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Abstract. In this paper the equivalence Q̃U on a semigroup S in terms of a set U of
idempotents in S is defined. A semigroup S is called a U-liberal semigroup with U as the
set of projections and denoted by S(U) if every Q̃U -class in it contains an element in U . A
class of U-liberal semigroups is characterized and some special cases are considered.
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1. Introduction

It is well known that Green’s equivalences on semigroups have played a fundamen-
tal role in the study of regular semigroups. In terms of various generalized Green’s
equivalences on semigroups (such as ∗-Green’s equivalences defined by Fountain [5]
and ∗∗-Green’s equivalences defined by Tang [23] and Du and He [1]), some classes of
generalized regular semigroups (such as abundant semigroups and weakly abundant
semigroups) have been defined and studied. In general, in the procession of dis-
cussing regular and generalized regular semigroups, all idempotents in semigroups
are involved.
Recently, some authors found that the set of some idempotents in a semigroup,

such as the C-set of a P-regular semigroup (see [10]–[13], [24]–[26]) and the set of
projections of a U -semiabundant semigroup (see [6], [7], [12], [16]–[18]), is perhaps
very important to the description for the whole semigroup and, sometimes, is more
dominant than the set of all idempotents.

This work has been supported by grants of the Scientific Foundation of Hunan Education
Department (No. 02B024, 05A014) and the grant of Natural Scientific Foundation of
Hunan (No. 04JJ40001).
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In this paper, we shall go forward along the path charted by Lawson [17], [18].
The semigroups considered in this paper will be all equipped with a plentiful supply
of idempotents. For all undefined terminology and notation the reader is referred to
Fountain [5], Howie [15] and Lawson [17].

2. Preliminaries

The aim of this section is to introduce some basic concepts and give some charac-
terizations for C-U-liberal semigroups.
Throughout this section, we always assume that S is a semigroup and U is a non-

empty subset of the set E(S) of all idempotents in S. The set of idempotents in a
subset A of S is denoted by E(A). The set of all regular elements in S is denoted
by Reg(S). By S = [Y ;Sα] we mean that S is a semilattice of the semigroups Sα

(α ∈ Y ). In particular, if S is a band, then [Y ;Sα] is the greatest semilattice
decomposition of S. We use 1S to denote the identity in the monoid S1. The
lattices of all binary relations, equivalences, left congruences, right congruences and
congruences on S are denoted by B(S), E(S), LC(S), RC(S) and C(S), respectively.
For any % ∈ B(S), if it is necessary, % is written specifically as %(S).
The elements in the set RegU (S) = {a ∈ S : (∃ e, f ∈ U) e L a R f} are called

U -regular elements (see [17]). It is obvious that U ⊆ RegU (S). Moreover, we can
routinely show that a ∈ RegU (S) if and only if a ∈ Reg(S) and the set VU (a) =
{a′ ∈ V (a) : aa′, a′a ∈ U} of the U -inverses of a is non-empty.
For any a ∈ S, let

U l
a = {e ∈ U : ea = a}, U r

a = {e ∈ U : ae = a}, Ua = U l
a ∩ Ur

a .

It is evident that

Q̃U = {(a, b) ∈ S × S : Ua = Ub} ∈ E(S).

Lawson [17] defined the equivalences L̃U , R̃U and H̃U on S by

L̃U = {(a, b) ∈ S×S : U r
a = Ur

b }, R̃U = {(a, b) ∈ S×S : U l
a = U l

b}, H̃U = L̃U∩R̃U .

He also indicated that in general L̃ 6∈ RC(S) and R̃U 6∈ LC(S). The semigroup S
is said to satisfy condition (CR) if L̃ ∈ RC(S). Furthermore, S is said to satisfy
condition (C) if it satisfies condition (CR) and its dual condition (CL).
The Q̃U , L̃U , R̃U and H̃U -classes in S containing the element a are denoted by Q̃U

a ,
L̃U

a , R̃
U
a and H̃

U
a , respectively. The following basic result will be used frequently.
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Lemma 2.1. Let a and b be two arbitrary elements in S. The following statements
hold:
(1) if (a, b) ∈ L, then (a, b) ∈ L̃U ; conversely, if (a, b) ∈ L̃U |RegU (S), then (a, b) ∈ L;
(2) if (a, b) ∈ R, then (a, b) ∈ R̃U ; conversely, if (a, b) ∈ R̃U |RegU (S), then (a, b) ∈ R;
(3) if H̃U

a ∩ U 6= ∅, then it is a singleton contained in Ua;
(4) H̃U

a ⊆ Q̃U
a ;

(5) Q̃U
a ∩ U 6= ∅ if and only if Ua has the minimum element with respect to the
natural partial order6 on E(S) and, in this case, Q̃U

a ∩U is a singleton contained
in Ua.

���������
. The first part of the statements (1) and (3) can be found in Lawson [17].

The statement (2) is the result dual to (1). We now check the left ones.
(1) We only need to establish the second part. Suppose that (a, b) ∈ L̃U |RegU (S).

For any a′ ∈ VU (a), since a′a ∈ Ur
a , we have a

′a ∈ Ur
b and hence b = ba′a ∈ L(a),

where L(a) is the principle left ideal of S generated by a. Dually, also a ∈ L(b).
Thus (a, b) ∈ L as required.
(4) If (a, b) ∈ H̃U , then U l

a = U l
b and U

r
a = Ur

b . So Ua = Ub and hence (a, b) ∈ Q̃U .
(5) It is a routine matter to show that, for any e ∈ U , Ue = Ua if and only if e is

the minimum element in Ua. By the statements (3) and (4), we can see that this
statement is true. �

For any a ∈ S, if they exist, the unique element in Q̃U
a ∩U is denoted by a◦U , while

the unique element in H̃U
a ∩ U is denoted by a�U .

The pair (S,U) is called a U -semiabundant semigroup if every L̃U and R̃U -class in
it meet with U (see [17, 18]). A U -semiabundant semigroup (S,U) is called an Ehres-
mann semigroup if it satisfies condition (C) and U is a semilattice (see [6], [7]). We
call the Ehresmann semigroups with central projections C-Ehresmann semigroups.

Definition 2.2. The pair (S,U) is called a U-liberal semigroup if every Q̃U -
class in S contains an element from U . A U-liberal semigroup (S,U) is called an
orthomonoid if U is a subsemigroup of S such that

(∀ a, b ∈ S) (ab)◦U D a◦Ub
◦
U .

Orthomonoids with central projections are called C-U-liberal semigroups.

Remark 2.3. It is easy to check that U is central in S if and only if it satisfies
the condition

(C.1) (∀u ∈ U) uS = Su.

If it is this case, U is a semilattice when it is a subsemigroup of S. Thus S(U) is a
C-U-liberal semigroup if and only if it is an orthomonoid satisfying (C.1).
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Definition 2.4. The pair (S,U) is called a U-semi-rpp semigroup if every L̃U -
class in it contains an element from U . A U-semi-rpp semigroup (S,U) is said to be
strongly if

(∀ a ∈ S) |L̃U
a ∩ Ua| = 1.

In this case, the unique element in L̃U
a ∩Ua (a ∈ S) is denoted by a+

U . A U-semi-rpp
semigroup (S,U) is called a C-U-semi-rpp semigroup if it satisfies conditions (CR),
(C.1) and U is a subsemigroup.

U-semi-lpp semigroups, strongly U-semi-lpp semigroups and C-U-semi-lpp semi-
groups are defined dually in terms of the relation R̃U . If (S,U) is a strongly U-semi-
lpp semigroup, then the unique element in R̃U

a ∩ Ua (a ∈ S) is denoted by a∗U .

Definition 2.5. The pair (S,U) is called a U-semi-superabundant semigroup if
every H̃U -class in it contains an element from U . A U-semi-superabundant semi-
group (S,U) is called a C-U-semi-superabundant semigroup if it satisfies condi-
tions (C), (C.1) and U is a subsemigroup.

In case that (S,U) is a U -semiabundant semigroup, a U-liberal semigroup, a
U-semi-rpp semigroup, a U-semi-lpp semigroup or a U-semi-superabundant semi-
group, we denote (S,U) by S(U) and call U the set of projections. By virtue of
Lemma 2.1 (3)–(4), we get

Corollary 2.6. If S(U) is a U-semi-superabundant semigroup, then it is a U-
liberal semigroup such that Q̃U = H̃U and a◦U = a�U for any a ∈ S.

