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BOUNDARY FUNCTIONS IN L2H(
� n )
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Abstract. We solve the Dirichlet problem for line integrals of holomorphic functions in
the unit ball:
For a function u which is lower semi-continuous on ∂ � n we give necessary and sufficient

conditions in order that there exists a holomorphic function f ∈ � ( � n ) such that

u(z) =
∫

|λ|<1
|f(λz)|2 dL2(λ).
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1. Preface

The main topic of this paper is centered around the following question:

What features of a function f can be recovered from a given collection of line
integrals of f? This mathematical problem is encountered in a growing number

of diverse settings in medicine, science and technology ranging from the famous
application in diagnostic radiology to research in quantum optics. Especially this

issue is often discussed in computed tomography (see [2]).
This paper deals with boundary functions. A function u is called a boundary

function for a holomorphic function f ∈ � (
� n ) if

u(z) =
∫

|λ|<1

|f(λz)|2 dL2(λ)

for z ∈ ∂
� n where dL2 denotes the two-dimensional Lebesgue measure on the unit

disc � := {|λ| < 1} ⊂ � . Let us observe that the function u can have value ∞ at
some points.
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The introduction of above definition was inspired by questions posed by Peter

Pflug and Jaques Chaumat.
In the 80s Peter Pflug [10] posed the question whether there exists a space Ω ⊂ � n ,

a complex subspace M in � n and a holomorphic function f in Ω integrable with a
square such that f |M∩Ω is non-integrable with a square.
A similar question was posed by Jaques Chaumat [1] in the late 80s: whether

there exists a holomorphic function f in a ball
� n such that for any linear, complex

subspace M in � n a holomorphic function f |M∩ � n is non-integrable with a square.
The questions just mentioned inspired further investigation among the authors [3],

[4], [5], [6], [7], [8], [9]. The papers [4], [5], [6] deal mainly with domains Ω ⊂ � n+m

and holomorphic functions f ∈ � (Ω) ∩ L2(Ω), non-integrable along the directions
defined by the formula

Ωw := {z ∈ � n : (z, w) ∈ Ω}.

Therefore the exceptional set Ẽ(Ω, f) is defined as

Ẽ(Ω, f) = {w ∈ � m : f |Ωw /∈ L2(Ωw)}.

Non-integrable functions along complex lines with the point 0 can also be considered.
Papers that consider this problem are [3], [7], [8], [9]. Due to [3], [7] we know that

for a convex domain Ω with a boundary of the class C1 a holomorphic function f

non-integrable with a square along any real manifold M of the class C1 crossing

transversally a boundary Ω can be created.
Observe that a set of directions composed of complex lines with the point 0 can be

identified with points in the sphere ∂
� n . Therefore the definition of the exceptional

set E(f) for a holomorphic function f on
� n can be presented as follows:

E(f) =
{

z ∈ ∂
� n :

∫

|λ|<1

|f(λz)|2 dL2(λ) = ∞
}

.

Let E be any circular subset of type Gδ and Fσ in ∂
� n . In the paper [9] we

presented a construction of a holomorphic function f ∈ � (
� n ) for which E = E(f).

Boundary functions enable us to prove a much stronger result describing the ex-

ceptional sets. We also present the solution of the Dirichlet problem for plurisubhar-
monic functions.

First observe that if u is a boundary function then u is lower semi-continuous and
u(λz) = u(z) for |λ| = 1 and z ∈ ∂

� n . Our main result describes boundary functions

by means of homogeneous polynomials1.

1 These polynomials may have degree equal to 0.
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Theorem 2.9. Let u be a lower semi-continuous function on ∂
� n such that

u(λz) = u(z) > 0 when |λ| = 1 and z ∈ ∂
� n . The following conditions are equivalent:

(1) There exists a holomorphic function f ∈ � (
� n ) for which u is a boundary

function.

(2) There exist homogeneous polynomials p1, . . . , pm such that

(a) u−1(0) = {z ∈ ∂
� n : p1(z) = p2(z) = . . . = pm(z) = 0} ,

(b) u(z) >
m∑

j=1

|pj(z)|2 for z ∈ ∂
� n .

In particular, observe that any continuous and positive function with the same
values on circles is a boundary function.

It appears that boundary functions can be used to describe the exceptional sets:

Theorem 3.1. Let E be a circular subset of ∂
� n . Then there exists a holomorphic

function f ∈ � (
� n ) such that

∫
� n\Λ(E)

|f |2 dL2n < ∞ iff E is of type Gδ in ∂
� n .

Here Λ(E) = {λz : |λ| < 1, z ∈ E}, E = E(f) and dL2n is the 2n-dimensional

Lebesgue measure.

Moreover, we solve the Dirichlet problem for plurisubharmonic functions:

Theorem 3.2. If u is a continuous function on ∂
� n such that u(λz) = u(z), then

there exists a constant c ∈ � and a sequence of homogeneous polynomials {pm}m∈ �
such that pm is of the degree m and u(z) = c +

∑
m∈ �

|pm(z)|2 for z ∈ ∂
� n . In

particular, the function g(z) = c +
∑

m∈ �
|pm(z)|2 is continuous on � n , real analytic

and plurisubharmonic on
� n .

