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Abstract. Let A and B be graph algebras. In this paper we present the notion of an
ideal in a graph algebra and prove that an ideal extension of A by B always exists. We
describe (up to isomorphism) all such extensions.
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0. Introduction

In this paper we study congruence relations on graph (Shallon) algebras and intro-
duce the notion of an ideal in the graph algebra determined by a congruence. Then
the aim is, for two given graph algebras X and Y , to construct a graph algebra A

for which we can find a congrunce Θ onA such that the ideal ofA determined by the
congruence Θ is the algebra X and the quotient graph algebra A /Θ is isomorphic

to the graph algebra Y . (The algebra A will be referred to as an ideal extension
of X by Y .) Our objective is to answer the following questions:

(Q1) is the ideal extension always possible?
(Q2) is it possible to determine all ideal extensions?

We construct a class of ideal extensions of X by Y and denote it by ΓX ,Y (Z, ϕ).
The construction itself enables us to answer the question (Q1). Afterwards we

show that the class ΓX ,Y (Z, ϕ) contains all ideal extensions.
Similar ideal related extensions were carried out for other algebraic structures, for

instance for lattice ordered groups (cf. [7]), semigroups (cf. [1]), ordered semigroups
(cf. [2] and [5]), lattices (cf. [4]) and for partial monounary algebras (cf. [3]).

Supported by grants G 1/3025/06 and G 1/3005/06 of the Ministry of Education of the
Slovak Republic.
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1. Preliminaries

Let A be a nonempty set, E a binary relation on A. Then the corresponding
relational structure (A, E) is called a (directed) graph. We admit the existence of
loops in a graph.

To a directed graph (A, E) there corresponds an algebra (A ∪ {∞}, ◦,∞) where
∞ 6∈ A is a nullary operation and for any x, y ∈ A ∪ {∞}, the binary operation ◦ is
defined by the formula

x ◦ y =

{
x if (x, y) ∈ E,

∞ otherwise.

Then (A∪{∞}, ◦,∞) is called the graph algebra corresponding to the graph (A, E).

1.1 Definition. Let A = (A ∪ {∞}, ◦,∞) be an algebra such that ∞ 6∈ A is
a nullary operation and ◦ is a binary operation satisfying x ◦ y ∈ {x,∞} for any
x, y ∈ A and x ◦ y = ∞ if at least one of x, y is ∞. Then the algebra A will be
called a graph (or Shallon) algebra.

Remark. By writing A = (A ∪ {∞}, ◦,∞) we shall always mean that ∞ 6∈ A.
Thus this assumption will not be repeated.

Graph algebras were introduced by R.C. Shallon [12] and were studied, e.g. in [6],
[8]–[11].

1.2 Definition. Let A = (A ∪ {∞}, ◦,∞) be a graph algebra and let Θ be an

equivalence relation on A . The relation Θ is called a congruence if

(a, b) ∈ Θ and (c, d) ∈ Θ imply (a ◦ c, b ◦ d) ∈ Θ whenever a, b, c, d ∈ A ∪ {∞}.

The class of all equivalence relations on A will be denoted by Eq(A ) and the class
of all congruences on A will be denoted by Cong(A ).

1.3 Definition. LetA = (A∪{∞}, ◦,∞) be a graph algebra and let Θ ∈ Eq(A ).
Denote by Id(A , Θ) the class of the equivalence Θ containing the element ∞, i.e.

Id(A , Θ) = {a ∈ A ∪ {∞} : (a,∞) ∈ Θ}.

Then the subalgebra I (A ) = (Id(A , Θ), ◦,∞) of A will be referred to as an ideal
in the graph algebra A determined by the equivalence Θ or shortly an ideal in the

graph algebra A .

Remark. The ideal I (A ) in the graph algebra A is a graph algebra as well.
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1.4 Notation. Let A = (A ∪ {∞}, ◦,∞) be a graph algebra. We introduce
“successors” SA (x) and “predecessors”PA (x) of an element x ∈ A by

SA (x) = {y ∈ A : x ◦ y = x},
PA (x) = {y ∈ A : y ◦ x = y}.

For completeness we put

SA (∞) = PA (∞) = ∅.

If there is no danger of confusion, we shall ommit indices “A ” inSA (x) andPA (x).
Next, let x ∈ A. Then A (x) will denote the set of those elements y in A for which

there exists exist n ∈ � and a sequence {xi}n
i=0 with x0, . . . , xn ∈ A such that

x0 = x,

xn = y,

xi+1 ◦ xi = xi+1 for i = 0, . . . , n− 1.

For an element ∞ we put A (∞) = ∅.

Remark. It is worth realizing that for x ∈ A we have PA (x) ⊆ A (x).

2. Congruences on graph algebras

2.1 Theorem. Let A = (A ∪ {∞}, ◦,∞) be a graph algebra, Θ ∈ Eq(A ) and
let the subalgebra (X ∪ {∞}, ◦,∞) of A be the ideal in A determined by the

equivalence Θ. Then Θ ∈ Cong(A ) if and only if the following three conditions
hold:

(i) A (x) ⊆ X whenever x ∈ X ∪ {∞},
(ii) if (x, y) ∈ Θ then S (x) = S (y) whenever x, y ∈ A \X ,

(iii) if (x, y) ∈ Θ then P(x) \X = P(y) \X whenever x, y ∈ A ∪ {∞}.
���������

. First let Θ be a congruence on A .

