b′ divides a′. Hence

a′ = b′u for some unit u ∈ R. Therefore, c′ = d′u. Now it is easy to show that
N = R(uf, g). �

The proof of the following result can be found in [1] and [5].

3.3 Proposition. Let N = R(a, b) be a cyclic submodule ofM . Then N is prime

if and only if either a = b = 0 or a and b are coprime.

Suppose that N = R(a, b) is a non-zero prime submodule of M . Since N ∼= R,
every submodule of N is of the form R(ta, tb) for some t ∈ R and by the above

proposition N is of height one.

3.4 Corollary. Let N = R(a, b)+R(c, d) be a submodule ofM and ∆ = ad−bc =
up for some unit u ∈ R and a prime element p ∈ R. Then N is a prime submodule

of height two.

���������
. By the remark after Theorem 2.4, N is a prime submodule ofM . Let K

be a non-zero prime submodule of M contained in N . Then K = R(x, y) + R(z, w)
for some (x, y) and (z, w) ∈ M . There are q, r, s, and t ∈ R such that (x, y) =
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q(a, b) + r(c, d) and (z, w) = s(a, b) + t(c, d). Hence

xw − yz = (qt− rs)(ad − bc) = up(qt− rs).

Since K is a prime submodule of M , there are three choices for qt− rs.
i) If qt − rs = 0, then xw − yz = 0 and so K is a cyclic prime submodule of M .

Therefore, K is of height one.
ii) If qt− rs = u′p for some unit u′ ∈ R, then xw − yz = uurp2 and so K = pM .

Therefore, K is of height one.
iii) If qt− rs = v is a unit of R, then it is easy to check that N = K.

Consequently, N is of height two. �

4. Primary decomposition in Rn

As in Section 2, let M be the free module Rn over a principal ideal domain R for

some integer n > 2.
We know that every submodule of a Noetherian module has a primary decompo-

sition, [4], and also that M is a Noetherian R-module.
We begin our investigation by the following result.

4.1 Theorem. Let N = Ra1 + . . . + Ran be a proper submodule of M . Let

A = (aij) and ∆ = upα1
1 . . . pαs

s for some distinct prime elements pk ∈ R, positive

integers αk, and unit u ∈ R. Then N has a minimal primary decomposition N =

Q1 ∩ . . . ∩ Qs where Qk = {(x1, . . . , xn) ∈ M : pαk

k divides
n∑

i=1

xia
′
ij (1 6 j 6 n)}.

Note that A′ = (a′ij) is the adjoint matrix of A.
���������

. It is easy to check that Qk is a primary submodule of M with√
(Qk : M) = Rp

k
(1 6 k 6 s). By Proposition 2.2, N ⊆ Q1 ∩ . . . ∩ Qs. Now

let x = (x1, . . . , xn) ∈ Q1 ∩ . . . ∩ Q3. Then for each 1 6 k 6 s, pαk

k divides
n∑

i=1

xia
′
ij

(1 6 j 6 n). Consequently, ∆ divides
n∑

i=1

xia
′
ij (1 6 j 6 n). Again by Proposition

2.2, x ∈ N . �

4.2 Corollary. Let N be a proper submodule of M with ∆ 6= 0. Then N is

a primary submodule of M if and only if ∆ = upα for some unit u ∈ R, a prime

element p ∈ R, and a positive integer α.

Suppose that N 6= 0 is a submodule of M with ∆ = 0. There exist a basis
{x1, . . . , xn} of M and non-zero elements d1, . . . , dr (r 6 n) of R such that N =
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Rd1x1 + . . .+ Rdrxr. Let xi = (xi1, . . . , xin), then by Corollary 2.3, det(xij) = u for

some unit u of R. Since ∆ = 0, r < n. Suppose that di = uip
αi1
1 . . . pαis

s (1 6 i 6 r),
where ui is a unit of R, pk is a prime element of R and αik > 0 (1 6 k 6 s). Let
Q = Rx1 + . . . + Rxr. Theorem 2.5 implies that Q is a prime and hence a primary

submodule of M . Now set Qk = Rpα1k

k x1 + . . . + Rpαrk

k xr + Rxr+1 + . . . + Rxn

(1 6 k 6 s). Then by Corollary 4.2, Qk is a primary submodule of M . It is clear

that N ⊆ Q ∩ Q1 ∩ . . . ∩ Qs. Now let y ∈ Q ∩ Q1 ∩ . . . ∩ Qs and suppose that
y = a1x1 + . . . + anxn for some ai ∈ R. Since y ∈ Q, we have ar+1 = . . . = an = 0.
Also since y ∈ Qk (1 6 k 6 s), we conclude that for each 1 6 i 6 r, pαik

k divides ai

and hence di divides ai. Therefore y ∈ N . Thus we have proved:

4.3 Theorem. Let N 6= 0 be a submodule of M with ∆ = 0. Then N =
Q∩Q1∩ . . .∩Qs is a minimal primary decomposition of N , where Q, Q1, . . . , Qs are

as above.

4.4 Corollary. Let N be a submodule of M with ∆ = 0. Then N is a primary

submodule if and only if N is a prime submodule.

References

[1] S.M.George, R.Y.McCasland and P. F. Smith: A principal ideal theorem analogue for
modules over commutative rings. Comm. Algebra 22 (1994), 2083–2099.

Zbl 0795.13001
[2] C.P. Lu: Prime submodules of modules. Comment. Math. Univ. St. Paul 33 (1984),
61–69. Zbl 0575.13005

[3] H.Matsumura: Commutative Ring Theory. Cambridge University Press, 1986.
Zbl 0603.13001

[4] R.Y. Sharp: Steps in Commutative Algebra. Cambridge University Press, 1990.
Zbl 0703.13001

[5] Y.Tiras and A.Harmanci: On prime submodules and primary decomposition. Czecho-
slovak Math. J. 50 (2000), 83–90. Zbl 1036.13010

Author’s address: Department of Mathematics, College of Science, Shiraz University,
Shiraz 71454, Iran, e-mail: bamini@shirazu.ac.ir, sharif@susc.ac.ir.

648


		webmaster@dml.cz
	2020-07-03T16:04:58+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