2. Boundary functions

Let #A denote the number of elements in a set A. Let us consider a unitary
invariant pseudo-metric % on the boundary of a unit ball ∂

� n :

%(z1, z2) :=
√

1− |〈z1, z2〉|

where 〈·, ·〉 denotes the standard complex scalar product. On a unit ball ∂ � n there
exists a natural, unitary invariant Lebesgue measure. Let us normalize it so that the

whole sphere’s measure ∂
� n is equal to 1 and denote this measure by σ. Let

K%(z0, r) := {z ∈ ∂
� n : %(z0, z) < r}.
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Definition 2.1. Every function u : X → (−∞,∞] on a metric space X fulfilling

one of the equivalent conditions (1), (2), (3) is called lower semicontinuous:
(1) there exists a sequence of functions hi which are continuous on X such that

hi 6 hi+1 6 . . . 6 lim
i→∞

hi = u;

(2) u−1((a,∞]) is an open set for a ∈ (−∞,∞];
(3) u(x) 6 lim inf

z→x
u(z) for x ∈ X .

Definition 2.2. We say that a function u is a boundary function for a holomor-
phic function f ∈ � (

� n ) if

u(z) =
∫

|λ|<1

|f(λz)|2 dL2(λ)

for z ∈ ∂
� n .

Lemma 2.3. The inequality r2n−2 6 σ(K%(z0, r)) 6 2n−1r2n−2 holds.
	�
�����

. It is enough to use [11, 1.4.4]. �

Definition 2.4. Let α > 0. A subset A ⊂ ∂
� n is called α-separated iff

%(z1, z2) > α for different elements z1, z2 ∈ A.

Remark. From the compactness of ∂
� n it easily follows that for α > 0 every

α-separated A ⊂ ∂
� n is finite.

Lemma 2.5. Assume that a set A is 2α-separated and A = {ξ1, . . . , ξs} ⊂ ∂
� n .

For z ∈ ∂
� n define

Am(z) := {ξ ∈ A : αm 6 %(z, ξ) < α(m + 1)} .

Then for m = 1, 2, . . . the set Am(z) has up to 2n−1(m + 2)2n−2 elements. The set

A0(z) has up to one element. Moreover s 6 α2−2n.
	�
�����

. It is enough to use the same arguments as in [12, Lemma 1] and [9,
Lemma 3.2]. �

Lemma 2.6. Fix real numbers α, β such that β > α > 0. There exists a constant
K = K(α, β) such that 1 6 K 6 2n−1(βα−1 +1)2n−2 and for any t > 0, we have the
following property:

If A ⊂ ∂
� n is an αt-separated set, then A can be divided into up to K disjoint

βt-separated subsets.
	�
�����

. It is enough to use the same argument as in [12, Lemma 2]. �
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Theorem 2.7. There exists a positive constant q and a natural number K such

that if a function g is continuous on ∂
� n and g(z) = g(λz) > 0 when |λ| = 1,

z ∈ ∂
� n , then there exists a natural number N0 and a sequence of homogeneous

polynomials {pm}m∈ � of degree m such that

(1) K|pm(z)|2 < g(z) for m > N0 and z ∈ ∂
� n ,

(2) for m > N0 and z ∈ ∂
� n there exists j(m, z) ∈ {0, 1, . . . , K − 1} such that

qg(z) < |pmK+j(m,z)(z)|2,

(3) qg(z) <
K−1∑
j=0

|pmK+j(z)|2 < g(z) for m > N0 and z ∈ ∂
� n .

	�
�����
. There exists C > 2 such that

(2.1)
∞∑

m=1

2n(m + 2)2n exp
(
− C2m2

16

)
6 1

8

√
9
5
.

Assume α = 1, β = C in Lemma 2.6. Hence there exists a natural number K for

which the assertion of Lemma 2.6 holds. Further we define

q :=
1

16K

and show that for such a choice of K and q the implication required in Theorem 2.7

holds. So let g be a given function continuous on ∂
� n and fulfilling g(z) = g(λz)

for all z ∈ ∂
� n and λ ∈ � , |λ| = 1. Then inf

z∈∂ � n g(z) =: g0 > 0 and the uniform

continuity of g on the compact ∂
� n implies that there exists δ ∈ (0, 1) such that

‖ξ − η‖ <
√

2δ ⇒ |g(ξ)− g(η)| < 1
9g0 (here ‖·‖ is the euclidean norm).