(i) If x = ∞ then A (x) = ∅ ⊆ X . Let x ∈ X and y ∈ A (x). Then (x,∞) ∈ Θ

and there exist n ∈ � and a sequence {xi}n
i=0 with x0, . . . , xn ∈ A such that x0 = x,

xn = y, and xi+1 ◦ xi = xi+1 for i = 0, . . . , n − 1. We shall proceed by induction
with respect to n, the length of the sequence.

If n = 1 then y ◦ x = y. The relation Θ is reflexive, thus (y, y) ∈ Θ. Since Θ is
a congruence, (y ◦ x, y ◦∞) = (y,∞) ∈ Θ, which implies that y ∈ X .

Let n ∈ � , n > 1. Suppose that for all elements y in A (x) with the corresponding
sequence of length at the most n we have y ∈ X . If ỹ ∈ A (x) and x0 = x, xn+1 = ỹ,
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xi+1 ◦ xi = xi+1 for i = 0, . . . , n then the element y = xn ∈ A (x) belongs to X and

by the assumption for sequences of length 1, namely for x̃0 = y, x̃1 = ỹ and

x̃1 ◦ x̃0 = ỹ ◦ y = xn+1 ◦ xn = xn+1 = ỹ = x̃1,

we obtain ỹ ∈ X . Therefore A (x) ⊆ X .

(ii) Now take x, y ∈ A \X such that (x, y) ∈ Θ. If x = y then obviously S (x) =
S (y). Let x 6= y. If both the sets S (x) and S (y) are empty, the equality S (x) =
S (y) holds. Now suppose that at least one of S (x) andS (y) is nonempty. Without
loss of generality let S (x) 6= ∅.
Take s ∈ S (x), i.e. x ◦ s = x. Then (x, y) ∈ Θ and (s, s) ∈ Θ imply (x ◦ s, y ◦ s) =

(x, y ◦ s) ∈ Θ. By Definition 1.1, y ◦ s ∈ {y,∞}. In the case y ◦ s = ∞ we get
(x,∞) ∈ Θ, which contradicts the assumption x ∈ A \ X . Necessarily, y ◦ s = y

which yields s ∈ S (y). We have obtained S (x) ⊆ S (y). Analogously, we can infer
S (y) ⊆ S (x). Thus S (y) = S (x).
(iii) First, consider an element x ∈ X ∪ {∞}. If x = ∞ then P(x) = ∅ and thus

P(x) \ X = ∅. Now let x 6= ∞. Since P(x) ⊆ A (x), in view of (i) we obtain
P(x) ⊆ X , thus for x ∈ X ∪ {∞} we get P(x) \X = ∅. The assumption (x, y) ∈ Θ

implies y ∈ X ∪ {∞}, thus P(y) \X = ∅. Therefore P(x) \X = P(y) \X .

Now take x ∈ A \ X . Clearly, (x, y) ∈ Θ implies y /∈ X . If P(x) \ X = ∅ then
trivially P(x) \ X ⊆ P(y) \ X . Assume that P(x) \ X 6= ∅. Then there exists
an element z ∈ A \X such that z ◦ x = z. From (z, z) ∈ Θ and (x, y) ∈ Θ we get
(z ◦x, z ◦y) = (z, z ◦y) ∈ Θ. The element z does not belong to X , therefore z ◦y = z.

Consequently, z ∈ P(y) \ X . We have shown that P(x) \ X ⊆ P(y) \ X . In an
analogous way we can prove the converse inclusion P(y) \ X ⊆ P(x) \ X . Thus

P(x) \X = P(y) \X .

Conversely, suppose that Θ is an equivalence satisfying the conditions (i)–(iii).
Assume that a, b, c, d ∈ A∪{∞} and (a, b) ∈ Θ, (c, d) ∈ Θ. Taking into account that

x ◦ y ∈ {x,∞}, we obtain four possible combinations to verify.
First, let a ◦ c = a and b ◦ d = b. In this case the result is trivial because

(a ◦ c, b ◦ d) = (a, b) ∈ Θ.

Next, let a ◦ c = ∞ and b ◦ d = b 6= ∞. Evidently, d 6= ∞. If a = ∞ then
b ∈ X∪{∞}. Thus (a◦c, b◦d) = (∞, b) ∈ Θ. If a 6= ∞ and c = ∞ then d ∈ X∪{∞}.
In view of (i) for b ∈ P(d) we obtain b ∈ X , thus again (a ◦ c, b ◦ d) = (∞, b) ∈ Θ.
Now let a 6= ∞ 6= c. The assumptions yield a /∈ P(c) and d ∈ S (b). If a /∈ X , then

b /∈ X . By (ii) we have S (a) = S (b). Therefore d ∈ S (a), or inversely a ∈ P(d).
In view of (iii) we obtain P(c) \X = P(d) \X . Since a /∈ X we get a ∈ P(c), a
contradiction. Necessarily, a ∈ X and consequently b ∈ X , which implies (b,∞) ∈ Θ.
Therefore (a ◦ c, b ◦ d) = (∞, b) ∈ Θ.
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The following possibility, a◦c = a 6=∞ and b◦d =∞, is analogous to the previous
one because the relation Θ is symmetric.
Finally, let a ◦ c = ∞ and b ◦ d = ∞. Now (a ◦ c, b ◦ d) = (∞,∞) ∈ Θ because the

relation Θ is reflexive. �

3. Extensions of graph algebras

Let A = (A ∪ {∞}, ◦,∞) be a graph algebra and Θ a congruence relation on A .