Lemma 2.7. Let T be a semigroup and E a non-empty subset of E(T ) contained
in the center of T . Then Q̃E = L̃E = R̃E = H̃E . Moreover, the following statements
are equivalent:
(1) T (E) is a U-liberal semigroup;
(2) T (E) is a U-semi-rpp semigroup;
(3) T (E) is a strongly U-semi-rpp semigroup;
(4) T (E) is a U-semi-lpp semigroup;
(5) T (E) is a strongly U-semi-lpp semigroup;
(6) T (E) is a U-semi-abundant semigroup;
(7) T (E) is a U-semi-superabundant semigroup.
Furthermore, if the statements (1) (and hence (3), (5) and (6)) holds, then, for any
a ∈ T , a◦U = a∗U = a+

U = a�U .
���������

. This result holds in view of El
a = Ea = Er

a for any a ∈ T . �

If T = [Y ;Tα] is a semilattice of the monoids Tα and E = {1Tα : α ∈ Y } is a
subsemigroup of T , then, by Petrich [22], Exercise IV.2 (iv), T is a strong semilattice
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of Tα (α ∈ Y ) with respect to the homomorphism transitive system defined by, for
any α, β ∈ E with β 6 α,

ϕα,β : Tα −→ Tβ, x 7−→ x1Tβ
.

It is evident that, in this case, E is isomorphic to Y and is central in T . Sometimes,
for any α ∈ Y , we set α = 1Tα . Fountain, Gomes and Gould [6] called T an E-
semilattice of monoids.

Theorem 2.8. Let T be a semigroup and E ⊆ E(S). The following statements
are equivalent:
(1) T (E) is a C-U-liberal semigroup;
(2) T (E) is a U-liberal semigroup satisfying the identity a◦Ub◦U = (ab)◦U and E is a
semilattice;

(3) T (E) is an E-semilattice of monoids;
(4) T (E) is a U-liberal semigroup, E is a central subsemigroup of T and Q̃E ∈ C(T );
(5) T (E) is a U-liberal semigroup, E is a central subsemigroup of T and Q̃E ∈

RC(T );
(6) T (E) is a C-U-semi-rpp semigroup;
(7) T (E) is a U-liberal semigroup, E is a central subsemigroup of T and Q̃E ∈

LC(T );
(8) T (E) is a C-U-semi-lpp semigroup;
(9) T (E) is a C-U-semi-superabundant semigroup;
(10) T (E) is a C-Ehresmann semigroup.
���������

. Fountain, Gomes and Gould [6] proved that the statements (3) and
(10) are equivalent. Clearly, the implications (2) ⇒ (3) ⇒ (4) ⇒ (5), (9) ⇒ (10) and
(3) ⇒ (1) are true. Furthermore, by virtue of Lemma 2.7 and Remark 2.3, we can
see that the statements (5) and (7) are equivalent to (6) and (7), respectively.

(1) ⇒ (2). Assume that T (E) is a C-U-liberal semigroup. Then E is a semilattice
and a subsemigroup of T . It follows by the definition of C-U-liberal semigroups that
a◦Eb

◦
U D (ab)◦E holds for any a, b ∈ T . Suppose that c ∈ S is such that a◦Eb

◦
E L c R

(ab)◦E . Then c ∈ RegE(S) and there exists c′ ∈ VE(c) such that c′c = a◦Eb
◦
E and

cc′ = (ab)◦E . By noting that ca
◦
Eb

◦
E = c = (ab)◦Ec and E is central in T , we have

(ab)◦E = cc′ = ca◦Eb
◦
Ec

′ = cc′a◦Eb
◦
Ec

′ = (ab)◦Ea
◦
Eb

◦
E = (ab)◦Ec

′c

= c′(ab)◦Ec = c′c = a◦Eb
◦
E .

(5) ⇒ (7). Assume that the statement (5) holds. Then Q̃E ∈ LC(S) follows by

(∀ (a, b) ∈ Q̃E)(∀ c ∈ S) ca Q̃E c◦Ea = ac◦E Q̃E bc◦E = c◦Eb Q̃E cb.
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(7) ⇒ (9). If the statement (7) holds, then so does (8). By Remark 2.3 and
Lemma 2.7, we claim that T (E) is a U-semi-superabundant semigroup satisfying (CL)
and E is a central subsemigroup of T . It is dual that the statements (5) and (6)
hold also. Thereby, T (E) satisfies (CR), and hence it is a C-semi-superabundant
semigroup. Here is the end of the proof.
Hereafter, by “a C-Ehresmann semigroup T = [Y ;Tα]” we mean that T (E) is a

C-Ehresmann semigroup which is the E-semilattice of the monoids Tα (α ∈ Y ).

3. Left C-U-liberal semigroups

Definition 3.1. An orthomonoid semigroup S(U) is called a left C-U -liberal
semigroup if

(C.2) (∀u ∈ U) uS ⊆ Su.

Lemma 3.2. Let S be a semigroup and U ⊆ E(S). The following statements are
equivalent:
(1) S satisfies condition (C.2);
(2) for any a ∈ S and e ∈ U , ea = eae;
(3) for any a ∈ S, U l

a = Ua;
(4) for any a ∈ RegU (S), aS ⊆ Sa;
(5) for any e ∈ U , the mapping ξ : x 7→ ex of S1 onto eS1 is a semigroup homo-
morphism.

Moreover, if S satisfies condition (C.2), then the following statements hold:
(a) if U = E(S), then U is a subsemigroup of S;
(b) if U is a subsemigroup of S, then it is a left regular band.
���������

. (1) ⇒ (2). Assume that S satisfies condition (C.2). Then for any e ∈ U
and a ∈ S, there exists u ∈ S such that ea = ue. Thus ea = ue = uee = eae.

(2) ⇒ (3). This is obvious.
(3) ⇒ (4). Assume that the statement (3) holds. Then, for any b ∈ S, a ∈ RegU (S)

and a′ ∈ VU (a) we have ab = aa′ab = aba′a ∈ Sa. Thereby, the statement (4) also
holds.

(4) ⇒ (5). If the statement (4) holds, then the statement (1) and hence the
statement (2) also hold. Now, the statement (5) is immediate.

(5) ⇒ (1). Assume that the statement (5) holds and e ∈ U . Then for any
b = ea ∈ eS we have

b = ea = ea · 1S1 = ea · e1S1 = eae ∈ Se.

This implies that the statement (1) holds also.
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We now assume that S satisfies condition (C.2). If U = E(S), then, for any
e, f ∈ U , it follows by the statement (2) that ef = eff = efef , and hence E(S) forms
a subsemigroup of S. Thus, the statement (a) holds. If U is a subsemigroup, then it
is a band satisfying the identity ea = eae. This implies that U is a left regular band.
This completes the proof. �

Remark 3.3. If S is the direct product of a left zero band I and a monoid T , then
we call S a left monoid. In this case S(I×{1T}) is a left C-U-liberal semigroup. Here-
after, we will identify the left monoid S with the left C-U-liberal semigroup S(U).

Lemma 3.4. Let S(U) be a U-liberal semigroup satisfying condition (C.2) and
U a subsemigroup of S. The following statements are equivalent:
(1) S(U) is a left C-U-liberal semigroup;
(2) for any a, b ∈ S, (ab)◦U L(U) a◦U b

◦
U ;

(3) L◦U = {(a, b) ∈ S × S : a◦U L(U) b◦U} ∈ C(S).
���������

. (1) ⇒ (2). Assume that S is a left C-U-liberal semigroup. Then, for
any a, b ∈ S, we have (ab)◦U D a◦Ub

◦
U . Consequently, there are c, d ∈ S such that,

in S,

(ab)◦U R c L a◦Ub
◦
U R d L (ab)◦U .