Since |〈ξ; η〉| = 〈ξeiθ; η〉, where θ = −arg〈ξ; η〉, we have, as
∥∥ξeiα

∥∥ = ‖η‖ = 1,∥∥ξeiθ − η
∥∥ =

√
2 (1−Re 〈ξeiθ; η〉) =

√
2%(ξ, η) whenever η 6= λξ for every λ ∈ � ,

|λ| = 1. So in this case %(ξ, η) <
√

δ ⇒ ‖ξeiθ − η‖ <
√

2δ and so |g(ξeiθ) − g(η)| <
1
9g0 6 1

9g(η). Finally, the following assertion holds: There exists a δ ∈ (0, 1) such
that for every ξ, η ∈ ∂

� n

(2.2) %(η, ξ) <
√

δ ⇒ |g(η)− g(ξ)| < g0

9
=

infz∈∂ � n g(z)
9

6 g(η)
9

,

since g(ξeiθ) = g(ξ) for ξ ∈ ∂
� n and θ ∈ � .

Now let N be so far an arbitrary positive integer and let A = {ξ1, . . . , ξs} be
a maximal 1/

√
4NK-separated subset ∂

� n . By Lemma 2.6 there exist K disjoint

C/
√

4NK-separated sets A0, . . . , AK−1 such that
K−1⋃
j=0

Aj = A. By the second asser-

tion of Lemma 2.5 one has #Aj 6
(
2
√

4NK/C
)2n−2 6 4nNnKn, because C was

chosen such that C > 2.
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Now we are in position to define the polynomials pm(z) for m = 1, 2, . . .. We

define for j = 0, . . . , K − 1:

pNK+j(z) =
∑

ξ∈Aj

√
g(ξ)
2K

〈z; ξ〉NK+j .

Let

Bj,m(z) :=
{
ξ ∈ Aj :

Cm

2
√

4NK
6 %(z, ξ) <

C(m + 1)
2
√

4NK

}

for z ∈ ∂
� n and define, for j = 0, . . . , K − 1:

hNK+j(z) =
∞∑

m=1
ξ∈Bj,m(z)

√
g(ξ)
2K

|〈z; ξ〉|NK+j
.

By the assertion of Lemma 2.5

#Bj,m(z) 6 2n−1(m + 2)2n−2 6 2n(m + 2)2n

and so

(2.3)
∞∑

m=1

#Bj,m(z) exp
(
− C2m2

16

)
6

∞∑

m=1

2n(m + 2)2n exp
(
−C2m2

16

)
6 1

8

√
9
5

by (2.1).
Now, we give an upper estimate of hNK+j(z). We have

hNK+j(z) 6
∞∑

m=1
ξ∈Bj,m(z)

%(z,ξ)<
√

δ

√
g(ξ)
2K

|〈z; ξ〉|NK +
∞∑

m=1
ξ∈Bj,m(z)

%(z,ξ)>
√

δ

√
g(ξ)
2K

|〈z; ξ〉|NK
.

By (2.2) the first sum is less than
√

5
9g(z)K−1

∞∑
m=1,ξ∈Bj,m(z)

|〈z; ξ〉|NK
. But

ξ ∈ Bj,m(z) implies %(z, ξ) > Cm/2
√

4NK and so |〈z; ξ〉| 6 1 − C2m2/16NK 6
exp(−C2m2/16NK) because 1− C2m2/16NK < 1.
Hence by (2.3) we have

∞∑

m=1
ξ∈Bj,m(z)

%(z,ξ)<
√

δ

√
g(ξ)
2K

|〈z; ξ〉|NK <

√
5g(z)
9K

∞∑

m=1

#Bj,m(z) exp
(
− C2m2

16

)

6
√

5g(z)
9K

1
8

√
9
5

6 1
8

√
g(z)
K

.
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If %(z, ξ) >
√

δ, then |〈z; ξ〉| 6 1− δ. Moreover,
∞∑

m=1
#Bj,m(z) 6 #Aj 6 4nNnKn

and so
∞∑

m=1
ξ∈Bj,m(z)

%(z,ξ)>
√

δ

√
g(ξ)
2K

|〈z; ξ〉|NK 6 4nNnKn

√
‖g‖∞
2K

(1− δ)NK
,

where ‖g‖∞ = max
z∈∂ � n |g(z)|. Since 0 < 1 − δ < 1, there exists N1 ∈ � such that for

every N > N1and z ∈ ∂
� n we have 4nNnKn

√
‖g‖∞/2K (1− δ)NK

< 1
8

√
g0/K 6

1
8

√
g(z)/K. So we have proved that for every z ∈ ∂

� n and every N > N1

hNK+j(z) 6 1
8

√
g(z)
K

+
1
8

√
g(z)
K

=
1
4

√
g(z)
K

.

Let N2 be a natural number such that N2 > N1 and C/2
√

4NK <
√

δ for N > N2.
As Bj,0(z) contains at most one element and %(ξ, z) < C/2

√
4NK <

√
δ for ξ ∈

Bj,0(z) and N > N2, we have for N > N2 > N1 and every z ∈ ∂
� n

|pNK+j(z)| 6
∑

ξ∈Bj,0(z)

√
g(ξ)
2K

|〈z; ξ〉|NK+j + hNK+j(z)

6
√

5g(z)
9K

+
1
4

√
g(z)
K

<
3
4

√
g(z)
K

+
1
4

√
g(z)
K

=

√
g(z)
K

by (2.2), so (1) is proved. Moreover, for any N > N2 we have

K−1∑

j=0

|pNK+j(z)|2 <

K−1∑

j=0

g(z)
K

= g(z).