In what follows, we denote by [x]Θ the set {y ∈ A ∪ {∞} : (x, y) ∈ Θ}. We define
a quotient graph algebra A /Θ = (A∪{∞}/Θ, •, Id(A , Θ)) in a natural way, i.e. the
binary operation • is defined as follows:

[x]Θ • [y]Θ = [x ◦ y]Θ whenever [x]Θ , [y]Θ ∈ A ∪ {∞}/Θ.

3.1 Definition. Let X = (X ∪ {∞X },�,∞X ), Y = (Y ∪ {∞Y },4,∞Y ) be
graph algebras. A graph algebra A = (A∪{∞}, ◦,∞) is called an ideal extension of
the graph algebra X by the graph algebra Y , if X ⊆ A, ∞ = ∞X and there exists a

congruence Θ on A such that the subalgebra (X ∪{∞}, ◦,∞) of A is the ideal in A

determined by the equivalence Θ and the quotient graph algebra A /Θ is isomorphic

to Y .

Now our aim is to describe, for given graph algebras X and Y , all possible ideal

extensions A , as well as to determine whether an ideal extension of X by Y always
exists. Conforming with Definition 3.1, we shall take algebras A with A ⊇ X and

the nullary operation identical to that of X . Therefore the index “X ” in ∞X will
not be necessary.

3.2 Definition. Let X = (X ∪ {∞},�,∞) and Y = (Y ∪ {∞Y },4,∞Y ) be
graph algebras such that X ∩ Y = ∅.
Take an arbitrary set Z such that Z ∩ (X ∪{∞}) = Z ∩ (Y ∪{∞Y }) = ∅ and any

mapping ϕ : Z → Y .

We define a graph algebra A = (A ∪ {∞}, ◦,∞). The base set of A is X ∪ Y ∪
Z ∪ {∞}, i.e. we put A = X ∪ Y ∪ Z. The operation ◦ is defined in the following
way:

. if a =∞ or b = ∞ then

(3.2.1) a ◦ b =∞;

. if a, b ∈ X then

(3.2.2) a ◦ b = a� b;
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. if a ∈ X and b ∈ Y ∪ Z then

(3.2.3) a ◦ b ∈ {a,∞};

. if a ∈ Y ∪ Z and b ∈ X then

(3.2.4) a ◦ b =∞;

. if a, b ∈ Y then

(3.2.5) a ◦ b =

{
a if a4 b = a,

∞ if a4 b = ∞Y ;

. if a ∈ Y and b ∈ Z then

(3.2.6) a ◦ b =

{
a if ϕ(b) ∈ SY (a),

∞ if ϕ(b) /∈ SY (a);

. if a ∈ Z and b ∈ Y then

(3.2.7) a ◦ b =

{
a if ϕ(a) ∈ PY (b),

∞ if ϕ(a) /∈ PY (b);

. if a, b ∈ Z then

(3.2.8) a ◦ b =

{
a if ϕ(a) ∈ PY (ϕ(b)),

∞ if ϕ(a) /∈ PY (ϕ(b)).

We denote the class of all graph algebrasA constructed in this way by ΓX ,Y (Z, ϕ).

3.3 Lemma. Let X = (X ∪ {∞},�,∞), Y = (Y ∪ {∞Y },4,∞Y ), A =
(A ∪ {∞}, ◦,∞) be graph algebras such that X ∩ Y = ∅, A ∈ ΓX ,Y (Z, ϕ) and let
Θ be an equivalence relation on A satisfying the following conditions:

(a) if x ∈ X ∪ {∞} and (x, y) ∈ Θ then y ∈ X ∪ {∞},
(b) if x, y ∈ X ∪ {∞} then (x, y) ∈ Θ,

(c) (x, y) ∈ Θ if and only if x = y, whenever x, y ∈ Y ,

(d) (x, y) ∈ Θ if and only if ϕ(y) = x, whenever x ∈ Y , y ∈ Z,

(e) (x, y) ∈ Θ if and only if ϕ(y) = ϕ(x), whenever x, y ∈ Z.

Then Θ is a congruence relation on A and Id(A , Θ) = X ∪ {∞}.
���������

. Let Θ be an equivalence relation on A satisfying the conditions (a)–(e).
We shall verify the conditions (i)–(iii) of Theorem 2.1.
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(i) For x = ∞ the condition (i) holds. Let x ∈ X and y ∈ A(x), i.e. there exist
n ∈ �

and a sequence {xi}n
i=0 such that x0 = x, xn = y, and xi+1 ◦ xi = xi+1 for

i = 0, . . . , n−1. If x1 ∈ Y ∪Z∪{∞} then by (3.2.1) and (3.2.4) we have x1 ◦x0 = ∞,
a contradiction. Therefore x1 ∈ X . By induction with respect to n we obtain that

y = xn ∈ X .