Since (ab)◦U ∈ U l
c and a

◦
Ub

◦
U ∈ U l

d, by Lemma 3.2 we have (ab)◦U ∈ Uc and a◦U b
◦
U ∈ Ud,

and whence c(ab)◦U = c and da◦U b
◦
U = d. This implies that

La◦Ub◦U = Lc 6l L(ab)◦U
= Ld 6l La◦Ub◦U ,

so that (ab)◦U L(S) a◦Ub
◦
U . Since U is a subsemigroup of S, by Lemma 3.2, we can see

that U is a left regular band. It follows that L(S)|U = L(U), yields (ab)◦U L(U) a◦U b
◦
U .

(2) ⇒ (3). If the statement (2) holds, then L◦U ∈ E(S). Since U is a left regular
band, we have L(U) ∈ C(U). Thus, for any (a, b), (c, d) ∈ L◦U , we have

(ac)◦U L(U) a◦Uc
◦
U L(U) b◦Ud

◦
U L(U) (bd)◦U .

It follows that the relation L◦U on S is a congruence.
(3) ⇒ (1). Assume that the statement (3) holds. For any a, b ∈ S, since

(a, a◦U ), (b, b◦U ) ∈ L◦U , we have (ab, a◦Ub
◦
U ) ∈ L◦U , and whence (ab)◦U L(U) a◦U b

◦
U .

By noting that L(U) ⊆ D(S), we conclude that the statement (1) holds. �

If X is a subdirect product of sets Y and Z we denote the first and the second
projections of X onto Y and Z by PY and PZ , respectively. The set of all transfor-
mations on a set X is denoted by T (X) which also stands for the semigroup of all
transformations on X . For any τ, σ ∈ T (X) and x ∈ X , the image of x under τ is
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denoted by xτ and the product of τ and σ in T (X) is denoted by τσ. Let T ∗(X) be
the dual semigroup of the semigroup T (X). The product of τ and σ in T ∗(X) is de-
noted by τ ∗σ. Then τ ∗σ = στ . Let I = [Y ; Iα] and T = [Y ;Tα] be two semigroups.
Define Sα = Iα × Tα for any α ∈ Y and let S =

⋃
α∈Y

Sα. If

η : S −→ T ∗(I), (i, a) −→ (i, a)#

is a mapping satisfying the following statements for any (i, a) ∈ Sα and (j, b) ∈ Sβ

(C.3) (i) j(i, a)# ∈ Iαβ , in particular, if α 6 β, then j(i, a)# = ij;
(ii) (i, a)# ∗ (j, b)# = (j(i, a)#, ab)#,

then S forms a semigroup with respect to the binary operation

(i, a) · (j, b) = (j(i, a)#, ab).

Zhu, Guo and Shum [28] called this semigroup the left semi-spined product of I and
T with respect to Y and η or simply a left semi-spined product of I and T , and
denoted it by I ×Y,η T . In this case, η is called a structural homomorphism.

Theorem 3.5. Let S be a semigroup. The following statements are equivalent:
(1) S(U) is a left C-U-liberal semigroup for some U ⊆ E(S);
(2) S is a semilattice Y of left monoids Sα = Iα × Tα (α ∈ Y ) and U = {(i, 1Tα) :

i ∈ Iα, α ∈ Y } is a subsemigroup of S;
(3) S is a semilattice Y of left monoids Sα = Iα × Tα (α ∈ Y ) such that, for any

β 6 α in Y ,

(∃ iα ∈ Iα, iβ ∈ Iβ) ((iβ , 1Tβ
)(1α, 1Tα))PTβ

= 1Tβ
;

(4) S is a left semi-spined product of a left regular band I = [Y ; Iα] and a C-
Ehresmann semigroup T = [Y ;Tα] with respect to Y and some structural ho-
momorphism.

���������
. (1) ⇒ (2). Let S(U) be a left C-U-liberal semigroup. Then, by

Lemma 3.2 (b), we can see that U is a left regular band. Let U = [Y ; Iα] where Iα
(α ∈ Y ) are left zero bands. By Lemma 3.4, we have

S = [Y ;Sα = {x ∈ S : x◦U ∈ Iα}].

For any e ∈ Iα (α ∈ Y ), the subset Se = {x ∈ S : x◦U = e} obviously forms a monoid
with e as its identity. If also f ∈ Iα, then, for any a ∈ Se, we have f ∈ U l

fa and
(f, (fa)◦U ) ∈ L. By Lemma 2.1 and Lemma 3.4, we conclude that (fa)◦U = f , whence
fa ∈ Sf . Therefore

ξe,f : Se −→ Sf , x 7−→ fx
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is a mapping. Since ξf,e = ξ−1
e,f and, for any a, b ∈ Se,

f(ab) = faefb = fa · fb,

the mapping ξe,f is a semigroup isomorphism. For any α ∈ Y , we choose eα ∈ Iα
and let Tα = Seα . It is a routine matter to check that the mapping

ξα : Sα −→ Iα × Tα, x 7−→ (x◦U , xξx◦U ,eα) = (x◦U , eαx)

is also an isomorphism. Thus there is an isomorphism from S onto a semilattice Y of
the left monoids Iα×Tα such that the image of U is exactly {(i, 1Tα) : i ∈ Iα, α ∈ Y }.

(2) ⇒ (3). This is obvious.
(3) ⇒ (4). Assume that the statement (3) holds and let U =

⋃
α∈Y

Uα where Uα =

Iα × {1Tα} (α ∈ Y ). Then, for any β 6 α in Y , (i, 1Tα) ∈ Uα and (j, 1Tβ
) ∈ Uβ , we

have

(j, 1Tβ
)(i, 1Tα) = (j, 1Tβ

)(iβ , 1Tβ
)(iα, 1Tα)(i, 1Tα)

= (j, 1Tβ
)(iβ , 1Tβ

)(iα, 1Tα) = (j, 1Tβ
).

Therefore, for any α, β ∈ Y , (i, 1Tα) ∈ Uα and (j, 1Tβ
) ∈ Uβ, we have further

(j, 1Tβ
)(i, 1Tα)PTα,β

= ((((j, 1Tβ
)(i, 1Tα))PIαβ

, 1Tαβ
)(j, 1Tβ

)(i, 1Tα))PTαβ

= ((((j, 1Tβ
)(i, 1Tα))PIαβ

, 1Tαβ
)(i, 1Tα))PTαβ

= (((j, 1Tβ
)(i, 1Tα))PIαβ

, 1Tαβ
)PTαβ

= 1Tαβ
.

Thus U is a subsemigroup of S. It is obvious that U = [Y ;Uα] is a left regular band.
Moreover, the set I =

⋃
α∈Y

Iα forms a left regular band with respect to the operation

(∀ i ∈ Iα, j ∈ Iβ) i ◦ j = ((i, 1Tα)(j, 1Tβ
))PI .

Denote T =
⋃

α∈Y

Tα. For any a ∈ Tα and b ∈ Tβ , suppose that (i, a) ∈
Iα × Tα, (j, b) ∈ Iβ × Tβ and k ∈ Iαβ are such that ((k, 1Tαβ

)(i, a))PT = a′

and ((k, 1Tαβ
)(j, b))PT = b′. Then

(∀ k′ ∈ Iαβ) (k′, 1Tαβ
)(i, a) = (k′, 1Tαβ

)(k, 1Tαβ
)(i, a) = (k′, a′).
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Thus a′ is independent of k. Similarly, b′ is independent of k too. Furthermore, for
any i′ ∈ Iα and j′ ∈ Iβ , we have

(i′, a)(j′, b) = (((i′, a)(j′, b))PI , 1Tαβ
)(i′, a)(j′, b)

= (((i′, a)(j′, b))PI , a
′)(j′, b)

= (((i′, a)(j′, b))PI , a
′(k, 1Tαβ

)(j′, b)

= (((i′, a)(j′, b))PI , a
′)(k, b′)

= (((i′, a)(j′, b))PI , a
′b′).

So ((i, a)(j, b))PT is independent of both i and j. Consequently, we can define an
operation • on T as below: for any a ∈ Tα and b ∈ Tβ ,

a • b = c⇐⇒ (∃ i ∈ Iα, j ∈ Iβ) ((i, a)(j, b))PT = c.