The right inequality in (3) is proved.

Let N0 be a natural number such that N0 > max{N2, N1} and

(
1− 1

4NK

)NK+K

>
97
100

exp
(
−1

4

)
> 3

4

for N > N0. Let z ∈ ∂
� n and N > N0. Since A is a maximal 1/

√
4NK-separated

subset of ∂
� n there exists ξz ∈ A such that %(z, ξz) 6 1/

√
4NK. Due to A =

K−1⋃
j=0

Aj

there exists jz ∈ {0, 1, . . . , K − 1} such that ξz ∈ Ajz . As Bjz ,0(z) contains at most
one element and due to C > 2 we have %(z, ξz) 6 1/

√
4NK < C/2

√
4NK <

√
δ,
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therefore Bjz,0(z) = {ξz} and g(ξz) > 8
9g(z) by (2.2). Now we may estimate

|pNK+jz(z)| >
√

g(ξz)
2K

|〈z; ξz〉|NK+jz − hNK+jz(z)

>
√

g(ξz)
2K

(
1− 1

4NK

)NK+K

− hNK+jz (z)

>

√
4g(z)
9K

3
4
− 1

4

√
g(z)
K

=
1
4

√
g(z)
K

=
√

qg(z),

so (2) is proved. Moreover,

K−1∑

j=0

|pNK+j(z)|2 > |pNK+jz(z)|2 > qg(z).

The left inequality in (3) is proved, which completes the proof. �

Lemma 2.8. Let h be a function continuous on ∂
� n and such that h(z) = h(λz) >

0 when |λ| = 1, z ∈ ∂
� n . For any ε > 0 and any natural number a ∈ � there exists

a number b ∈ � and a sequence of homogeneous polynomials pm of degree m such

that

h(z)− ε <

b∑

m=a

|pm(z)|2 < h(z)

for z ∈ ∂
� n .

	�
�����
. Select numbers q ∈ (0, 1) and K ∈ � from Theorem 2.7. We construct

a sequence of natural numbers bj and a sequence of homogeneous polynomials pm of
degree m such that bj + K − 1 < bj+1 and

(2.4) 0 < h(z)−
bj+1+K−1∑

m=a

|pm(z)|2 < (1− q)
(

h(z)−
bj+K−1∑

m=a

|pm(z)|2
)

.

Let b1 = a and pa = . . . = pb1+K−1 = 0. Therefore b2 and the polynomials pm for

m ∈ {b2, . . . , b2 + K − 1} can be created on the basis of Theorem 2.7. If now we have
the numbers b1, . . . , bt and the polynomials pm for m ∈ {a, . . . , bt + K − 1} then we
create a number bt+1 and the polynomials pm for m ∈ {bt+1, . . . , bt+1 + K − 1}. It
suffices to use Theorem 2.7 assuming that g = h−

bt+K−1∑
m=a

|pm|2.
Observe that the property (2.4) implies the inequality

0 < h(z)−
bj+1+K−1∑

m=a

|pm(z)|2 < (1− q)j

(
h(z)−

b1+K−1∑

m=a

|pm(z)|2
)

= (1− q)jh(z)
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for z ∈ ∂
� n . Let now j0 be such that

(1− q)j0 sup
z∈∂ � n h(z) < ε.

Then

h(z)− ε < h(z)− (1− q)j0h(z) <

bj0+1+K−1∑

m=a

|pm(z)|2 < h(z).

Therefore it suffices to assume that b = bj0+1 + K − 1. �

Theorem 2.9. Let u be a lower semi-continuous function on ∂
� n such that

u(λz) = u(z) > 0 when |λ| = 1 and z ∈ ∂
� n . The following conditions are equivalent:

(1) There exists a holomorphic function f ∈ � (
� n ) for which u is a boundary

function.

(2) There exist homogeneous polynomials p1, . . . , pk such that

(a) u−1(0) =
k⋂

j=1

{z ∈ ∂
� n : pj(z) = 0} ,

(b) u(z) >
k∑

j=1

|pj(z)|2 for z ∈ ∂
� n .

	�
�����
. (1) ⇒ (2): There exist homogeneous polynomials pj of degree j such

that

f(z) =
∞∑

j=0

√
j + 1
π

pj(z).

In this case we have

u(z) =
∫

|λ|<1

|f(λz)|2 dL2(λ) =
∞∑

j=0

|pj(z)|2

for z ∈ ∂
� n . There exist indices j1, . . . , jk such that

u−1(0) = ∂
� n ∩

∞⋂

j=0

p−1
j (0) = ∂

� n ∩
k⋂

m=1

p−1
jm

(0).

Obviously u(z) >
k∑

m=1
|pjm(z)|2 for z ∈ ∂

� n , which completes the proof.