(ii) Now take x, y ∈ Y ∪Z such that (x, y) ∈ Θ. If x = y then obviously SA (x) =
SA (y). Let x 6= y. If both the sets SA (x) and SA (y) are empty, the equality
SA (x) = SA (y) holds. Now suppose that at least one of SA (x) and SA (y) is
nonempty. Without loss of generality let SA (x) 6= ∅.
First, if x, y ∈ Y then (x, y) ∈ Θ implies by (c) the equality x = y, a contradiction

with the above assumption.

Next, let x ∈ Y , y ∈ Z. Then (x, y) ∈ Θ implies x = ϕ(y) (see (d)). Let
v ∈ SA (x), i.e. x ◦ v = x. In view of Definition 3.2 we obtain for the element v ∈ A

that v is either in Y or in Z. If v ∈ Y then (3.2.5) implies x 4 v = x. Therefore

ϕ(y) = x ∈ PY (v) and in view of (3.2.7) we get y ◦ v = y, i.e. v ∈ SA (y). Now let
v ∈ Z. Then (3.2.6) yields ϕ(v) ∈ SY (x), thus x ∈ PY (ϕ(v)). Since x = ϕ(y), we
get ϕ(y) ∈ PY (ϕ(v)) and therefore by (3.2.8), y ◦ v = y. Consequently, v ∈ SA (y).
Finally, if x, y ∈ Z then by (e) we have ϕ(x) = ϕ(y). Again, let v ∈ SA (x).

Then x ◦ v = x. In view of Definition 3.2 we infer that v ∈ Y ∪ Z. If v ∈ Y

then ϕ(x) ∈ PY (v) by (3.2.7) and consequently ϕ(y) ∈ PY (v). Thus y ◦ v = y,
i.e. v ∈ SA (y). If v ∈ Z then by (3.2.8) we have ϕ(x) ∈ PY (ϕ(v)) and consequently
ϕ(y) ∈ PY (ϕ(v)). Thus y ◦ v = y, i.e. v ∈ SA (y).
In all cases we have shown that SA (x) ⊆ SA (y). In a similar way we can prove

that SA (y) ⊆ SA (x). Thus SA (y) = SA (x).
(iii) Let x, y ∈ A∪{∞} and (x, y) ∈ Θ. Assume that x ∈ X ∪{∞}. In view of (a)

and (b) we have (x, y) ∈ Θ if and only if y ∈ X ∪ {∞}. Notice that for x = ∞ we
havePA (x) = ∅ and obviouslyPA (x)\X = ∅. In the case x ∈ X , we get by (3.2.2)

and (3.2.4) the inclusion PA (x) ⊆ X . ConsequentlyPA (x) \X = ∅. Therefore for
x, y ∈ X ∪ {∞} we obtain PA (x) \X = PA (y) \X .

Let x, y ∈ Y . Then (x, y) ∈ Θ implies x = y, thus PA (x) \ X = PA (y) \ X is
valid.

To verify all the remaining possibilities, take v ∈ PA (x) \ X , i.e. v /∈ X and

v ◦ x = v. First, suppose that x ∈ Y and y ∈ Z. The assumption (x, y) ∈ Θ implies
ϕ(y) = x. Let v ∈ Y . Then in view of (3.2.5), v ◦ x = v implies v 4 x = v and

x ∈ SY (v). Since ϕ(y) = x, we obtain ϕ(y) ∈ SY (v), i.e. v ∈ PY (ϕ(y)). Therefore
by (3.2.7) we get v◦y = v. If v ∈ Z then v◦x = v yields ϕ(v) ∈ PY (x) = PY (ϕ(y))
(see (3.2.7)). Consequently, by (3.2.8) we get v ◦ y = v.

Further, if x, y ∈ Z, the assumption (x, y) ∈ Θ by (e) yields ϕ(x) = ϕ(y). If v ∈ Y

then in view of (3.2.6) v◦x = v implies ϕ(x) ∈ SY (v), thus ϕ(y) ∈ SY (v) and again
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by (3.2.6) we get v ◦ y = v. Finally, if v ∈ Z then v ◦ x = v together with (3.2.8)

yields the relation ϕ(v) ∈ PY (ϕ(x)). This implies ϕ(v) ∈ PY (ϕ(y)), thus again
by (3.2.8) we obtain v ◦ y = v.
To sum up, in all cases v ∈ PA (y) \X therefore PA (x) \X ⊆ PA (y) \X . The

converse inclusion can be proved analogously, thus PA (x) \X = PA (y) \X . �

3.4 Theorem. Let X = (X ∪ {∞},�,∞) and Y = (Y ∪ {∞Y },4,∞Y ) be
graph algebras such that X ∩ Y = ∅. Let A = (A ∪ {∞}, ◦,∞) be a graph algebra
from the class ΓX ,Y (Z, ϕ) (for an arbitrary set Z and any mapping ϕ : Z → Y ).