By noticing that PT is a homomorphism of S onto the groupoid (T, •), we conclude
that (T, •) is a semigroup. Moreover, it is evident that (T, •) is a semilattice of
monoids Tα (α ∈ Y ). Since U is a subsemigroup of S, we can easily show that
E = {1Tα : α ∈ Y } is a subsemigroup of T , and hence T is the E-semilattice of Tα

(α ∈ Y ). Thus T is a C-Ehresmann semigroup.
We now define a mapping η from the set S into T ∗(I) by

(∀ (i, a) ∈ Sα) (∀ j ∈ Iβ) j(i, a)# = ((i, a)(j, 1Tβ
))PI .

For any (i, a) ∈ Sα and j ∈ Iβ (α, β ∈ Y ), we can easily see that j(i, a)# ∈ Iαβ . In
particular, if α 6 β, then j(i, a)# = i = ij in view of

(i, a)(j, 1Tβ
) = (i, a)(i, 1Tα)(j, 1Tβ

) = (i, a)(i, 1Tβ
) = (i, a).

Moreover, for any b ∈ Tβ we have

(i, a)(j, b) = (i, a)(j, 1Tβ
)(j, b)

= (j(i, a)#, a • 1Tβ
)(j, b)

= (j(i, a)#, a • 1Tβ
)(j(i, a)#, 1Tαβ

)(j, b)

= (j(i, a)#, a • 1Tβ
)(j(i, a)#, 1Tαβ

)(j(i, a)#, 1Tαβ
)(j, b)

= (j(i, a)#, a • 1Tβ
)(j(i, a)#, 1Tαβ

)(((j(i, a)#, 1Tαβ
)(j, b))PI , 1Tαβ

• b)
= (j(i, a)#, a • 1Tβ

)(j(i, a)#, 1Tαβ
• b)

= (j(i, a)#, a • b).

1094



Hence, for any k ∈ Iγ (γ ∈ Y ),

k(j(i, a)#, a • b)# = k((i, a)(j, b))#

= (((i, a)(j, b))(k, 1Tγ ))PI

= ((i, a)((j, b)(k, 1Tγ )))PI

= ((i, a)(k(b, j)#, b • 1Tγ ))PI

= (k(b, j)#(a, i)#, a • b • 1Tγ )PI

= k((i, a)# ∗ (j, b)#).

Thus η is a structural homomorphism such that S = I ×Y,η T .
(4) ⇒ (1). Let S be the left semi-spined product of a left regular band I = [Y ; Iα]

and a C-Ehresmann semigroup T = [Y ;Tα] with respect to the semilattice Y and
a structural homomorphism η, and let U = {(i, 1Tα) : i ∈ Iα, α ∈ Y }. Then U =
[Y ; Iα × {1Tα}] is a left regular band and S = [Y ; Iα × Tα]. Suppose that (i, a) and
(j, b) are two arbitrary elements of Iα × Tα and Iβ × Tβ , respectively, and suppose
that (k, 1Tγ ) is an arbitrary element in U . Then

(k, 1Tγ )(i, a)(k, 1Tγ ) = (i(k, 1Tγ )#, 1Tγ · a)(k, 1Tγ )

= (i(k, 1Tγ )#, 1Tγ · a · 1Tγ )

= (i(k, 1Tγ )#, 1Tγ · a)
= (k, 1Tγ )(i, a).

It follows by Lemma 3.2 that S satisfies condition (C.2). It is evident that
(i, 1Tα) ∈ U(i,a). If also (k, 1Tγ ) ∈ U(i,a), then of course α 6 γ and hence
(k, 1Tγ )(i, 1Tα), (i, 1Tα)(k, 1Tγ ) ∈ (Iα × Tα) ∩ U(i,a). Since (i, 1Tα) is the unique
element in (Iα × Tα) ∩ U(i,a), we have

(k, 1Tγ )(i, 1Tα) = (i, 1Tα) = (i, 1Tα)(k, 1Tγ ).

Thus (i, 1Tα) = (i, a)◦U whence S(U) is a U-liberal semigroup. Since (i, a)◦U (j, b)◦U
and ((i, a)(j, b))◦U are elements in Iαβ × {1Tαβ

}, we have

(i, a)◦U (j, b)◦U L(U) ((i, a)(j, b))◦U

and hence, by Lemma 3.4, S(U) is a left C-U-liberal semigroup. Here is the end of
the proof.
For a transformation ψ on a set X and i ∈ X , we use 〈ψ〉 to denote that ψ is a

constant mapping on X with value 〈ψ〉, and use 〈i〉 to denote the constant mapping
on X with value i. Since it is similar to the well-known construction for bands, the
following characterization for left C-U-liberal semigroups is called the band-formal
construction.
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Theorem 3.6. Let T = [Y ;Tα] be a C-Ehresmann semigroup and, for any α ∈
Y , let Iα be a non-empty set. Denote S =

⋃
α∈Y

Sα where Sα = Iα × Tα and let

U = {(i, 1Tα) : i ∈ Iα, α ∈ Y }. For any γ 6 α in Y , define a mapping

Ψα,γ : Sα −→ T ∗(Iγ), (i, a) 7−→ ψ(i,a)
α,γ

such that the following statements hold for any α, β ∈ Y :
(C.4) (i) for any (i, a) ∈ Sα, ψ

(i,a)
α,α = 〈i〉;

(ii) if (i, a) ∈ Sα and (j, b) ∈ Sβ , then ψ
(i,a)
α,αβ ∗ ψ

(j,b)
β,αβ =

〈
ψ

(i,a)
α,αβ ∗ ψ

(j,b)
β,αβ

〉
; more-

over,
(iii) for any δ 6 αβ in Y , ψ(k,ab)

αβ,δ = ψ
(i,a)
α,δ ∗ ψ(j,b)

β,δ where k =
〈
ψ

(a,i)
α,αβ ∗ ψ

(b,j)
β,αβ

〉
.

Then S(U) is a left C-U-liberal semigroup with respect to the multiplication defined
by

(∗) (∀ (i, a) ∈ Sα, (j, b) ∈ Sβ) (i, a)(j, b) =
(〈
ψ

(i,a)
α,αβ ∗ ψ

(j,b)
β,αβ

〉
, ab

)
.

Conversely, every left C-U-liberal semigroup can be obtained in this way.
���������

. The first part. By conditions (C.4) (i) and (ii), we can see that the
multiplication (∗) on S is well-defined. Let (i, a) ∈ Sα, (j, b) ∈ Sβ and (k, c) ∈ Sγ

where α, β, γ ∈ Y . It is obvious that the condition (C.4) (iii) can be translated into

(∀ δ 6 αβ in Y ) ψ
(i,a)(j,b)
αβ,δ = ψ

(i,a)
α,δ ∗ ψ(j,b)

β,δ .

Therefore

((i, a)(j, b))(k, c) =
(〈
ψ

(i,a)(j,b)
αβ,αβγ ∗ ψ(k,c)

γ,αβγ

〉
, abc

)

=
(〈
ψ

(i,a)
α,αβγ ∗ ψ

(j,b)
β,αβγ ∗ ψ

(k,c)
γ,αβγ

〉
, abc

)

=
(〈
ψ

(i,a)
α,αβγ ∗ ψ

(j,b)(k,c)
βγ,αβγ

〉
, abc

)

= (i, a)((j, b)(k, c)).

So S is a semigroup. It is a routine matter to check that U is a subsemigroup of S
and S is a semilattice Y of the left monoids Sα. By Theorem 3.5, we claim that
S(U) is a left C-U-liberal semigroup.
The converse part. Let S(U) be a left C-U-liberal semigroup. Then we are rea-

sonable to assume that S is a semilattice Y of left monoids Sα = Iα × Tα and
U = {(i, 1Tα) : i ∈ Iα, α ∈ Y } is a subsemigroup of S. For any β 6 α in Y and
(i, a) ∈ Sα, define ψ

(i,a)
α,β ∈ T ∗(Iβ) by

(∀ j ∈ Iβ) jψ
(i,a)
α,β = ((i, a)(j, 1Tβ

))PIβ
.
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Then (C.4) (i) holds obviously. Let α, β ∈ Y , (i, a) ∈ Sα and (j, b) ∈ Sβ. Then

(∀h ∈ Iαβ) ((i, a)(j, b))PI = ((i, a)(j, b)(h, 1Tαβ
))PI

=
(
(i, a)

(
hψ

(j,b)
β,αβ, b · 1Tαβ

))
PI

=
(
(i, a)

(
hψ

(j,b)
β,αβ, 1Tαβ

)
(h, b · 1Tαβ

)
)
PI

=
((
hψ

(b,j)
β,αβψ

(a,i)
α,αβ , a · 1Tαβ

)
(h, b · 1Tαβ

)
)
PI

=
(
hψ

(j,b)
β,αβψ

(i,a)
α,αβ , ab

)
PI

= h
(
ψ

(i,a)
α,αβ ∗ ψ

(j,b)
β,αβ

)
.