(2) ⇒ (1): Let A := {z ∈ ∂
� n : p1(z) = p2(z) = . . . = pk(z) = 0}. Define

g(z) :=
u(z)

( k∑
j=1

|pj(z)|2
)2

.
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Due to the property (b) we have lim inf
z→x

g(z) = g(x) = +∞ for x ∈ A. Moreover,

lim inf
z→x

g(z) =
lim inf

z→x
u(z)

( k∑
j=1

|pj(x)|2
)2

> u(x)
( k∑

j=1

|pj(x)|2
)2

= g(x) > 0

for x ∈ ∂
� n \ A. In particular, due to Definition 2.1 the function g is lower semi-

continuous with positive values.

There exist homogeneous polynomials qj such that

( k∑

j=1

|pj(z)|2
)2

=
k2∑

j=1

|qj(z)|2 .

Let d = max
j=1,...,k2

deg(qj).

There exists a sequence of continuous functions {gj}j∈ � on ∂
� n such that

• gj(z) = gj(λz) > 0 when |λ| = 1,
• gj 6 gj+1 6 . . . 6 g(z),
• lim

j→∞
gj(z) = g(z).

We create sequences of natural numbers {ai,j}j=1,...,k2

i∈ � , {bi,j}j=1,...,k2

i∈ � and a sequence
of homogeneous polynomials rm of degree m such that

(1) ai,j < bi,j + d < ai,j+1 for j = 1, . . . , k2 − 1,
(2) ai,k2 < bi,k2 + d < ai+1,1,

(3)
bi,j∑

m=ai,j

|rm(z)| < 2−i for z ∈ (1− 2−i+1)
� n and j = 1, . . . , k2,

(4) gs(z)− (s + 1)−1 <
s∑

i=1

bi,j∑
m=ai,j

|rm(z)|2 < gs(z) for s ∈ � and j = 1, . . . , k2.

For s = 1 it is possible to select the numbers a1,1, . . . , a1,k2 , b1,1, . . . , b1,k2 and

polynomials rm for m = 1, . . . , b1,k2 on the basis of Lemma 2.8. Assume that we have
already created ai,1, . . . , ai,k2 , bi,1, . . . , bi,k2 and polynomials rm for m = 1, . . . , bi,k2

and i = 1, . . . , s. We define now proper data for Lemma 2.8. Let

h := gs+1 −
s∑

i=1

bi,j∑

m=ai,j

|rm|2 .

As
s∑

i=1

bi,j∑

m=ai,j

|rm|2 < gs 6 gs+1,

38



the function h has been properly defined. Let a be so large that a > bs,k2 + 1 and

√
‖h‖∞

‖z‖a

1− ‖z‖ 6 2−s−1

for z ∈ (1 − 2−s)
� n . For the number a selected in this way as well as for the

function h we find—on the basis of Lemma 2.8—proper numbers as+1,1, . . . , as+1,k2 ,
bs+1,1, . . . , bs+1,k2 (a < as+1,i < bs+1,i) and polynomials rm for as+1,1 6 m 6 bs+1,k2 .

It suffices now to check the condition (3). As

bs+1,j∑

m=as+1,j

|rm(z)|2 < h(z)

for z ∈ ∂
� n , we have |rm(z)| 6

√
‖h‖∞ ‖z‖m. Therefore

bs+1,j∑

m=as+1,j

|rm(z)| 6
bs+1,j∑

m=as+1,j

√
‖h‖∞ ‖z‖m 6

√
‖h‖∞

‖z‖a

1− ‖z‖ 6 2−s−1

for z ∈ (1− 2−s)
� n .

We now define

f(z) =
∞∑

i=1

t2∑

j=1

bi,j∑

m=ai,j

√
m + deg(qj) + 1

π
qjrm.

Due to the property (3) of the polynomials rm the function f is holomorphic. More-

over, due to the properties (1)–(2) of the numbers ai,j , bi,j we have the equality:

∫

|λ|61

|f(λz)|2 dL2(λ) =
∞∑

i=1

k2∑

j=1

bi,j∑

m=ai,j

|qj(z)|2 |rm(z)|2

for z ∈ ∂
� n .

If z ∈ A, then u(z) = 0 and qj(z) = 0 for j = 1, . . . , k2 and

∫

|λ|61

|f(λz)|2 dL2(λ) =
∞∑

i=1

k2∑

j=1

bi,j∑

m=ai,j

0 = 0 = u(z).
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Let now z ∈ ∂
� n \ A. We define J = {j : qj(z) 6= 0}. Obviously J 6= ∅. In this case

we have:

∫

|λ|61

|f(λz)|2 dL2(λ) = lim
N→∞

N∑

i=1

∑

j∈J

bi,j∑

m=ai,j

|qj(z)|2 |rm(z)|2

6 lim
N→∞

∑

j∈J

|qj(z)|2 gN (z) =
∑

j∈J

|qj(z)|2 g(z)

=
∑

j∈J

|qj(z)|2 u(z)
( k∑

j=1

|pj(z)|2
)2

= u(z).