Then the graph algebra A is the ideal extension of X by Y .
���������

. Assume the equivalence relation Θ on A with one class X ∪ {∞} and
all other classes containing one element y of Y each and the elements of the set Z

distributed to classes according to the mapping ϕ in the following way:

[y]Θ = {y} ∪ {z ∈ Z : ϕ(z) = y} whenever y ∈ Y.

In this way the equivalence Θ is uniquely determined and satisfies the conditions (a)–

(e) of Lemma 3.3. Thus Θ ∈ Cong(A ).
In view of conditions (a) and (b), Id(A , Θ) = X ∪ {∞}.
We shall prove that A /Θ ∼= Y . We recall that ϕ is an arbitrary mapping Z → Y .

Define a mapping Φ : A ∪ {∞}/Θ → Y ∪ {∞Y } such that

Φ([x]Θ) =





∞Y if x ∈ X ∪ {∞},
x if x ∈ Y,

ϕ(x) if x ∈ Z.

First, we shall look into the correctness of Φ by showing for x, y ∈ A ∪ {∞} the
implication

if [x]Θ = [y]Θ then Φ([x]Θ) = Φ([y]Θ).

Let [x]Θ = [y]Θ, i.e. (x, y) ∈ Θ. By (a) we obtain that x ∈ X ∪ {∞} and (x, y) ∈ Θ

yield y ∈ X ∪ {∞}, thus Φ([x]Θ) = ∞Y = Φ([y]Θ). If x, y ∈ Y then (x, y) ∈ Θ

implies x = y, thus Φ([x]Θ) = x = y = Φ([y]Θ). Next, if x ∈ Y , y ∈ Z and (x, y) ∈ Θ

then x = ϕ(y), therefore Φ([x]Θ) = x = ϕ(y) = Φ([y]Θ). Finally, if x, y ∈ Z then
(x, y) ∈ Θ yields ϕ(x) = ϕ(y), and so Φ([x]Θ) = Φ([y]Θ).
Next, we shall prove injectivity of Φ, i.e. for x, y ∈ A ∪ {∞} the implication

if Φ([x]Θ) = Φ([y]Θ) then [x]Θ = [y]Θ.

If x ∈ X∪{∞} then Φ([y]Θ) = Φ([x]Θ) = ∞Y , which yields y ∈ X∪{∞}. Therefore
by (b) (x, y) ∈ Θ and thus [x]Θ = [y]Θ. In view of (c)–(e) we obtain the following
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results. If x, y ∈ Y then x = Φ([x]Θ) = Φ([y]Θ) = y, i.e. [x]Θ = [y]Θ. Next, if
x ∈ Y , y ∈ Z then x = Φ([x]Θ) = Φ([y]Θ) = ϕ(y) again implies (x, y) ∈ Θ. Finally,
if x, y ∈ Z then ϕ(x) = Φ([x]Θ) = Φ([y]Θ) = ϕ(y), giving the same result as above:
[x]Θ = [y]Θ.
Now we shall show that Φ is surjective. Take an arbitrary y ∈ Y ∪ {∞Y }. If

y = ∞Y then Φ([x]Θ) = y for any x ∈ X ∪ {∞}. In the case y 6= ∞Y we take y as

a pre-image of y, i.e. Φ([y]Θ) = y.
Finally, we have to prove that Φ is a homomorphism, i.e. for x, y ∈ A ∪ {∞}

Φ([x]Θ • [y]Θ) = Φ([x]Θ)4 Φ([y]Θ).

Since x ◦ y ∈ {x,∞}, we shall consider two cases. If x ◦ y = ∞ then

Φ([x]Θ • [y]Θ) = Φ([x ◦ y]Θ) = Φ([∞]Θ) =∞Y .

To determine Φ([x]Θ)4 Φ([y]Θ) we distinguish:
. if x ∈ X∪{∞} then Φ([x]Θ)4Φ([y]Θ) =∞Y 4Φ([y]Θ) = ∞Y (the assumption

y ∈ X ∪ {∞} leads to the same result);
. if x, y ∈ Y then by (3.2.5)

Φ([x]Θ)4 Φ([y]Θ) = ∞Y ;

. if x ∈ Y and y ∈ Z then ϕ(y) /∈ SY (x) by (3.2.6), which implies

Φ([x]Θ)4 Φ([y]Θ) = x4 ϕ(y) = ∞Y ;

. if x ∈ Z and y ∈ Y then ϕ(x) /∈ PY (y) by (3.2.7), thus

Φ([x]Θ)4 Φ([y]Θ) = ϕ(x)4 y = ∞Y ;

. if x, y ∈ Z then ϕ(x) /∈ PY (ϕ(y)) by (3.2.8), therefore

Φ([x]Θ)4 Φ([y]Θ) = ϕ(x)4 ϕ(y) = ∞Y .