So ψ(i,a)
α,αβ ∗ψ

(j,b)
β,αβ is a constant transformation on Iαβ with value k = ((i, a)(j, b))PIαβ

.
Hence (C.4) (ii) also holds. If δ 6 αβ in Y , then for any h ∈ Iδ , we have

hψ
(k,ab)
αβ,δ = ((k, ab)(h, 1Tδ

))PI

= ((i, a)(j, b)(h, 1Tδ
))PI

=
(
(i, a)

(
hψ

(j,b)
β,δ , b · 1Tδ

))
PI

=
(
(i, a)

(
hψ

(j,b)
β,δ , 1Tδ

)
(h, b · 1Tδ

)
)
PI

= h
(
ψ

(i,a)
α,δ ∗ ψ(j,b)

β,δ

)
.

So (C.4) (iii) holds. Consequently, S can be constructed as in the first part since

(i, a)(j, b) =
(〈
ψ

(i,a)
α,αβ ∗ ψ

(j,b)
β,αβ

〉
, ab

)
.

�

Definition 3.7. Let S be a semigroup and U a subsemigroup of S con-
tained in E(S) such that (C.2) holds. If S(U) is a strong U-semi-rpp semigroup
satisfying (CR), then it is called a left C-U-semi-rpp semigroup. If S(U) is a
U-semi-superabundant semigroup satisfying (C), then it is called a left C-U-semi-
superabundant semigroup.

Theorem 3.8. Let S be a semigroup and U ⊆ E(S). The following statements
are equivalent:
(1) S(U) is a left C-U-liberal semigroup;
(2) S(U) is a U-semi-abundant semigroup satisfying condition (C), U is a subsemi-
group of S and R̃U = H̃U ;

(3) S(U) is a left C-U-semi-superabundant semigroup;
(4) S(U) is a left C-U-semi-rpp semigroup.
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���������
. (1) ⇒ (2). Assume that S(U) is a left C-U-liberal semigroup. By

Theorem 3.5, it is reasonable to suppose that S is a semilattice Y of left monoids
Sα = Iα × Tα and U = {(i, 1Tα) : i ∈ Iα, α ∈ Y } is a subsemigroup of S. Then U is
a left regular band with structural semilattice decomposition [Y ;Uα = {(i, 1Tα) : i ∈
Iα}]. Let I =

⋃
α∈Y

Iα and T =
⋃

α∈Y

Tα. It is a routine matter to verify that for any

(i, a) ∈ Sα and e ∈ U ,

(i, a) L̃U e⇐⇒ e ∈ Uα, (i, a) R̃U e⇐⇒ ePI = i.

So S is a U-semi-abundant semigroup, in which

L̃U = {(x, y) ∈ S × S : (∃α ∈ Y )x, y ∈ Sα},
R̃U = {(x, y) ∈ S × S : xPI = yPI}.

By noting that R̃U ⊆ L̃U , we have R̃U = H̃U . The relation L̃U on S is obviously a
semilattice congruence. By the definition of S and R̃U , we can easily establish that
R̃ ∈ LC(S). Thus S satisfies condition (C).

(2) ⇒ (3). Assume that S(U) is a U-semi-abundant semigroup satisfying con-
dition (C) in which U is a subsemigroup and R̃U = H̃U . Then S is of course a
U-semi-superabundant semigroup satisfying condition (C) and every R̃U -class in it
contains a unique projection. For any a ∈ S and e ∈ U , since eea = ea, we have
e(ea)�U = (ea)�U and hence (ea)�U R (ea)�Ue. Since U is a subsemigroup and R ⊆ R̃U ,
we have (ea)�U = (ea)�Ue, whence eae = ea. It follows by Lemma 3.2 that S satisfies
condition (C.2). So the statement (3) holds.

(3) ⇒ (4). Assume that S(U) is a left C-U-semi-superabundant semigroup. Then
S(U) is of course a U-semi-rpp semigroup satisfying conditions (CR) and (C.2), and
U is a subsemigroup of S. Moreover, by Lemma 3.2 (b), we can see that U is a left
regular band. For any a ∈ S, it is obvious that a�U ∈ Ua ∩ L̃U

a . If also e ∈ Ua ∩ L̃U
a ,

then (e, a�U ) ∈ L̃U . It follows by Lemma 2.1 (1) that (e, a�U ) ∈ L. Since a�U is the
minimum element in Ua, we have a�U 6 e and hence e = ea�U = a�U . So a

�
U = a+

U

whence S(U) is a strongly U-semi-rpp semigroup.
(4) ⇒ (1). Assume that S(U) is a left C-U-semi-rpp semigroup. Then S satisfies

condition (C.2), U is a left regular band and a subsemigroup of S. For any a ∈ S and
e ∈ Ua, since S(U) satisfies condition (CR), we have a = ae L̃U a+

Ue. By noting that
also a+

Ue ∈ Ua, we have further a
+
Ue = a+

U whence ea
+
U ∈ U is L-equivalent with a+

U .
It follows by Lemma 2.1 (1) that ea+

U L̃U a. Thus ea+
U ∈ Ua ∩ L̃U

a so that ea
+
U = a+

U .
Therefore a+

U = a◦U , whence S is a U-liberal semigroup. For any a, b ∈ S, since S(U)
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satisfies (CR) again, we have ab L̃U a+
Ub and hence

(∀ e ∈ U) (ab)+Ue = (ab)+U ⇐⇒ abe = ab

⇐⇒ a+
Uba

+
Ub

+
Ue = a+

Ubb
+
Ue = a+

Ube = a+
U b = a+

Uba
+
U b

+
U

⇐⇒ aba+
Ub

+
Ue = aba+

Ub
+
U

⇐⇒ (ab)+Ua
+
U b

+
Ue = (ab)+Ua

+
U b

+
U .

Thus (ab)+U L̃U (ab)+Ua
+
Ub

+
U . By Lemma 2.1 (1), we claim that (ab)+U L (ab)+Ua

+
U b

+
U .

Thereby
(ab)+U = (ab)+Ua

+
U b

+
U .

Since a and b are arbitrary, by replacing a and b in the equation above by b and a+
U ,

respectively, we have further

(ba+
U )+U = (ba+

U )+U b
+
Ua

+
U = (ba+

U )+U b
+
U (a+

U )+Ua
+
U = (ba+

U )+Ua
+
U .

Moreover, by virtue of a+
U b

+
U L b+Ua+

U we conclude that a
+
U b

+
U L̃U b+Ua

+
U and hence

(∀ e ∈ U) abe = ab =⇒ a+
U ba

+
Ue = a+

U be = a+
Ub = a+

U ba
+
U

=⇒ ba+
Ue = (ba+

U )+Ua
+
Uba

+
Ue = (ba+

U )+Ua
+
U ba

+
U = ba+

U

=⇒ b+Ua
+
Ue = b+Ua

+
U

=⇒ a+
U b

+
Ue = a+

U b
+
U

=⇒ (ab)+Ue = (ab)+Ua
+
Ub

+
Ue = (ab)+Ua

+
Ub

+
U = (ab)+U

=⇒ abe = ab.

Thus a+
U b

+
U L̃U ab L̃U (ab)+U , whence a

+
U b

+
U L (ab)+U . So S(U) is a left C-U-liberal

semigroup. �

4. Left C-liberal semigroups

Let S be a semigroup. For any a ∈ S we denote E(S)l
a, E(S)r

a and E(S)a by I l
a,

Ir
a and Ia, respectively, while the equivalences Q̃E(S), L̃E(S), R̃E(S) and H̃E(S) will
be written simply as Q̃, L̃, R̃ and H̃. In fact, L̃, R̃ and H̃ were defined for the first
time by El-Quallali [2].