Similarly

∫

|λ|61

|f(λz)|2 dL2(λ) = lim
N→∞

N∑

i=1

∑

j∈J

bi,j∑

m=ai,j

|qj(z)|2 |rm(z)|2

> lim
N→∞

∑

j∈J

|qj(z)|2
(
gN(z)− 1

N + 1

)
= u(z).

�

We show now that in Theorem 2.9 it is impossible to weaken the conditions.

Observe that Example 2.10 implies that there exists a continuous function u on ∂
� n

such that u(λz) = u(z) > 0 when |λ| = 1, z ∈ ∂
� n , for which condition 2a in

Theorem 2.9 is fulfilled and which is not a boundary function.

Example 2.10. Fix homogeneous polynomials p1, . . . , pm. Assume that there

exists z0 ∈ � n \ {0} such that pi(z0) = 0 for i = 1, . . . , m. The function

u = exp
(
−1

/ m∑

i=1

|pi|2
)

is not a boundary function.
	�
�����

. Assume that u is a boundary function. Therefore on the basis of

Theorem 2.9 there exist homogeneous polynomials q1, . . . , qs such that
(1) u−1(0) = {z ∈ ∂

� n : q1(z) = q2(z) = . . . = qs(z) = 0} ,

(2) u(z) >
s∑

j=1

|qj(z)|2 for z ∈ ∂
� n .

Without loss of generality we can assume that q1 6= 0. There exists a holomorphic
function g : � → � n on the one dimensional unit disc � such that g(0) = z0 and
(q1 ◦ g)−1 (0) = {0}. There exists an index j0 such that pj0 ◦ g 6= 0. Moreover, we
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can assume that j0 = 1 and (p1 ◦ g)−1 (0) = {0}. It follows that there exist natural
numbers n1, n2 > 1 and functions h1, h2 which are continuous, non-negative on �
and such that

|λ|n1h1(λ) =
m∑

i=1

|pi ◦ g(λ)|2 ,

|λ|n2h2(λ) =
s∑

i=1

|qi ◦ g(λ)|2

for λ ∈ � and h1(0), h2(0) > 0. In particular, the property (2) implies the inequality

exp
( −1
|λ|n1h1(λ)

)
= exp

(
−1

/ m∑

i=1

|pi ◦ g(λ)|2
)

>
s∑

j=1

|qj ◦ g(λ)|2 = |λ|n2h2(λ).

Therefore

0 < h2(0) 6 lim
λ→0

exp(−1/|λ|n1h1(λ))
|λ|n2

= 0,

which is impossible. �

Example 2.11 implies that there exists a continuous function u on ∂
� n such that

u(λz) = u(z) > 0 when |λ| = 1, z ∈ ∂
� n , which is not a boundary function but for

which condition 2b in Theorem 2.9 is fulfilled.

Example 2.11. Let p(z1, z2, z3) = z1. There exists a continuous function u such
that u(λz) = u(z) > |p(z)|2 > 0 when |λ| = 1, z ∈ ∂

� 3 , which is not a boundary
function.
	�
�����

. Let w1 := (0, 0, 1) and wm := (0, sin 1
2π/m, cos 1

2π/m) for m > 2. Then
wj /∈ � wi for i 6= j and lim

m→∞
wm = w1 = (0, 0, 1). We define a function

h(z) := exp
( ∑

m∈ �
2−m ln (1− |〈z, wm〉|)

)
.

Observe that h is a continuous function on ∂
� 3 and

h−1(0) = p−1(0) ∩ ∂
� 3 ∩

⋃

m∈ �
� wm .

Moreover, h(λz) = h(z) > 0 when |λ| = 1, z ∈ ∂
� 3 .
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Let u(z) = h(z) + |p(z)|2. Obviously u(λz) = u(z) > |p(z)|2 > 0 when |λ| = 1,
z ∈ ∂

� 3 . If u is a boundary function then on the basis of Theorem 2.9 there exist
homogeneous polynomials q1, . . . , qs such that

u−1(0) = {z ∈ ∂
� n : q1(z) = q2(z) = . . . = qs(z) = 0} .

Therefore

⋃

m∈ �
� wm = {z ∈ � n : q1(z) = q2(z) = . . . = qs(z) = 0} ,

which obviously is impossible. If it were true, we would obtain an analytic set with
infinitely many irreducible components.

In the next example we show that in Theorem 2.9, conditions 2a and 2b have to
be fulfilled at the same time by the same polynomials p1, . . . , pk.

Example 2.12. Let p1(z1, z2, z3) = z1z3, p2(z1, z2, z3) = z1, p3(z1, z2, z3) = z3

and u := |p1|2 + exp
(
−(|p2|2 + |p3|2)−1

)
. The function u fulfils the properties

(1) u−1(0) =
{
z ∈ ∂

� 3 : p2(z) = p3(z) = 0
}

,

(2) u(z) > |p1(z)|2 for z ∈ ∂
� 3 .