Next, let x ◦ y = x, hence Φ([x]Θ • [y]Θ) = Φ([x ◦ y]Θ) = Φ([x]Θ). Again, we
distinguish the following possibilities:

. if x ∈ X ∪ {∞} then

Φ([x]Θ)4 Φ([y]Θ) = ∞Y 4 Φ([y]Θ) = ∞Y = Φ([x]Θ);

. the assumptions y ∈ X∪{∞} and x /∈ X∪{∞} lead to a contradiction x◦y = ∞;
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. if x, y ∈ Y then we get by (3.2.5)

Φ([x]Θ)4 Φ([y]Θ) = x4 y = x ◦ y = x = Φ([x]Θ);

. if x ∈ Y and y ∈ Z then ϕ(y) ∈ SY (x) by (3.2.6), therefore

Φ([x]Θ)4 Φ([y]Θ) = x4 ϕ(y) = x = Φ([x]Θ);

. if x ∈ Z and y ∈ Y then ϕ(x) ∈ PY (y) by (3.2.7), thus

Φ([x]Θ)4 Φ([y]Θ) = ϕ(x)4 y = ϕ(x) = Φ([x]Θ);

. if x, y ∈ Z then ϕ(x) ∈ PY (ϕ(y)) by (3.2.8), which yields

Φ([x]Θ)4 Φ([y]Θ) = ϕ(x)4 ϕ(y) = ϕ(x) = Φ([x]Θ).

For completeness we have to note that Φ(Id(A , Θ)) = Φ([∞]Θ) = ∞Y .

Now we can conclude that Φ : A ∪ {∞}/Θ → Y ∪ {∞Y } is a bijective homomor-
phism, therefore A is an ideal extension of X by Y . �

In this way we can construct graph algebras A which are ideal extensions of X
by Y . Therefore the answer to the question (Q1), whether the ideal extension is al-

ways possible, is affirmative. In what follows we shall show that the class ΓX ,Y (Z, ϕ)
contains all ideal extensions. In other words: if B is an ideal extension of X by Y

then there exists a graph algebra A ∈ ΓX ,Y (Z, ϕ) which is isomorphic to B. Thus
in the end we shall be able to claim that the reply to the question (Q2) is affirmative

as well.

3.5 Theorem. Let X = (X ∪ {∞},�,∞), Y = (Y ∪ {∞Y },4,∞Y ), B =
(B ∪ {∞}, ♦,∞) be graph algebras, X ∩ Y = ∅ and let B be the ideal extension

of X by Y . Then there exists a graph algebra A = (A ∪ {∞}, ◦,∞) such that
A ∈ ΓX ,Y (Z, ϕ) and A ∼= B.
���������

. LetB be the ideal extension ofX by Y . Thus there existΣ ∈ Cong(B)
with Id(B, Σ) = X ∪{∞} and an isomorphism Ω : B∪{∞}/Σ → Y of the quotient

graph algebra B/Σ = (B ∪ {∞}/Σ, ♦, Id(B, Σ)) onto Y = (Y ∪ {∞Y },4,∞Y ).
By Axiom of Choice there is a mapping ν : B ∪ {∞}/Σ → B in which to each

equivalence class of Σ there corresponds a representant of the class.
Since Ω is bijective we can put

Z = B \ (X ∪ {ν(Ω−1(y)) : y ∈ Y } ∪ {∞})
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where Ω−1 is the inverse mapping to Ω and thus Ω−1(y) ∈ B∪{∞}/Σ. Notice that

the sets X , {ν(Ω−1(y)) : y ∈ Y } and {∞} are mutually disjoint because if

(X ∪ {∞}) ∩ {ν(Ω−1(y)) : y ∈ Y } 6= ∅

then there is an element x ∈ X ∪ {∞} satisfying x = ν(Ω−1(y)) for some y ∈ Y .
Therefore Ω−1(y) = Id(B, Σ) = X ∪ {∞} and thus y = ∞Y , a contradiction to

y ∈ Y .

Now, we shall define an algebra A . Denote A = X ∪ Y ∪ Z ∪ {∞} and take
a mapping ϕ : Z → Y defined by the formula ϕ(x) = Ω([x]Σ).
Now consider a mapping ω : A → B defined in the following way:

ω(x) =

{
x if x ∈ X ∪ Z ∪ {∞},
ν(Ω−1(x)) if x ∈ Y.

Notice that for x ∈ Y the image is ω(x) = ν(Ω−1(x)) ∈ B \ (X ∪ Z).
We shall show that ω is injective. Take x, y ∈ A ∪ {∞} such that ω(x) = ω(y). If

x, y ∈ X ∪Z ∪{∞} then x = ω(x) = ω(y) = y. If both x, y ∈ Y , we apply injectivity
of ν and Ω−1 to obtain

ν(Ω−1(x)) = ν(Ω−1(y)) =⇒ Ω−1(x) = Ω−1(y) =⇒ x = y.

Further, if x ∈ X ∪Z ∪ {∞} and y ∈ Y (or conversely) then the assumption ω(x) =
ω(y) leads to a contradiction because ω(x) ∈ X ∪Z ∪ {∞} and ω(y) ∈ B \ (X ∪Z ∪
{∞}).
Let us prove that ω is surjective. If we take x ∈ X ∪Z ∪ {∞} then the pre-image

in ω is x itself, i.e. ω(x) = x. Next, if x ∈ B \ (X ∪Z ∪{∞}) = {ν(Ω−1(y)) : y ∈ Y }
then there exists an element y ∈ Y such that x = ν(Ω−1(y)). This very element y

will be the pre-image of x in ω, i.e. ω(y) = ν(Ω−1(y)) = x.
So far, we have proved that ω is bijective.