Definition 4.1. Let S be a semigroup. If S(E(S)) is an Ehresmann semigroup,
then it is called a full Ehresmann semigroup. Full Ehresmann semigroups with cen-
tral idempotents are called C-full Ehresmann semigroups. If S(E(S)) is a U-liberal
semigroup, then S is called a liberal semigroup and, in this case, a◦E(S) (a ∈ S) is
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denoted by a◦. If S(E(S)) is an orthomonoid, then S is called a full orthomonoid.
Full orthomonoids with central idempotents are called C-liberal semigroups. A full
orthomonoid S is called a left C-liberal semigroup if

(C.5) (∀ e ∈ E(S)) eS ⊆ Se.

By semi-rpp semigroups, strongly semi-rpp semigroups and left C-semi-rpp semi-
groups we mean, respectively, the U-semi-rpp semigroups, strongly U-semi-rpp semi-
groups and left C-U-semi-rpp semigroups with all idempotents as the projections.
The concepts of semi-lpp semigroup, semi-superabundant semigroup, left C-semi-
superabundant semigroup and so on are similarly defined, therefore we omit the
detailed explanation. For an element a in a semigroup S, if they exist, a+

E(S), a
∗
E(S)

and a�E(S) are denoted by a
+, a∗ and a�, respectively.

Remark 4.2.
(1) The direct product of a left zero band and a unipotent semigroup is called a left
unipotent semigroup. Left unipotent semigroups are left C-liberal semigroups.

(2) A semigroup satisfying condition (C.5) is not necessarily liberal. For example,
let S = {e, f, a, 0} be a semigroup with Cayley table

· e f a 0
e e e a 0
f f f a 0
a a a 0 0
0 0 0 0 0

Then S satisfies condition (C.5) but is not liberal.

(3) Non-trivial right zero semigroups are liberal but do not satisfy condition (C.5).
(4) A liberal semigroup satisfying condition (C.5) is not necessarily left C-liberal.
For example, let S = {e, f, a, b, 0} be a semigroup with Cayley table

· e f a b 0
e e e a a 0
f f f b b 0
a a a 0 0 0
b b b 0 0 0
0 0 0 0 0 0

Then S is a liberal semigroup satisfying condition (C.5) but a◦b◦ = ef = e 6= 0 =
(ab)◦.
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Lemma 4.3. If S is a semilattice Y of left unipotent semigroups Iα × Tα, then
E(S) is a subsemigroup of S.
���������

. It is obvious that E(S) = {(i, 1Tα) : i ∈ Iα, α ∈ Y }. For any β 6 α

in Y , i ∈ Iα and j ∈ Iβ , the equation ((j, 1Tβ
)(i, 1Tα))PTβ

= 1Tβ
holds in view of

(j, 1Tβ
)(i, 1Tα) · (j, 1Tβ

)(i, 1Tα) = (j, 1Tβ
)(i, 1Tα)(j, 1Tβ

) · (i, 1Tα)

= (j, 1Tβ
)(i, 1Tα)(j, 1Tα)

= (j, 1Tβ
)(i, 1Tα).

�

Corollary 4.4. Let T be a semigroup. The following statements are equivalent:
(1) T is a C-liberal semigroup;
(2) T is a liberal semigroup satisfying the identity a◦b◦ = (ab)◦ and E(T ) is a
semilattice and a subsemigroup of T ;

(3) T is a liberal semigroup with central idempotents and Q̃ ∈ C(T );
(4) T is a liberal semigroup with central idempotents and Q̃ ∈ RC(T );
(5) T is a C-semi-rpp semigroup;
(6) T is a liberal semigroup with central idempotents and Q̃ ∈ LC(T );
(7) T is a C-semi-lpp semigroup;
(8) T is a C-semi-superabundant semigroup;
(9) T is a C-full Ehresmann semigroup;
(10) T is a semilattice of unipotent semigroups;
(11) T is a strong semilattice of unipotent semigroups.
���������

. It is obvious that, if E(T ) is central in T , then it is a subsemigroup of T
and is a semilattice. By virtue of Theorem 2.8 and Lemma 4.3, the present result
holds. �
Remark 4.5. A liberal semigroup with central idempotents is not necessarily a

C-full Ehresmann semigroup. For example, if S is a non-trivial null monoid (i.e., a
non-trivial null semigroup with an identity adjoined), then it is a liberal semigroup
with central idempotents but not a C-full Ehresmann semigroup.

Corollary 4.6. Let S be a semigroup. The following statements are equivalent:
(1) S is a left C-liberal semigroup;
(2) S is a semilattice Y of left unipotent semigroups;
(3) S is a left semi-spined product of a left regular band and a C-full Ehresmann
semigroup;

(4) S is a semi-abundant semigroup satisfying (C) and R̃ = H̃;
(5) S is a left C-semi-superabundant semigroup;
(6) S is a left C-semi-rpp semigroup.
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���������
. By virtue of Theorem 3.5, Theorem 3.8 and Lemma 4.3, we only need

to prove that if the statement (4) holds then E(S) is a subsemigroup of S. Assume
that (4) holds. Then S is a semi-superabundant semigroup and each R̃-class in
it contains a unique idempotent. For any e, f ∈ E(S), since eef = ef , we have
e(ef)� = (ef)�, whence (ef)�e is an idempotent which is R-equivalent to (ef)�. It
follows by Lemma 2.1 (2) that (ef)�e = (ef)�. Since (ef)� H̃ ef , we have efe = ef .
So efef = eff = ef , whence E(S) is a subsemigroup of S. �

5. Left C-%-rpp semigroups

Let S be a semigroup. For any a ∈ S and % ∈ LC(S), define a · % = {(ax, ay) :
(x, y) ∈ %}. We say that S is %-left cancellative if

(∀ a, b, c ∈ S) (ab, ac) ∈ % =⇒ (b, c) ∈ %.

It is a routine matter to show that

L% = {(a, b) ∈ S × S : (∀x, y ∈ S1) (ax, ay) ∈ %⇐⇒ (bx, by) ∈ %} ∈ RC(S).

Definition 5.1. The semigroup S is said to be %-rpp if every L%-class in S
contains at least one idempotent. Moreover, S is said to be strongly %-rpp if, for
any a ∈ S, the set Ia ∩ L%

a is a singleton, where L
%
a stands for the L%-class in S

containing a. In this case, the unique element in Ia∩L%
a is denoted by a

+
% . [Strongly]

%-rpp semigroups with central idempotents are called [strongly] C-%-rpp semigroups
and strongly %-rpp semigroups satisfying (C.5) are called left C-%-rpp semigroups.

Remark 5.2. By a %-rpp semigroup S we also mean that S is a semigroup which
is %-rpp for some % ∈ LC(S). It is obvious that, if % is the identical relation ε and
R-equivalence on S, respectively, then L% is exactly the relations L∗ and L∗∗ on S
stated in McAlister [19] and Tang [23]. In the sequel, we will identify the concepts
of ε-rpp and R-rpp semigroups, respectively, with rpp and wrpp semigroups. Guo,
Shum and Zhu [9] called a rpp semigroup S a strongly rpp semigroup if for any a ∈ S,
the set I l

a ∩ L∗a is a singleton. Since E(L∗a) ⊆ Ir
a , their definition for strongly rpp

semigroups conincides with ours.

Theorem 5.3. If S is a left C-%-rpp semigroup, then it is a left C-liberal semi-
group such that

(∀ a ∈ S) a◦ = a+
% .

���������
. Let S be a left C-%-rpp semigroup. Then E(S) is a left regular band.

Assume that E(S) = [Y ; Iα]. For any e, f ∈ E(S), if e L f , then, by % ∈ LC(S), we
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have
(∀x, y ∈ S1) efx = ex % ey = efy ⇐⇒ fx = fex % fey = fy,

that is to say, e L% f ; conversely, if e L% f where e ∈ Iα and f ∈ Iβ , then by
% ∈ LC(S) again we have

(∀x, y ∈ S1) fex % fey ⇐⇒ ex = eex % eey = ey.

Therefore fe L% e L% f . Noting that fe 6 f , we conclude that f ∈ L%
fe ∩ Ife. So

f = (fe)+% = fe, whence β 6 α. Dually, also α 6 β. Thus e L f . Till now, we have
established that

L%|E(S) = L(E(S)).