Moreover, the function u is not a boundary function.
	�
�����

. If u is a boundary function, then v(z1, z2) := u(z1, z2, 0) is also a
boundary function, which is impossible on the basis of Example 2.10. �

We present how Theorem 2.9 can be used.

Example 2.13. If u is a lower semi-continuous function on ∂
� n and u(zλ) =

u(z) > 0 when |λ| = 1, then u is a boundary function.
	�
�����

. Let p(z) = inf
w∈∂ � n u(w). Obviously it is a homogeneous polynomial of

degree 0. Now it suffices to use Theorem 2.9. �

Example 2.14. Let p1, . . . , pm be any homogeneous polynomials. We will show

that

u(z) =
( m∑

i=1

|pi|
)α

+ M exp
(
−1

/ m∑

i=1

|pi|
)

for α > 0, M > 0 is a boundary function.
	�
�����

. It suffices to assume that u 6= 0. Let c := 1
2 max

z∈∂ � n
m∑

i=1

|pi(z)|. Obviously
c > 0. Let N be any natural number such that N > α. We can estimate

1 >

m∑

i=1

|pi(z)|
c

>
m∑

i=1

|pi(z)|2
c2
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for z ∈ ∂
� n . In particular,

u(z) >
( m∑

i=1

|pi(z)|
)α

> cα

c2N

( m∑

i=1

|pi(z)|2
)N

for z ∈ ∂
� n and u−1(0) = {z ∈ ∂

� n : p1(z) = . . . = pm(z) = 0} . Therefore on the

basis of Theorem 2.9 the function u is a boundary function. �

Example 2.15. If u1, u2 are boundary functions, then the following functions are
also boundary functions:2 u1 + u2, u1u2, max {u1, u2}, min {u1, u2}.
	�
�����

. Due to Definition 2.1 there exist sequences fm,1 and fm,2 of continuous,

non-negative functions such that fm,i 6 fm+1,i and ui = lim
m→∞

fm,i. In particular,

• u1 + u2 = lim
m→∞

fm,1 + fm,2,

• u1u2 = lim
m→∞

fm,1fm,2,

• max {u1, u2} = lim
m→∞

max {fm,1, fm,2},
• min {u1, u2} = lim

m→∞
min {fm,1, fm,2}.

Therefore, on the basis of Definition 2.1 we can see that the functions u1 + u2, u1u2,
max {u1, u2}, min {u1, u2} are lower semi-continuous functions. As these functions
have also the same values on the circles, therefore on the basis of Theorem 2.9 there
exist homogeneous polynomials p1, . . . , pr and q1, . . . , qs such that

• u−1
1 (0) = {z ∈ ∂

� n : p1(z) = p2(z) = . . . = pr(z) = 0} ,

• u1(z) >
r∑

j=1

|pj(z)|2 for z ∈ ∂
� n ,

• u−1
2 (0) = {z ∈ ∂

� n : q1(z) = . . . = qs(z) = 0} ,

• u2(z) >
s∑

j=1

|qj(z)|2 for z ∈ ∂
� n .

We can additionally assume that

(2.5) max
{ s∑

j=1

|qj(z)|2 ,

r∑

j=1

|pj(z)|2
}

6 1

for z ∈ ∂
� n . In particular,

(1) (u1 + u2)
−1 (0) =

r⋂
i=1

s⋂
j=1

{z ∈ ∂
� n : pi(z) = qj(z) = 0},

(2) (u1 + u2) (z) >
r∑

j=1

|pj(z)|2 +
s∑

j=1

|qj(z)|2 for z ∈ ∂
� n ,

(3) (u1u2)
−1 (0) =

r⋂
i=1

s⋂
j=1

{z ∈ ∂
� n : pi(z)qj(z) = 0},

2We assume 0 ∗∞ = 0.
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(4) (u1u2) (z) >
r∑

i=1

s∑
j=1

|pi(z)qj(z)|2 for z ∈ ∂
� n ,

(5) max {u1(z), u2(z)}−1 (0) =
r⋂

i=1

s⋂
j=1

{
z ∈ ∂

� n : 1
2pi(z) = 1

2qj(z) = 0
}
,

(6) max {u1(z), u2(z)} > 1
2 (u1(z) + u2(z)) >

r∑
j=1

| 12pj(z)|2 +
s∑

j=1

| 12qj(z)|2 for z ∈
∂
� n ,

(7) min {u1(z), u2(z)}−1 (0) =
r⋂

i=1

s⋂
j=1

{z ∈ ∂
� n : pi(z)qj(z) = 0},

(8) min {u1(z), u2(z)} >
r∑

i=1

s∑
j=1

|pi(z)qj(z)|2 for z ∈ ∂
� n .

In the last inequality it is necessary to use (2.5).

Due to Theorem 2.9 the functions u1 + u2, u1u2, max {u1, u2} and min {u1, u2}
are boundary functions. �

Example 2.16. If um is a sequence of boundary functions then
∑

m∈ �
um is a

boundary function. If {um}m∈ � is a set of boundary functions then sup
m∈ � um is a

boundary function.