Now, we shall define an operation ◦ on the set A∪{∞}. For elements x, y ∈ A∪{∞}
we put

x ◦ y = ω−1(ω(x) ♦ ω(y)).

In what follows, we verify that the operation ◦ satisfies the rules (3.2.1)–(3.2.8).
[3.2.1] Let x =∞ or y = ∞. Then x ◦ y = ω−1(ω(x) ♦ ω(y)) = ω−1(∞) = ∞.
[3.2.2] If x, y ∈ X then x ♦ y = x � y (B is the ideal extension of X ) and

x� y ∈ {x,∞}. Therefore

x ◦ y = ω−1(ω(x) ♦ ω(y)) = ω−1(x ♦ y) = ω−1(x� y) = x� y.
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[3.2.3] Let x ∈ X and y ∈ Y ∪Z, then x ◦ y ∈ {x,∞} is always valid regardless of
the result of ω−1(ω(x) ♦ ω(y)).
[3.2.4] Let x ∈ Y ∪ Z and y ∈ X . Suppose that ω(x) ♦ ω(y) = ω(x), i.e. ω(x) ∈

PB(ω(y)) = PB(y). In view of the assumption Σ ∈ Cong(B) and Theorem 2.1 (i)
we obtain that y ∈ X implies ω(x) ∈ PB(y) ⊆ B(y) ⊆ X . In the case x ∈ Y we get
ν(Ω−1(x)) = ω(x) ∈ X , then Ω−1(x) = Id(B, Σ) and thus x =∞Y , a contradiction

to x ∈ Y . In the case x ∈ Z we get x = ω(x) ∈ X , again a contradiction to x ∈ Y .
Therefore ω(x) ♦ ω(y) = ∞ and

x ◦ y = ω−1(ω(x) ♦ ω(y)) = ω−1(∞) = ∞.

[3.2.5] Let x, y ∈ Y . Since Ω (and thus Ω−1 as well) is an isomorphism, we obtain

[ω(x) ♦ ω(y)]Σ = [ν(Ω−1(x)) ♦ ν(Ω−1(y))]Σ

= [ν(Ω−1(x))]Σ � [ν(Ω−1(y))]Σ

= Ω−1(x) � Ω−1(y) = Ω−1(x4 y).

If x4y = x then [ω(x)♦ω(y)]Σ = Ω−1(x) = [ν(Ω−1(x))]Σ = [ω(x)]Σ . Suppose that
ω(x) ♦ ω(y) = ∞. Then [ω(x)]Σ = Id(B, Σ) and ω(x) ∈ Id(B, Σ), a contradiction
to ω(x) ∈ B \ (X ∪ Z). Necessarily ω(x) ♦ ω(y) = ω(x) and thus

x ◦ y = ω−1(ω(x) ♦ ω(y)) = ω−1(ω(x)) = x.

Conversely, if x 4 y = ∞ then [ω(x) ♦ ω(y)]Σ = Ω−1(∞Y ) = Id(B, Σ). Thus
ω(x)♦ω(y) ∈ Id(B, Σ). Since ω(x) ∈ B\(X∪Z), we can conclude that ω(x)♦ω(y) =
∞ and consequently

x ◦ y = ω−1(ω(x) ♦ ω(y)) = ω−1(∞) = ∞.

[3.2.6] Let x ∈ Y and y ∈ Z. Then we have

[ω(x) ♦ ω(y)]Σ = [ν(Ω−1(x)) ♦ y)]Σ = [ν(Ω−1(x))]Σ � [y]Σ

= Ω−1(x) � Ω−1(Ω([y]Σ)) = Ω−1(x4Ω([y]Σ))

= Ω−1(x4 ϕ(y)).

If ϕ(y) ∈ SY (x) then [ω(x) ♦ ω(y)]Σ = Ω−1(x) = [ν(Ω−1(x))]Σ = [ω(x)]Σ . Sup-
pose that ω(x) ♦ ω(y) = ∞. Then [ω(x)]Σ = Id(B, Σ) and ω(x) ∈ Id(B, Σ), a
contradiction to ω(x) ∈ B \ (X ∪ Z). Necessarily ω(x) ♦ ω(y) = ω(x) and thus

x ◦ y = ω−1(ω(x) ♦ ω(y)) = ω−1(ω(x)) = x.
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Conversely, if ϕ(y) /∈ SY (x) then [ω(x) ♦ ω(y)]Σ = Ω−1(∞Y ) = Id(B, Σ). Thus
ω(x)♦ω(y) ∈ Id(B, Σ). Since ω(x) ∈ B\(X∪Z), we can conclude that ω(x)♦ω(y) =
∞ and consequently

x ◦ y = ω−1(ω(x) ♦ ω(y)) = ω−1(∞) = ∞.

