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Abstract. We present a simple proof of a Banach-Stone type Theorem. The method used
in the proof also provides an answer to a conjecture of Cao, Reilly and Xiong.
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In this paper we use the standard terminology and notation of the Riesz spaces
theory (see [1]). In particular, the Banach lattice (under pointwise operations, order

and supremum norm) of continuous functions from a compact Hausdorff space K

into a Banach lattice E is denoted by C(K, E). If E =
�
then we write C(K)

instead of C(K, E). 1K stands for the unit function in C(K).
One version of the Banach-Stone theorem states:

Theorem 1. Let X and Y be compact Hausdorff spaces. Then C(X) and
C(Y ) are Riesz isomorphic if and only if X and Y are homeomorphic.

More precisely, if π : C(X) −→ C(Y ) is a Riesz isomorphism then there exists a
homeomorphism σ : Y −→ X and h ∈ C(Y ) such that π(f)(y) = h(y)f(σ(y)) and
0 < h(y) for each y ∈ Y . An elementary proof of this theorem can be found in [3].
This theorem is generalized in [2] as follows.

Theorem 2. Let X and Y be compact Hausdorff spaces and E a Banach lattice.

If π : C(X, E) −→ C(Y ) is a Riesz isomorphism such that π(f) has no zeros whenever
f has no zero, then X and Y are homeomorphic and E is Riesz isomorphic to

�
.

The proof of Theorem 2 is given without using Theorem 1 in [2] and it is conjec-
tured that Theorem 2 follows from Theorem 1. We present an elementary proof of
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Theorem 2 which also yields an affirmative answer to this conjecture. First we need

the following lemma.

Lemma 3. Let X , Y and M be compact Hausdorff spaces such that X ×M and

Y are homeomorphic. Suppose that for a given f ∈ C(X × M), f(x, m) 6= 0 for
all (x, m) ∈ X × M if and only if for each x ∈ X there exists m ∈ M such that

f(x, m) 6= 0. Then X and Y are homeomorphic and M = {m}.
���������

. Suppose that there exist m1, m2 ∈ M and m1 6= m2. Choose g ∈ C(M)
with g(m1) = 0 and g(m2) = 1. Let f ∈ C(X ×M) with f(x, m) = g(m). This is
impossible, so M = {m} and X is homeomorphic to Y . �

Now we are ready to give an elementary proof of Theorem 2. The technique of

the proof provides an answer to the conjecture mentioned above.
���������

of Theorem 2. Clearly π−1(1Y ) is a strong order unit of C(X, E). Then
0 < π−1(1Y )(x) is a strong order unit of E for each x ∈ X . By the Kakutani
Representation Theorem (see [3] for a direct and simple proof) there exits a compact

Hausdorff space M such that E and C(M) are Riesz isomorphic spaces. Let a ∈ X

be fixed and let π0 : C(M) −→ E be a Riesz isomorphism such that π0(1M ) =
π−1(1Y )(a). Then C(X, E), C(X, C(M)) and C(X×M) are Riesz isomorphic spaces
under Riesz isomorphisms

π1 : C(X ×M) −→ C(X, C(M)) and π2 : C(X, C(M)) −→ C(X, E)

defined as π1(f)(x)(m) = f(x, m) and π2(f)(x) = π0(f(x)). By Theorem 1, there
exist a homeomorphism σ : Y −→ X×M and h ∈ C(Y ) such that 0 < h(y) for each
y ∈ Y and ππ2π1(f)(y) = h(y)f(σ(y)). Since π(f) has no zeros whenever f has no

zeros, we have that for a given f ∈ C(X ×M), f(x, m) 6= 0 for all (x, m) ∈ X ×M

whenever for each x ∈ X there exists m ∈ M such that 0 6= f(x, m). To see this
claim, let f ∈ C(X × M) be such that for each x ∈ X there exits mx ∈ M such
that f(x, mx) 6= 0. Let x0 ∈ X . Define fx0 : M −→ �

by fx0(m) = f(x0, m). Then
1X ⊗ π0(fx0) ∈ C(X, E) is a non-zero constant function, where 1X ⊗ π0(fx0)(x) =
π0(fx0) for each x ∈ X . Choose p ∈ C(X ×M) such that π2π1(p) = 1X ⊗ π0(fx0).
From the hypothesis we obtain

0 6= π(1X ⊗ π0(fx0))(y) = ππ2π1(p)(y) = h(y)p(σ(y)).

This shows that there exists ε > 0 such that ε1Y 6 π(1X ⊗ |π0(fx0)|), that is,
π−1(ε1Y ) 6 1X ⊗ |π0(fx0)|, hence

επ0(1M ) = π−1(ε1Y )(a) 6 1X ⊗ |π0(fx0)|(a) = |π0(fx0)| = π0(|fx0 |).
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This implies that ε1M 6 |fx0 |. Hence 0 6= f(x0, m) for each m. From the previous

lemma, we have M = {m}, hence X and Y are homeomorphic. Since C(M) is a
Riesz space isometrically isomorphic to

�
, the proof is completed. �
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