	�
�����
. On the basis of Theorem 2.9 there exist sequences of numbers {jm}m∈ �

({jm}m∈ � ) and homogeneous polynomials {pk,m}k∈{1,...,jm}
m∈ � ({pk,m}k∈{1,...,jm}

m∈ � ) such
that

• u−1
m (0) =

jm⋂
i=1

{z ∈ ∂
� n : pi,m(z) = 0} ,

• um(z) >
jm∑
i=1

|pi,m(z)|2 for z ∈ ∂
� n .

Let u =
∑

m∈ �
um (u = sup

m∈ � um). Obviously u is a lower semi-continuous function

and u(λz) = u(z) when |λ| = 1. If u−1(0) is an empty set, then on the basis of
Theorem 2.9 it is a boundary function.

Otherwise, there exists3 k ∈ � (k ∈ � ) such that u−1(0) = u−1
k (0). Therefore

(1) u−1(0) =
jk⋂

i=1

{z ∈ ∂
� n : pi,k(z) = 0} ,

(2) u(z) >
jk∑

i=1

|pi,k(z)|2 for z ∈ ∂
� n .

Due to Theorem 2.9 u is a boundary function. �

3 This follows from the fact that u−1k (0) is a remainder of an analytical set.
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3. Applications of boundary functions

Let E be any circular subset of type Gδ and Fσ in ∂
� n . In the paper [9] we

presented a construction of a holomorphic function f ∈ � (
� n ) for which E is the

exceptional set. In this paper we have used some properties of Wojtaszczyk poly-
nomials [12]. Now we present a much stronger result as an application of boundary

functions.
We say that E ⊂ ∂

� n is a circular if z ∈ E =⇒ λz ∈ E for every λ ∈ � , |λ| = 1.
By σ we denote a natural measure on ∂

� n so that σ(∂
� n ) = 1.

Theorem 3.1. Let E be a circular subset of ∂
� n . Then there exists a holomorphic

function f ∈ � (
� n ) such that

∫
� n\Λ(E)

|f |2 dL2n < ∞ iff E is of type Gδ in ∂
� n .

Here Λ(E) = {λz : |λ| < 1, z ∈ E}, E = E(f) and dL2n is the 2n-dimensional

Lebesgue measure.
	�
�����

. Note that the easy “if”-part of the proof can be found in [9, Proposi-

tion 2.2].
There exists a sequence {Um}m∈ � in ∂

� n of open circular sets such that

∑

m∈ �
σ (Um \E) 6 1

and E =
⋂

m∈ �
Um. Let

χm(z) :=

{
1 for z ∈ Um,

0 for z ∈ ∂
� n \ Um.

Obviously χm is a lower semi-continuous function. Let u = 1+
∑

m∈ �
χm. The function

u is also a lower semi-continuous function such that u(λz) = u(z) > 0 for |λ| = 1 and
z ∈ ∂

� n . On the basis of Theorem 2.9 (for k = 1, p1 = 1) there exists a holomorphic
function f ∈ � (

� n ) for which u is a boundary function. Observe now that
∫

∂ � n\E
u dσ = 1 +

∑

m∈ �
σ (Um \E) 6 2.

There exists a constant C > 0 such that

C

∫

� n\Λ(E)

|f |2 dL2n 6
∫

∂ � n\E

∫

|λ|61

|f(λz)|2dL2(λ) dσ(z)

=
∫

∂ � n\E
u dσ 6 2,

which completes the proof. �
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We give a nontrivial solution of the Dirichlet problem for plurisubharmonic func-

tions as another application of boundary functions.

Theorem 3.2. If u is a continuous function on ∂
� n such that u(λz) = u(z), then

there exists a constant c ∈ � and a sequence of homogeneous polynomials {pm}m∈ �
such that pm is of the degree m and u(z) = c +

∑
m∈ �

|pm(z)|2 for z ∈ ∂
� n . In

particular, the function g(z) = c +
∑

m∈ �
|pm(z)|2 is continuous on � n , real analytic

and plurisubharmonic on
� n .

	�
�����
. Let c := inf

z∈∂ � n u(z)−1. Then u(z)−c > 1. Therefore due to Theorem 2.9

there exists a holomorphic function f such that

u(z)− c =
∫

|λ|<1

|f(λz)|2 dL2(λ).

In particular, there exists a sequence of homogeneous polynomials {pm}m∈ � such
that pm is of the degree m and u(z) = c +

∑
m∈ �

|pm(z)|2 for z ∈ ∂
� n . Let g(z) = c +

∑
m∈ �

|pm(z)|2. Because the series ∑
m∈ �

|pm(z)|2 is uniformly convergent to a continuous

function u(z) − c on ∂
� n and

N2∑
m=N1

|pm(z)|2 is a plurisubharmonic function on � n ,

therefore g is a continuous function on
�

n and it is a plurisubharmonic and real
analytic function on

� n . �
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