[3.2.7] Let x ∈ Z and y ∈ Y . In a similar way we obtain

[ω(x) ♦ ω(y)]Σ = [x ♦ ν(Ω−1(y))]Σ = [x]Σ � [ν(Ω−1(y))]Σ

= Ω−1(Ω([x]Σ)) � Ω−1(y) = Ω−1(Ω([x]Σ)4 y)

= Ω−1(ϕ(x)4 y).

If ϕ(x) ∈ PY (y) then [ω(x)♦ω(y)]Σ = Ω−1(ϕ(x)) = Ω−1(Ω([x]Σ)) = [x]Σ . Suppose
that ω(x) ♦ ω(y) = ∞. Then [x]Σ = Id(B, Σ) and x ∈ Id(B, Σ), a contradiction to
x ∈ Z. Necessarily ω(x) ♦ ω(y) = ω(x) and thus

x ◦ y = ω−1(ω(x) ♦ ω(y)) = ω−1(ω(x)) = x.

Conversely, if ϕ(x) /∈ PY (y) then [ω(x) ♦ ω(y)]Σ = Ω−1(∞Y ) = Id(B, Σ). Thus
ω(x)♦ω(y) ∈ Id(B, Σ). Since ω(x) = x ∈ Z, we can conclude that ω(x)♦ω(y) = ∞
and consequently

x ◦ y = ω−1(ω(x) ♦ ω(y)) = ω−1(∞) = ∞.

[3.2.8] Finally, take x, y ∈ Z. In this case

[ω(x) ♦ ω(y)]Σ = [x ♦ y]Σ = Ω−1(Ω([x ♦ y]Σ)) = Ω−1(Ω([x]Σ � [y]Σ))

= Ω−1(Ω([x]Σ)4Ω([y]Σ)) = Ω−1(ϕ(x)4 ϕ(y)).

If ϕ(x) ∈ PY (ϕ(y)) then [ω(x) ♦ ω(y)]Σ = Ω−1(ϕ(x)) = Ω−1(Ω([x]Σ)) = [x]Σ .
Since x ∈ Z we can conclude that ω(x) ♦ ω(y) cannot be ∞. Therefore

x ◦ y = ω−1(ω(x) ♦ ω(y)) = ω−1(ω(x)) = x.

Conversely, if ϕ(x) /∈ PY (ϕ(y)) then we get [ω(x)♦ω(y)]Σ = Ω−1(∞Y ) = Id(B, Σ)
and this time ω(x) ♦ ω(y) cannot be ω(x) = x ∈ Z. Thus

x ◦ y = ω−1(ω(x) ♦ ω(y)) = ω−1(∞) = ∞.

In this way we have verified that A ∈ ΓX ,Y (Z, ϕ). In view of Theorem 3.4 the
algebra A is an ideal extension of X by Y .
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Finally, we shall show that the graph algebras A = (A ∪ {∞}, ◦,∞) and B =
(B∪{∞}, ♦,∞) are isomorphic. Recall that the mapping ω is bijective. Furthermore,
this mapping preserves both operations, i.e. for any x, y ∈ A ∪ {∞} we have

ω(x ◦ y) = ω(ω−1(ω(x) ♦ ω(y))) = ω(x) ♦ ω(y)

and for the nullary operation we get ω(∞) = ∞. Thus ω is an isomorphism of A

onto B. �

Remark. For the graph algebra A defined in the proof of the previous theorem

we could consider the binary relation Θ on A defined by

(x, y) ∈ Θ ⇐⇒ (ω(x), ω(y)) ∈ Σ whenever x, y ∈ A ∪ {∞}.

Since Σ ∈ Eq(B) we immediately get Θ ∈ Eq(A ). Now take a, b, c, d ∈ A ∪ {∞}
such that (a, b) ∈ Θ and (c, d) ∈ Θ. Then (ω(a), ω(b)) ∈ Σ and (ω(c), ω(d)) ∈ Σ.
Since Σ is a congruence, we obtain

(ω(a) ♦ ω(c), ω(b) ♦ ω(d)) = (ω(ω−1(ω(a) ♦ ω(c))), ω(ω−1(ω(b) ♦ ω(d))))

= (ω(a ◦ c), ω(b ◦ d)) ∈ Σ,

which implies that (a ◦ c, b ◦ d) ∈ Θ. Thus Θ ∈ Cong(A ). Therefore

A /Θ ∼= Y ∼= B/Σ.

3.6 Remark. The class ΓX ,Y (Z, ϕ) contains all ideal extensions (up to isomor-
phism) of the graph algebra X by the graph algebra Y .

3.7 Remark. In Definition 3.2 we define a new algebra A to be really an “ex-
tension” of the algebra X . Therefore for the elements a, b ∈ X we define the result

of a ◦ b to be a� b (see (3.2.2)). Nevertheless, the quotient graph algebra A /Θ does
not depend on the operation “�” in X . Thus instead of (3.2.2) and (3.2.3) we could
put one common condition

if a ∈ X and b ∈ A then a ◦ b ∈ {a,∞}.

In this case we do not require X to be a subalgebra of A . Under this assumption
we would construct a larger class ΓX ,Y (Z, ϕ).
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