For any a ∈ S and e ∈ Ia, since a+
% e ∈ Ia is such that a = ae L% a+

% e, we have
a+

% = a+
% e. So ea

+
% is in Ia and is L-equivalent to a+

% , and hence is L%-equivalent to a.
Noting that ea+

% ∈ Ia as well, we conclude that a+
% = ea+

% . Thus a
+
% is the minimum

element in Ia. Since a is arbitrary, we claim that S is liberal and such that a◦ = a+
% .

For any a, b ∈ S, it follows by virtue of a+
% b = a+

% bb
+
% that

(∀x, y ∈ S1) (ab)+% x % (ab)+% y ⇐⇒ abx % aby

⇐⇒ a+
% bb

+
% x % a

+
% bb

+
% y

⇐⇒ a+
% ba

+
% b

+
% x % a

+
% ba

+
% b

+
% y

⇐⇒ aba+
% b

+
% x % aba

+
% b

+
% y

⇐⇒ (ab)+% a
+
% b

+
% x % (ab)+% a

+
% b

+
% y.

So (ab)+% L% (ab)+% a
+
% b

+
% and hence (ab)+% L (ab)+% a

+
% b

+
% . Furthermore,

(ab)+% = (ab)+% (ab)+% a
+
% b

+
% = (ab)+% a

+
% b

+
% .

In particular, if we replace a and b in equation above by b and a+
% , respectively, then

(ba+
% )+% a

+
% = (ba+

% )+% b
+
% (a+

% )+% a
+
% = (ba+

% )+% b
+
% a

+
% = (ba+

% )+% .

Since a+
% b

+
% L b+% a

+
% , we have a

+
% b

+
% L% b+% a

+
% . Thus, by virtue of Lemma 2.1 and

% ∈ LC(S), we conclude that

(∀x, y ∈ S1) abx % aby =⇒ a+
% bx % a

+
% by

=⇒ a+
% ba

+
% x % a

+
% ba

+
% y

=⇒ ba+
% x = (ba+

% )+% a
+
% ba

+
% x % (ba+

% )+% a
+
% ba

+
% y = ba+

% y

=⇒ b+% a
+
% x % b

+
% a

+
% y

=⇒ a+
% b

+
% x % a

+
% b

+
% y

=⇒ (ab)+% a
+
% b

+
% x % (ab)+% a

+
% b

+
% y

=⇒ (ab)+% x % (ab)+% y

=⇒ abx % aby,
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that is to say, a+
% b

+
% L% ab L% (ab)+% . So a

+
% b

+
% L (ab)+% , whence S is left C-liberal. �

Lemma 5.4. Let S be a left C-%-rpp semigroup, E(S) = [Y ; Iα] and e, f ∈ E(S).
Then
(1) Se = {a ∈ S : a+

% = e} is a %|Se -left cancellative unipotent semigroup;
(2) if fe = f , then f · %|Se ⊆ %|Sf

.
���������

. (1) By Theorem 5.3, we can see that Se is a unipotent semigroup
with e as its identity. It is obvious that %|Se ∈ LC(Se). If a, b, c ∈ Se are such that
(ab, ac) ∈ %|Se , then ab % ac and hence b = eb % ec = c. So Se is %|Se -left cancellative.
(2) Assume that fe = f . For any a ∈ Se, it is obvious that f ∈ I l

fa = Ifa.
Moreover, since (fa)+% L f+

% a
+
% = fe = f , we have f = (fa)+% whence fa ∈ Sf .

Noting that % ∈ LC(S), we conclude that f · %|Se ⊆ %|Sf
. �

Corollary 5.5. If T = [Y ;Tα] is a C-full Ehresmann semigroup satisfying the
condition
(C.6) (i) for any α ∈ Y , Tα is %α-left cancellative for some %α ∈ LC(Tα), and

(ii) for any β 6 α in Y , 1Tβ
· %α ⊆ %β ,

then T is strongly C-%-rpp where % =
⋃

α∈Y

%α.

Conversely, every strongly C-%-rpp semigroup can be obtained in this way.
���������

. Let T = [Y ;Tα] be a C-full Ehresmann semigroup satisfying condi-
tion (C.6). Then E(S) is central in T . Now, % =

⋃
α∈Y

%α ∈ LC(T ) in view of

(∀ (a, b) ∈ %α, c ∈ Tβ) (ca, cb) = (c1Tαβ
· 1Tαβ

a, c1Tαβ
· 1Tαβ

b)

∈ c1Tαβ
· 1Tαβ

· %α

⊆ c1Tαβ
· %αβ

⊆ %αβ.

Let a ∈ Tα and b ∈ Tγ . If α = γ, then by (C.6) (ii) we have

(∀x, y ∈ S1) (ax, ay) ∈ %⇐⇒ (∃β ∈ Y ) (ax, ay) ∈ %β

⇐⇒ (∃β ∈ Y ) ax, ay ∈ Tβ , (1Tβ
x, 1Tβ

y) ∈ %β

⇐⇒ (∃β ∈ Y ) bx, by ∈ Tβ, (1Tβ
x, 1Tβ

y) ∈ %β

⇐⇒ (∃β ∈ Y ) (bx, by) ∈ %β

⇐⇒ (bx, by) ∈ %

and so a L% b. Conversely, if a L% b, then it follows by a1Tα % a that b1Tα % b.
Therefore γ 6 α. Dually, also α 6 γ whence α = γ. Therefore L% is exactly the
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semilattice congruence on T induced by the semilattice decomposition [Y ;Tα]. Thus
T is strongly C-%-rpp.
Conversely, if T is a strongly C-%-rpp semigroup, then, by Theorem 5.3, T is

a C-full Ehresmann semigroup. Assume that T is a semilattice Y of unipotent
monoids Tα. For any α ∈ Y , define %α = %|Tα . Then obviously %α ∈ LC(Tα). By
Lemma 5.4, %α satisfies (C.6). �

In what follows, by a strongly C-%-rpp semigroup T = [Y ;Tα; %α] we mean that
S is a strongly C-%-rpp semigroup constructed as in Corollary 5.5.

Theorem 5.6. Let S = I ×Y,η T be a left semi-spined product of a left regular
band I = [Y ; Iα] and a strongly C-%-rpp semigroup T = [Y ;Tα; %α] which satisfies
the following condition:
(C.7) (i) there is an equivalence δ on I contained in L(I) such that

(∀ (i, a) ∈ S)(∀ (k, j) ∈ δ|Iβ
) (j(i, a)#, k(i, a)#) ∈ δ;

(ii) for any (i, a) ∈ Tα × Iα, j ∈ Iβ and k ∈ Iγ ,

(j(i, a)#, k(i, a)#) ∈ δ =⇒ (j(i, 1Tα)#, k(i, 1Tα)#) ∈ δ.

Then S is a left C-%-rpp semigroup where

% = {((i, a), (j, b)) ∈ S × S : (∃α ∈ Y ) (a, b) ∈ %α, (i, j) ∈ δ}.

Conversely, every left C-%-rpp semigroup can be constructed in this way.
���������

. Let S be a semigroup constructed as in the theorem. Then evidently
% ∈ E(S). For any ((i, a), (j, b)) ∈ %|Iα×Tα and (k, c) ∈ S, by Corollary 5.5 and
(C.7) (i), we have

(k, c)(i, a) = (i(c, k)#, ca) % (j(c, k)#, cb) = (k, c)(j, b).

Thus % ∈ LC(S). By using (C.6) (ii), one can easily show that

(∀ (i, a) ∈ Tα × Iα) (i, 1Tα) = (i, a)+% .

Therefore, by Theorem 4.6, S is left C-%-rpp.
Conversely, if S is a left C-%-rpp semigroup, then, by Theorem 5.3, it is a left

C-liberal semigroup. There is no harm if we denote S = I ×Y,η T , where T = [Y ;Tα]
is a C-full Ehresmann semigroup and I = [Y ; Iα] is a left regular band. For any
α ∈ Y , let

δα = %|Iα×TαPI .
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For any (i, 1Tα) ∈ E(Iα × Tα), it follows by Lemma 5.4 that the relation

%α = %|S(1Tα
)PTα

on Tα is independent of i. It is easy to check that δ =
⋃

α∈Y

δα and %α (α ∈ Y ) satisfy

condition (C.7). �

Lemma 5.7 ([3]). Let S be a semigroup. The following statements are equivalent:
(1) S is a C-rpp semigroup;
(2) S is a strongly C-rpp semigroup;

(3) S is a semilattice of left cancellative monoids;
(4) S is a strong semilattice of left cancellative monoids.

Corollary 5.8 ([23]). Let S be a semigroup. The following statements are equiv-
alent:

(1) S is a C-wrpp semigroup;
(2) S is a strongly C-wrpp semigroup;

(3) S is a semilattice of R-left cancellative monoids;
(4) S is a strong semilattice of R-left cancellative monoids.

By using Theorem 5.6, Lemma 5.7 and Lemma 5.8, we can easily establish the
following two results:

Corollary 5.9 ([14]). Let S be a semigroup. The following statements are equiv-
alent:

(1) S is a left C-rpp semigroup;
(2) S is the semilattice Y of the direct products Iα×Tα (α ∈ Y ) of left zero bands Iα
and left cancellative momoids Tα such that, for any (i, a) ∈ Iα ×Tα, j ∈ Iβ and
k ∈ Iγ ,

((i, a)(j, 1Tβ
))I = ((i, a)(k, 1Tγ ))I =⇒ ((i, 1Tα)(j, 1Tβ

))I = ((i, 1Tα)(k, 1Tγ ))I ;

(3) S is a left semi-spined product = I ×Y,η T of a left regular band I = [Y ; Iα]
and a C-rpp semigroup T = [Y ;Tα] in which the structural homomorphism η

satisfies the condition

(∀ (i, a) ∈ Iα × Tα)(∀ j, k ∈ I) j(i, a)# = k(i, a)# =⇒ j(i, 1Tα)# = k(i, 1Tα)#.
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Corollary 5.10. Let S be a semigroup. The following statements are equivalent:
(1) S is a left C-wrpp semigroup;
(2) S is the semilattice Y of the direct products Iα×Tα (α ∈ Y ) of left zero bands Iα
and R-left cancellative monoids Tα such that, for any (i, a) ∈ Iα × Tα, j ∈ Iβ
and k ∈ Iγ ,

((i, a)(j, 1Tβ
))I = ((i, a)(k, 1Tγ ))I =⇒ ((i, 1Tα)(j, 1Tβ

))I = ((i, 1Tα)(k, 1Tγ ))I ;

(3) S is a left semi-spined product = I ×Y,η T of a left regular band I = [Y ; Iα]
and a C-wrpp semigroup T = [Y ;Tα] in which the structural homomorphism η

satisfies the condition

(∀ (i, a) ∈ Iα × Tα)(∀ j, k ∈ I) j(i, a)# = k(i, a)# =⇒ j(i, 1Tα)# = k(i, 1Tα)#.

By using Theorem 3.6, we can also obtain the band-formal constructions of left
C-liberal semigroups, left C-rpp semigroups and left C-wrpp semigroups. Further-
more, by using the characterizations for left C-liberal semigroups, all results on left
C-semigroups given by Zhu, Guo and Shum [27] and Guo, Ren and Shum [8] can be
obtained as well.

Acknowledgement. The first author thanks his supervisor, Professor Y.Q. Guo,
for his guidance and help.

References

[1] L. Du, Y. He: On the **-Green’s relations of semigroups and C-broad semigroups.
J. Northwest Univ. (Natural Sci. Edt.) 29 (1999), 9–12.

[2] A. El-Qallali: Structure theory for abundant and related semigroups. PhD. Thesis. York,
1980.

[3] J.B. Fountain: Rpp monoids with central idempotents. Semigroup Forum 13 (1977),
229–237. Zbl 0353.20051

[4] J.B. Fountain: Adequate semigroups. Proc. Edinburgh Math. Soc. 44 (1979), 113–125.
Zbl 0414.20048

[5] J.B. Fountain: Abundant semigroups. Proc. London Math. Soc. 44 (1982), 103–129.
Zbl 0481.20036

[6] J.B. Fountain, G.M.S. Gomes, and V. Gould: A Munn type representation for a class
of E-semiadequate semigroups. J. Algebra 218 (1999), 693–714. Zbl 0940.20064

[7] G.M. S. Gomes, V. Gould: Fundamental Ehresmann semigroups. Semigroup Forum 63
(2001), 11–33. Zbl 0998.20051

[8] Y.Q. Guo, X.M. Ren, and K.P. Shum: Another structure of left C-semigroups. Adv.
Math. 24 (1995), 39–43.

[9] Y.Q. Guo, K.P. Shum, P.Y. Zhu: The structure of left C-rpp semigroups. Semigroup
Forum 50 (1995), 9–23. Zbl 0821.20046

[10] Y. He: A construction for P-regular semigroups (announcement). Adv. Math. 29 (2000),
566–568.

1107



[11] Y. He: Partial kernel normal systems in regular semigroups. Semigroup Forum 64 (2002),
325–328. Zbl 1002.20037

[12] Y. He: Some studies on regular and generalized regular semigroups. PhD. Thesis. Zhong-
shan Univ., Guangzhou, 2002.

[13] Y. He: A construction for P-regular semigroups. Commun. Algebra 31 (2003), 1–27.
Zbl 1026.20053

[14] Y. He, Y.Q. Guo, and K.P. Shum: The construction of orthodox supper rpp semigroups.
Sci. China 47 (2004), 552–565. Zbl 1083.20051

[15] J.M. Howie: Fundamentals of Semigroup Theory. Oxford University Press Inc., New
York, 1995. Zbl 0835.20077

[16] M. Kil’p: On monoids over which all strongly flat cyclic right acts are projective. Semi-
group Forum 52 (1996), 241–245. Zbl 0844.20051

[17] M.V. Lawson: Rees matrix semigroups. Proc. Edinburgh Math. Soc. 33 (1990), 23–37.
Zbl 0668.20049

[18] M.V. Lawson: Semigroups and ordered categories. I. The reduced case. J. Algebra 141
(1991), 422–462. Zbl 0747.18007

[19] D.B. McAlister: One-to one partial right translations of a right cancellative semigroup.
J. Algebra 43 (1976), 231–251. Zbl 0349.20025

[20] M. Petrich: Inverse Semigroups. John Wiley & Sons, New York, 1984. Zbl 0546.20053
[21] M. Petrich, N. Reilly: Completely Regular Semigroups. John Wiley & Sons, New York,

1999. Zbl 0967.20034
[22] F. Shao, Y. He: Partial kernel normal systems for eventually regular semigroups. Semi-

group Forum 71 (2005), 401–410.
[23] X.D. Tang: On a theorem of C-wrpp semigroups. Comm. Algebra 25 (1997), 1499–1504.

Zbl 0879.20030
[24] M. Yamada: P-systems in regular semigroups. Semigroup Forum 24 (1982), 173–187.

Zbl 0479.20030
[25] M. Yamada,M.K. Sen: P-regular semigroups. Semigroup Forum 39 (1989), 157–178.

Zbl 0664.20039
[26] M.C. Zhang, Y. He: The structure of P-regular semigroups. Semigroup Forum 54

(1997), 278–291. Zbl 0887.20028
[27] P.Y. Zhu, Y.Q. Guo, K.P. Shum: Structure and characterizations of left Clifford semi-

groups. Science in China, Series A 35 (1992), 791–805. Zbl 0781.20035

Authors’ addresses: � 	�
 �  � , School of Computer, Hunan University of Science &
Technology, Xiangtan, Hunan 411201, P.R. China, e-mail: ynghe@263.net; � � 
 � ��� � 	 ,
Department of Scientific Reserch, Hunan University of Science & Technology, Xiangtan,
Hunan 411201, P.R. China; ��� � ��� ��
 ��� , School of Mathematics, Hunan University of
Science & Technology, Xiangtan, Hunan 411201, P.R. China; ��� � ��� 	 , Department and
Institute of Mathematics, Fudan university, Shanghai, P. R. China.

1108


		webmaster@dml.cz
	2020-07-03T16:20:51+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




